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† Background and Aims A pollen grain contains a number of esterases, many of which are released upon contact
with the stigma surface. However, the identity and function of most of these esterases remain unknown. In this
work, esterases from olive pollen during its germination were identifided and functionally characterized.
† Methods The esterolytic capacity of olive (Olea europaea) pollen was examined using in vitro and in-gel
enzymatic assays with different enzyme substrates. The functional analysis of pollen esterases was achieved
by inhibition assays by using specific inhibitors. The cellular localization of esterase activities was performed
using histochemical methods.
† Key Results Olive pollen showed high levels of non-specific esterase activity, which remained steady after
hydration and germination. Up to 20 esterolytic bands were identified on polyacrylamide gels. All the inhibitors
decreased pollen germinability, but only diisopropyl fluorophosphate (DIFP) hampered pollen tube growth. Non-
specific esterase activity is localized on the surface of oil bodies (OBs) and small vesicles, in the pollen intine and
in the callose layer of the pollen tube wall. Acetylcholinesterase (AChE) activity was mostly observed in the aper-
tures, exine and pollen coat, and attached to the pollen tube wall surface and to small cytoplasmic vesicles.
† Conclusions In this work, for the first time a systematic functional characterization of esterase enzymes in
pollen from a plant species with wet stigma has been carried out. Olive pollen esterases belong to four different
functional groups: carboxylesterases, acetylesterases, AChEs and lipases. The cellular localization of esterase ac-
tivity indicates that the intine is a putative storage site for esterolytic enzymes in olive pollen. Based on inhibition
assays and cellular localization of enzymatic activities, it can be concluded that these enzymes are likely to be
involved in pollen germination, and pollen tube growth and penetration of the stigma.

Key words: Acetylcholinesterases, acetylesterases, carboxylesterases, DIFP, ebelactones, germination, lipases,
neostigmine, olive, Olea europaea, pollen, pollen tube, sulfydryl reagents.

INTRODUCTION

Successful pollination in flowering plants depends on complex
interactions between the pollen grain and stigmatic surface.
The stigma can be dry or wet, depending on the absence or
presence of copious secretions during the receptive period
(Heslop-Harrison and Shivanna, 1977). In wet stigmas,
pollen adhesion is mediated by the stickiness and surface
tension of the stigmatic secretion (Swanson et al., 2004).
The surface of receptive-wet stigmas is characterized by a
high rate of activity of some enzymes, notably peroxidases
and esterases (Dafni and Maués, 1998). The dry-type stigma,
which is present in some Angiosperm families such as
Brassicaceae, is enclosed by a continuous layer of cuticle of
a lipidic nature. Characteristically, the stigma cuticle is over-
laid with a thin proteinaceous pellicle, which displays strong
esterase activity (Mattsson et al., 1974). In dry stigmas,
pollen adhesion depends on the pollen coat, and the protein-
aceous pellicle of the stigma (Edlund et al., 2004).

A mature pollen grain contains numerous enzymes, many of
which are released upon contact with the stigmatic surface
(Brewbaker, 1971; Heslop-Harrison, 1987). Among them,

carboxylic-ester hydrolases [Enzyme Commission (EC)
number: EC 3.1.1; Webb, 1992] are esterases (EC 3.1) that cata-
lyse the hydrolysis of carboxylic acid esters that result in the for-
mation of an alcohol and a carboxylic acid anion (Mäkinen and
Brewbaker, 1967; Mäkinen and McDonald, 1968; Lavithis and
Bhalla, 1995). Three active cutinases (EC 3.1.1.74) have been
characterized in the pollen of Tropaeolum majus (Shaykh
et al., 1977; Maiti et al., 1979), Brassica napus (Hiscock
et al., 1994) and Arabidopsis thaliana (Takakashi et al.,
2010). These specialized esterases break down the waxy poly-
mers of cutin present in the stigma cuticle, allowing the pollen
tube to breach this barrier (Hiscock et al., 1994; Takakashi
et al., 2010). Several carboxylesterases (EC 3.1.1.1), which
possess the catalytic triad ‘Ser 153, Tyr167 and Lys171
(S-D-H)’, at their active site are required for pollen tube penetra-
tion of the stigma in Brassica napus (Hiscock et al., 2002a). The
pollen coat of arabidopsis and sunflower also possesses several
active lipases (EC 3.1.1.3) that might be involved in the degrad-
ation of the stigma’s lipidic structures such as the cuticle
(Mayfield et al., 2001; Shakya and Bhatla, 2010).

Once the cuticle has been breached, the pollen tube pene-
trates the stigma tissues and grows through the intercellular
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spaces of the stylar transmitting tissue. In some species, the
hollow style is filled with a mucilaginous matrix, and the
pollen tube grows adhered to one layer of the secretory
tissue that covers the inner surface of the cylinder (Lord,
2003). The pollen tube wall consists of an inner layer of
callose and cellulose and an outer coating of pectins
(Geitmann and Steer, 2006). The pollen tube tip lacks the
callose layer (Ferguson et al., 1998) and is enriched with es-
terified pectins (Li et al., 1994; Jauh and Lord, 1996; Parre
and Geitmann, 2005), which provide the apex with sufficient
strength and elasticity to support polarized tip growth. Pollen
pectin methylesterases (EC 3.1.1.11) have a relevant function
in regulating pollen tube wall dynamics in pistil tissues
(Bosch et al., 2005; Jiang et al., 2005). Esterified pectins
from the pollen tube tip are gradually de-esterified by pectin
methylesterases, which cleave the methoxyester groups of
homogalacturonans (Catoire et al., 1998). Then, the exposed
carboxyl residues can be cross-linked by calcium ions,
forming a pectate gel (Goldberg et al., 1996).

In addition to cutinases, lipases and pectinesterases, pollen
from most species contains many other esterases (Mäkinen
and Brewbaker, 1967; Knox and Heslop-Harrison, 1970;
Lavithis and Bhalla, 1995; Hiscock et al., 2002b). These
enzymes are ubiquitous in nature and exist in multiple forms
and have broad substrate specificity. When the substrate is a
simple ester such as naphthyl acetate, the enzyme is termed
a non-specific esterase. Currently, the functional classification
of non-specific esterases mostly relies on their behaviour in the
presence of different classes of inhibitors. Based on their sen-
sitivity to carbamates, organophosphorus (OP) compounds and
sulfydryl reagents, non-specific esterases are classified into
three groups (Pearse, 1972). Carboxylesterases (EC 3.1.1.1)
are inhibited by OP compounds [e.g. diisopropyl fluoropho-
sphate (DIFP)]. Arylesterases (EC 3.1.1.2) are not affected
by either carbamates or OP compounds but are inhibited by
sulfydryl reagents [e.g. p-chloromercuribenzoate (pCMB)]
and EDTA. Acetylesterases (EC 3.1.1.6) are not sensitive to
any of the inhibitors mentioned above.

There is a considerable overlap between non-specific
esterases and other more specific esterases, such as acetylcho-
linesterases (AChEs; EC 3.1.1.7) and lipases, which are also
capable of hydrolysing simple esters. However, AChEs are dif-
ferentiated from non-specific esterases by the action of carba-
mates (e.g. eserine and neostigmine bromide). Thus, the
hydrolysing capacity of AChEs is destroyed by these inhibitors
while the activity of non-specific esterases is not affected. On
the other hand, lipases are capable of hydrolysing long-chain
esters while non-specific esterases lack this ability.

The isozyme pattern of non-specific esterases in plants is in-
dependent of external factors and allows interspecific and
intraspecific species identification (Bı́lkowá et al., 1999).
The isozyme composition is also known to be tissue specific
and was shown to change during ontogenesis. Esterases are
also used as markers of somatic embryogenesis induction, dif-
ferent embryonic developmental stages and the degree of
stigma receptivity (Stejskal and Griga, 1995; Dodeman and
Ducreux, 1996; Heslop-Harrison et al., 1975a, b). The identity
and function of many of the pollen esterases are still unknown.
Indeed, no data regarding the systematic functional classifica-
tion of esterases from the pollen grain are available as yet. In

the present work, we have identified and functionally charac-
terized the esterases of olive (Olea europaea L.) pollen.

MATERIALS AND METHODS

Plant material

Olive (Olea europaea L.) pollen grains were collected from
dehiscent anthers at the end of the flowering period by vigor-
ously shaking the flowering shoots inside paper bags.
Sampling was carried out from five selected trees (cv.
‘Lechı́n de Granada’) belonging to the olive germplasm
bank of the Centro de Investigación y Formación Agraria
(CIFA) ‘Venta del Llano’ (Mengı́bar, Jaén, Spain). Samples
were sieved through a set of meshes to remove floral debris.
Pollen viability was routinely assessed by staining pollen
with fluorescein diacetate before each experiment (Heslop-
Harrison and Heslop-Harrison, 1970). Pollen viability rates
varied between 34.9 and 37.2 % depending on the pollen
batch (i.e. tree).

In vitro pollen germination

Freshly collected pollen samples were rehydrated by incuba-
tion in a humid chamber at room temperature for 30 min and
then transferred to Petri dishes (0.1 g of pollen per dish) con-
taining 10 mL of germination liquid medium [10 % (w/v)
sucrose, 0.03 % (w/v) Ca(NO3)2, 0.01 % (w/v) KNO3,
0.02 % (w/v) MgSO4 and 0.01 % (w/v) H3BO3]. Petri dishes
were maintained at room temperature in the dark for 6 h
under gentle agitation. Pollen sampling was carried out at 1
and 6 h after the onset of the culture.

Preparation of protein extracts

Freshly collected desiccated pollen (0.1 g) was suspended in
1.5 mL of extraction buffer (0.05 M phosphate buffer, pH 7.0).
Pollen proteins were eluted under continuous and vigorous stir-
ring at 4 8C for 1 h. The suspension was spun at 13 500 rpm
for 30 min at 4 8C and the resulting supernatants were filtered
through a PD10 column (GE Healthcare Bio-Sciences AB,
Uppsala, Sweden) and concentrated by centrifugation through
Amicon Ultra-15 centrifugal filter devices (Millipore,
Billerica, USA). After culture, pollen was filtrated through a
set of meshes, in order to separate germinated from non-
germinated pollen grains. Proteins were extracted from 1 and
6 h germinated pollen as described above. Total protein
content was estimated for each sample using the Detergent
Compatible (DCTM) reagent (Bio-Rad, Hercules, USA) and
bovine serum albumin (BSA) as standard following the manu-
facturer’s instructions. All the samples were aliquoted and im-
mediately processed, or stored at –80 8C until use.

In vitro assay of non-specific esterase activity

Non-specific esterase activity was spectrophotometrically
assayed by measuring the formation of p-nitrophenol from
p-nitrophenyl butyrate (PNB) ester according to Purdy and
Kolattukudy (1973) with minor modifications. The effect of
pH, temperature and time of incubation was determined. The
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optimal reaction mixture consisted of 880 mL of 50 mM Tris–
HCl (pH 8.0), 100 mL of 0.4 % (v/v) Triton X-100, 10 mL of
1.76 % PNB (v/v in acetonitrile) and 10 mL of pollen protein
extract (approx. 30 mg). This mixture was incubated at 30 8C
for 30 min, and the PNBase activity was measured at
405 nm using a Shimadzu 1800 spectrophotometer
(Shimadzu, Kyoto, Japan).

Changes in pollen PNBase activity during in vitro germin-
ation were measured as described above. For each sample,
five independent experiments with three replicates each (n ¼
15) were performed, and the mean and standard deviation
were computed. Esterase activity rates were expressed as rela-
tive percentages referred to the maximum mean value of A405.
Control reactions were performed as described above by either
omitting the pollen protein extract from the reaction mixture or
heating the protein extract at 100 8C for 10 min.

SDS–PAGE

Pollen proteins (approx. 25 mg per sample) were mixed with
an equal volume of 2× SDS sample buffer (Laemmli, 1970),
boiled for 3 min prior to gel loading, and separated by SDS–
PAGE on 12 % (w/v) polyacrylamide gel slabs using a
Mini-PROTEAN 3 Electrophoretic Cell (Bio-Rad). After elec-
trophoresis, the resulting gels were stained with Coomassie
brilliant blue (CBB) according to standard procedures. Gel
documentation was carried out in an ImageScanner III (GE
Healthcare Bio-Sciences) using the LabScan 6.0 software
(GE Healthcare Bio-Sciences).

In-gel detection of non-specific esterase activity

The non-specific esterase profile was studied in mature
pollen. SDS–PAGE was performed as above, but the sample
boiling step was omitted. After electrophoresis, SDS was
removed from the polyacrylamide gels by washing them
three times for 30 min each in a solution containing 0.05 M

phosphate buffer (pH 7.0) and 2.5 % (v/v) Triton X-100.
Esterase activity was revealed by incubating gels for 3 h at
37 8C in a developing solution containing 30 mg of a-naphthyl
acetate prepared in 0.5 mL of acetone and 100 mg of Fast blue
RR salt in 50 mL of 0.1 M phosphate buffer (pH 7.0). The re-
producibility of esterase profiles was confirmed first by carry-
ing out three independent experiments and, secondly, by
running each protein sample in triplicate (n ¼ 9 gels). The ap-
parent molecular masses of the resulting esterase bands were
estimated using the Precision Plus protein standards
(Bio-Rad). Control reactions were performed by omitting
either the substrate or salt from the developing solution. All
enzyme substrates were purchased from Sigma-Aldrich (St
Louis, USA).

In-gel detection of lipase activity

SDS–PAGE was performed as above. After SDS removal,
lipase activity was revealed by incubating the gels for
30 min at 37 8C in a developing solution containing
40 mg of a-naphthyl palmitate, prepared in 16 mL of N,
N-dimethylformamide, and 80 mg of Fast blue BB salt in
144 mL of 0.1 M phosphate buffer (pH 7.0). Control reactions

were performed by omitting either the substrate or the salt
from the developing solution. The reproducibility of lipase ac-
tivity profiles was confirmed as above.

Inhibition studies

In vitro inhibition assays for non-specific esterase activity
were carried out using protein extracts of mature pollen
grains. Briefly, protein samples were prepared as above, and
the reaction mixture lacking the substrate (PNB) but contain-
ing the inhibitor at different concentrations was pre-incubated
for 30 min at 30 8C. After this period, 1.76 mL of PNB was
added to the mixture and the incubation of samples was
extended for 30 min at 30 8C. The esterase activity was mea-
sured as above. Five independent experiments with three repli-
cates each (n ¼ 15) were performed, and the mean and
standard deviation were computed.

To perform in-gel inhibition assays, mature pollen protein
extracts were prepared as above but the inhibitor at a final con-
centration of 2 mM was added to the extraction buffer. Protein
samples were then subjected to SDS–PAGE, and esterase
enzymes were detected by incubating gels for 3 h at 37 8C in
a developing solution as above. The reproducibility of the
results was confirmed first by carrying out three independent
experiments and, secondly, by running each protein sample
in triplicate (n ¼ 9 gels). A control gel was incubated as
above but without inhibitors.

Inhibition assays were also performed during pollen germin-
ation. For this purpose, pollen samples were germinated in
vitro, and the corresponding inhibitor was added at the onset
of the culture. Pollen was sampled after 6 h of germination
and fixed in a mixture of acetic acid and ethanol (3:1). The
germination rate (%) was calculated from approx. 2250
pollen grains randomly counted (200 grains per count × 5 in-
dependent experiments × 3 replicates for each experiment)
under an Axioplan microscope (Nikon, Tokyo, Japan) using
a palm-held counting device. Pollen grains were counted as
germinated when the length of the pollen tube was at least
2-fold the pollen diameter (Pinney and Polito, 1990). Pollen
tube length was measured from 750 germinated (i.e. pollen
tube length ≥2× the pollen diameter) pollen grains (50
grains per count × 5 independent experiments × 3 replicates
for each experiment) using Image J v.1.43 software. The
mean and standard deviation for each parameter were calcu-
lated and plotted using the SigmaPlot software (Systat
Software GmbH, Erkrath, Germany).

The following inhibitors (purchased from Sigma-Aldrich)
were used in all the experiments described above: neostigmine
(dissolved in water), DIFP (dissolved in isopropanol) and
pCMB (dissolved in ethanol and water, 1:1). In addition, the
inhibitor ebelactone B (dissolved in ethanol and water, 1:1)
was used for carrying out inhibition assays of lipase activity.

Transmission electron microscopy

Mature and germinated pollen samples (a 1:1 mixture) were
pre-fixed in 100 mM sodium cacodylate buffer (pH 7.2) con-
taining 2.5 % (w/v) glutaraldehyde for 1 h at 4 8C. Samples
were then washed in 100 mM sodium cacodylate buffer (pH
7.2) three times for 1 h each. After washing, non-specific
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esterase activity was detected by incubating samples at 37 8C
for 30 min in a 1.5 mL solution of 100 mM phosphate buffer
(pH 7.0) containing 30 mL of 60 mg mL21 a-naphthyl
acetate in acetone and 60 mL of 2 mg mL21 Fast blue RR salt.

In order to detect AChE activity, pollen samples were pro-
cessed as above and incubated at 40 8C for 25 min in a
1.5 mL solution containing 0.1 M acetate buffer (pH 6.0),
0.1 M sodium citrate, 30 mM copper sulfate, 5 mM potassium
ferricyanide and 0.002 g of acetylthiocholine iodide. After
enzyme reactions, the samples were rinsed in 100 mM cacody-
late buffer (pH 7.2) three times for 30 min each and post-fixed
in 1 % (w/v) OsO4 for 1 h at 4 8C. After dehydration in a
graded ethanol series, pollen grains were embedded in epoxy
resin (Sigma-Aldrich).

Ultrathin sections (thickness, 70 nm) were cut with a
Reichert-Jung Ultracut microtome (Leica Microsystems AG,
Wetzlar, Germany) and mounted on 200-mesh formvar-coated
nickel grids. Grids with both mature and germinated pollen
sections were stained with 5 % (w/v) uranyl acetate and lead
citrate (1.33 g of lead nitrate, 1.67 g of sodium citrate and
8 mL of 1 M sodium hydroxide in 50 mL of dH2O).
Observations were carried out in a JEM-1011 transmission
electron microscope (JEOL, Tokyo, Japan). Images were
obtained with a MegaView III camera (Olympus, Tokyo,
Japan) using iTEM software (JEOL). The reproducibility of
the results was confirmed by performing three independent
experiments. Control reactions were carried out as above but
the enzyme substrate was not added.

RESULTS

Detection of esterolytic activity in olive pollen during germination

The effect of pH, temperature and time of incubation on the
non-specific esterase activity rate in mature olive pollen was
measured in vitro (Fig. 1). The PNBase activity was found
to be optimal at pH 8.0, at 30 8C and after 90 min of incuba-
tion. These assay conditions were further applied to measure
the PNBase activity in pollen grains during in vitro germin-
ation (Fig. 2). The esterolytic activity remained steady after
hydration and during pollen in vitro germination, showing
similar values to that of mature pollen (Fig. 2). We also
detected the presence of non-specific esterase activity in the
culture medium, but the values barely represented 20 % of
the activity detected in mature pollen grains after 1 h of

germination. Then, the PNBase activity significantly decreased
after 6 h of pollen culture (Fig. 2).

Profiling of esterase activity in olive pollen during germination

Figure 3A shows the esterase activity profile in mature olive
pollen grains after total protein separation on an SDS–poly-
acrylamide gel and after incubation with a-naphthyl acetate
as substrate. These olive pollen esterase enzymes were gener-
ically named OeEst and numbered consecutively beginning
from the anodic end of the gel (Fig. 3B). The resulting esterase
activity profile was essentially the same after using either
naphthyl acetate (2 C atoms) or naphthyl butyrate (4 C
atoms) esters (data not shown) as substrates in the reaction
mixture. Up to 14 different esterolytic bands were observed,
having molecular weights ranging from 26 to 245 kDa
(Table 1). No differences were found after using either the a
or b isomers of naphthyl acetate ester in the reaction (data
not shown).

After incubation with a long-chain fatty acid ester such as
b-naphthyl palmitate (16 C atoms), the profile differed signifi-
cantly in quantitative and qualitative terms (Fig. 3A). The
resulting bands were generically named OeLip and numbered
consecutively beginning from the anodic end of the gel
(Fig. 3B). Up to 12 esterolytic bands were visible, five of
which (OeLip1 and OeLip9–OeLip12) were specific for the
b-naphthyl palmitate substrate (Fig. 3B). The remaining
bands, except OeLip2, showed a higher intensity compared
with the same a-naphthyl acetate-derived bands. This fact sug-
gests that OeLip2 and OeEst2, although they have similar mo-
lecular weights, are not the same protein.

Functional classification of esterases present in olive pollen

The functional classification of esterolytic bands was carried
out using a set of esterase inhibitors, i.e. neostigmine, DIFP,
pCMB and ebelactone B. When assayed in vitro, neostigmine
slightly stimulated esterolytic activity when applied at very
low concentrations and inhibited PNBase activity at higher
doses (Fig. 4A). A similar pattern was observed when the in-
hibitor eserine was used (data not shown). The other three inhi-
bitors produced a significant decrease in the PNBase activity
of mature pollen in a dose-dependent manner (Fig. 4B, C).
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Figure 5A shows pollen esterase activity profiles on poly-
acrylamide gels after treatment with the inhibitors mentioned
above. Using a-naphthyl acetate as an enzyme substrate, we
found that the esterolytic bands OeEst1 and OeEst2 were
both inhibited by DIFP and pCMB, but were unaffected after
exposure to carbamates (Fig. 5A). This inhibition pattern sug-
gests that OeEst1 and OeESt2 are carboxylesterases. The in-
hibitory effect of pCMP may reflect the close proximity of a
cysteine residue to the active site. The bands from OeEst9 to

OeEst14 were identified as AChEs since they were completely
inhibited by the action of neostigmine and DIFP. None of the
chemical inhibitors affected the activity of esterolytic bands
OeEst3–OeEst8, so these enzymes are likely to be acetyles-
terases. Finally, treatments with the inhibitor ebelactone B
resulted in the inhibition of all esterolytic activities detected
on polyacrylamide gels when b-naphthyl palmitate was used
as an enzyme substrate (Fig. 5B).

Effect of esterase inhibitors on pollen performance

Olive pollen was allowed to germinate in vitro in the pres-
ence of different esterase inhibitors, and both germinability
and pollen tube growth rates were recorded (Fig. 6). All the
inhibitors produced a strong reduction in the capacity of
olive pollen to germinate when compared with controls after
6 h of culture (Fig. 6A). Neostigmine caused the strongest in-
hibitory effect on pollen germination, decreasing values up
to 5-fold compared with non-treated controls (Fig. 6A;
Supplementary Data Fig. S1). On the other hand, only the or-
ganophosphate DIFP seriously hampered the pollen tube
growth rate, whereas neither neostigmine nor pCMB seemed
to affect the pollen tube length significantly after 6 h of
culture (Fig. 6B; Supplementary Data Fig. S1).

Sub-cellular localization of esterolytic activity in olive pollen

Non-specific esterase activity was first localized in mature
pollen grains at the ultrastructural level using a-naphthyl
acetate as a substrate for the enzyme reaction (Fig. 7). We
observed the accumulation of electron-dense precipitates in
the intine, particularly at the aperture (Fig. 7A, arrows). In
the cytoplasm of the vegetative cell, precipitates were also
localized to a lesser extent at the periphery of round-shaped
electron-dense structures that probably correspond to oil
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TABLE 1. Molecular weight of unspecific esterase (Est) and
lipase (Lip) enzymes identified in mature olive pollen, calculated

from gels shown in Fig. 3A

Enzyme Mol. wt (kDa)

OeEst1 25.7
OeLip1 28.0
OeLip2 32.4
OeEst2 32.8
OeEst3/OeLip3 35.7
OeEst4/OeLip4 38.8
OeEst5/OeLip5 39.7
OeEst6/OeLip6 42.4
OeEst7/OeLip7 49.3
OeEst8/OeLip8 51.6
OeLip9 66.5
OeEst9 70.6
OeLip10 75.0
OeEst10 78.0
OeLip11 84.9
OeLip12 102.1
OeEst11 117.4
OeEst12 136.6
OeEst13 218.4
OeEst14 242.6
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bodies (OBs; Fig. 7B, arrows). In the germinating pollen, pre-
cipitates were accumulated at the tip of the pollen tube
(Fig. 7C, arrows) as well as at the boundaries of small vesicles
scattered throughout the cytoplasm (Fig. 7D, arrows). In the
distal region of the pollen tube, far from the apex, precipitates
were heavily accumulated inside vacuoles and in the inner
callose layer of the pollen tube wall (Fig. 7E, arrows). The
control reaction did not show any labelling (Fig. 7F).

We also carried out cytochemical studies in order to localize
AChE activity at the ultrastructural level in the mature and ger-
minating pollen of the olive. In the mature pollen grain,
electron-dense precipitates were mainly observed in the
exine (Fig. 8A, arrowheads) as well as in the pollen coat
(Fig. 8B, arrows). To a lesser extent, electron-dense precipi-
tates were also located in the vegetative cell, attached to
small vesicles scattered in the cytoplasm (Fig. 8A, arrows).
After pollen hydration, an intense labelling was found
specifically in the swollen apertures (Fig. 8C, arrows). The
generative cell did not show any significant labelling

(Fig. 8D). During pollen germination, numerous electron-
dense precipitates were observed in the pollen tube cytoplasm,
that were often attached to short endoplasmic reticulum (ER)
cisternae and small vesicles that were fused with the plasma
membrane (Fig. 8E, arrows). An intense labelling was also
observed attached to the pollen tube wall surface (Fig. 8E,
arrowheads). In the sub-apical region of the pollen tube, a
similar sub-cellular localization was observed (Fig. 8F).
We did not find electron-dense precipitates in the controls
(Fig. 8G).
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DISCUSSION

A small number of pollen enzymes with esterolytic capacity
have been identified and characterized to date, mainly from
plants possessing a dry stigma (Hiscock et al., 1994, 2002a;
Lavithis and Bhalla, 1995; Shakya and Bhatla, 2010) and

also from species with a wet-type stigma (Shivanna and
Sastri, 1981; Mu et al., 1994). However, to our knowledge,
this is the first report involving a systematic functional classi-
fication of esterases obtained from pollen grains of a plant with
a wet-type stigma.
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Mature olive pollen grains contain 14 different esterase
enzymes with a capacity to hydrolyse non-specific ester sub-
strates such as a-naphthyl acetate. These enzymes were func-
tionally classified as carboxylesterases, acetylesterases and
AChEs. Olive pollen did not show arylesterase activity. First,
we identified two putative carboxylesterases of 25.7 and
32.8 kDa. In Brassica, up to six carboxylesterases were identi-
fied in pollen grains (Hiscock et al., 1994, 2002a), while five
isoenzymes were detected in pollen grains of sunflower
(Shakya and Bhatla, 2010). The sub-cellular localization
pattern of non-specific esterase activity in the olive pollen
grain and pollen tube was similar to that previously reported
in Vicia faba (Bednarska, 1992). The presence of esterase

enzymes in the intine is in good agreement with the idea
that this structure serves as a reservoir for esterolytic
enzymes, which are released upon contact with the stigma
(Hiscock et al., 1994). A 22 kDa esterase was shown to be
an active cutinase involved in stigma cuticle penetration
(Hiscock et al., 1994). It is unlikely that any of the olive
pollen carboxylesterases are cutinase homologues since the
wet stigma of the olive is not cuticularized (Serrano et al.,
2008). Interestingly, we found that the capacity of olive
pollen to germinate in vitro was seriously hampered and
pollen tube growth was slowed down when these enzymes
were chemically inhibited. Inhibition assays demonstrated
that these esterases are required in vivo for pollen tube
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penetration of the stigmatic papillae (Hiscock et al., 2002a).
Our data suggest that in addition to its function in pollen
tube penetration of the stigma reported in Brassica napus,
these carboxylesterases might also be required for pollen
tube growth itself. Esterase-specific inhibitors such as ebelac-
tone B also produced a decrease in pollen germination on
B. napus stigmas (Hiscock et al., 2002). This fact strongly sug-
gests that the inhibitory effects we observed in vitro are likely
to occur on olive stigmas as well, although this hypothesis
needs to be experimentally verified.

A second group of olive pollen non-specific esterases com-
prised six acetylesterases. This class of enzymes was previous-
ly identified in leaf and fruit tissues (Nielsen et al., 2002;
Orasmo et al., 2007). Acetylesterases have also been detected
in reproductive tissues. Nielsen et al. (2002) found a strong
acetylesterase activity within the lime (Citrus aurantifolia)
anther, which was located in the tapetum and pollen grains.
During pollination, acetylesterase activity was detected in the
cytoplasm of both dispersed mature pollen grains and stigmatic
papillae. Interestingly, some galacturonyl residues in the back-
bone of wall pectic compounds are often O-acetylated at the
C2 or C3 hydroxyl group (Perrone et al., 2002; Ralet et al.,
2008). Recently, an acetylesterase (PtPAE1) from black
cotton wood (Populus trichocarpa), which mediates pectin
deacetylation, was functionally characterized in tobacco
(Gou et al., 2012). Overexpression of this enzyme impaired
pollen development within the anther, and hindered pollen ger-
mination and pollen tube elongation, resulting in severe male
sterility. Tentatively, we can speculate that olive pollen acety-
lesterases might be involved in a similar function, but experi-
mental data are needed to support this hypothesis.

A third group of olive pollen esterases included six putative
AChEs. As expected, these enzymes were completely inhibited
by OP compounds and carbamates (Sagane et al., 2005). The
existence of cholinesterase activity in mature pollen was first
evidenced in V. faba by means of histochemical techniques
(Bednarska, 1992). Similarly, olive pollen AChE activity was
mainly located extracellularly, closely attached to the exine
surface, or associated with the pollen coat material. Our data
suggest that olive pollen AChEs might have a double sporo-
phytic and gametophytic origin. This idea is supported by
the presence of AChE activity in the anther tapetum remnants,
which are deposited onto the pollen wall surface and fill the
exine cavities (unpublished data). During germination, the
ultrastructural localization of AChE activity in the pollen
tube suggests that AChE is released by exocytosis into the
extracellular space through the ER/Golgi pathway. Further,
we have identified for the first time pollen AChE enzymes
on polyacrylamide gels, allowing us to determine the
number of isoforms. The molecular masses of these bands
were also coincident with the molecular masses of AChEs
described in other plant species (Luppa and Andrä, 1983).
These results are in good agreement with previous studies
reporting in vitro biochemical detection of cholinesterase ac-
tivity in aqueous homogenates from anther and pollen of
several plant species (Semenova and Roshchina, 1993;
Roshchina and Semenova, 1994). We found that neostigmine
negatively affects the germination capacity of olive pollen. A
recent study has pointed out a role for acetylcholine (ACh)
in plant reproduction. The study showed that elongation of

pollen tubes in the pistils of lily after self-incompatible pollin-
ation is promoted by ACh (Tezuka et al., 2007). These authors
proposed that endogenous levels of ACh in pistils might
control elongation of pollen tubes after pollination; therefore,
self-incompatibility results from a decrease in ACh concentra-
tion. Moreover, the activity of AChE in self-compatible pistils
and pollen grains is higher than that after cross-pollination
(Roshchina, 1991; Kovaleva and Roshchina, 1997; Tezuka
et al., 2007). Whether a similar mechanism exists in the
olive still lacks experimental evidence. However, the extracel-
lular localization of this enzyme supports its function as a
signal transducer.

Using a long-chain fatty acid ester as an enzyme substrate,
we also identified a group of 12 putative lipases in olive
pollen, six of which also had the ability to hydrolyse non-
specific ester substrates. Lipases have been localized in the
extracellular pollen coat using both biochemical and micros-
copy methods (Mayfield et al., 2001; Shakya and Bhatla
2010). However, there is no information about the cellular lo-
calization of these enzymes inside pollen grains. Interestingly,
we detected a strong non-specific esterase activity in the
boundaries of OBs. These organelles accumulate during
olive pollen ontogeny and supply the pollen with energy for
early pollen tube growth (Zienkiewicz et al., 2010, 2011). It
is generally accepted that triacylglycerides (TAGs) stored in
seed OBs are hydrolysed to free fatty acids and glycerol by
the sequential action of one or more lipases (Quettier and
Eastmond, 2009). Similarly, we could expect that lipases that
reside on the surface of pollen OBs might be involved in
TAG hydrolysis.

To conclude, we have carried out for a first time a syste-
matic functional classification of esterase enzymes in pollen
grains from a plant species with wet stigma. Olive pollen
esterases can be classified into four different functional
groups, namely carboxylesterases, acetylesterases, AChEs
and lipases. The cellular localization of esterase activity indi-
cates that the intine is a putative storage site for esterolytic
enzymes in the olive pollen. Based on inhibition assays, we
can conclude that these enzymes are likely to be involved in
pollen germination, and pollen tube growth and penetration
of the stigma.

SUPPLEMENTARY DATA

Supplementary data are available online at www.aob.oxford-
journals.org and consist of Figure S1: effects of neostigmine
DIFP on olive pollen capacity to germinate in vitro after 6 h
of culture compared with non-treated controls.
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