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The origin of the sporophyte shoot in land plants: a bryological perspective
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† Background Land plants (embryophytes) are monophyletic and encompass four major clades: liverworts,
mosses, hornworts and polysporangiophytes. The liverworts are resolved as the earliest divergent lineage and
the mosses as sister to a crown clade formed by the hornworts and polysporangiophytes (lycophytes, monilo-
phytes and seed plants). Alternative topologies resolving the hornworts as sister to mosses plus polysporangio-
phytes are less well supported. Sporophyte development in liverworts depends only on embryonic formative cell
divisions. A transient basal meristem contributes part of the sporophyte in mosses. The sporophyte body in horn-
worts and polysporangiophytes develops predominantly by post-embryonic meristematic activity.
† Scope This paper explores the origin of the sporophyte shoot in terms of changes in embryo organization.
Pressure towards amplification of the sporangium-associated photosynthetic apparatus was a major driver of
sporophyte evolution. Starting from a putative ancestral condition in which a transient basal meristem produced
a sporangium-supporting seta, we postulate that in the hornwort–polysporangiophyte lineage the basal meristem
acquired indeterminate meristematic activity and ectopically expressed the sporangium morphogenetic pro-
gramme. The resulting sporophyte body plan remained substantially unaltered in hornworts, whereas in polyspor-
angiophytes the persistent meristem shifted from a mid-embryo to a superficial position and was converted into
an ancestral shoot apical meristem with the evolution of sequential vegetative and reproductive growth.
† Conclusions The sporophyte shoot is interpreted as a sterilized sporangial axis interpolated between the embryo
and the fertile sporangium. With reference to the putatively ancestral condition found in mosses, the sporophyte
body plans in hornworts and polysporangiophytes are viewed as the product of opposite heterochronic events, i.e.
an anticipation and a delay, respectively, in the development of the sporangium. In either case the result was a
pedomorphic sporophyte permanently retaining juvenile characters.
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INTRODUCTION

Molecular phylogenies have resolved land plants (embryo-
phytes) as monophyletic with charophytic ancestry. Living
land plants encompass four major clades: liverworts, mosses,
hornworts and tracheophytes (lycophytes, monilophytes and
seed plants). The liverworts are resolved as the earliest diver-
gent lineage and the mosses as the sister group to a crown
clade formed by the hornworts and tracheophytes.
Alternative topologies resolving the mosses as the sister
group to tracheophytes are less well supported (Qiu et al.,
2006, 2007; Qiu, 2008; Chang and Graham, 2011).

Characterized by a dominant gametophyte and uniaxial
sporophyte permanently associated with the gametophyte,
liverworts, mosses and hornworts are traditionally referred
to as ‘bryophytes’, a taxonomic assemblage now considered
paraphyletic. Bryophytes produce sporophytes with a single
sporangium or capsule, hence the designation as monospor-
angiates. The tracheophytes are markedly different from bryo-
phytes in that after an initial embryonic phase the sporophyte
becomes autonomous, ramifies and produces multiple sporan-
gia. Extant and extinct tracheophytes, plus some fossil

relatives with branched sporophytes but possibly lacking ligni-
fied vascular tissue, are collectively referred to as the polyspor-
angiophytes (Kenrick and Crane, 1997a, b; Kenrick, 2000;
Gerrienne and Gonez, 2011).

Microfossil evidence indicates that land plants with
bryophytic affinities appeared in the Ordovician at least
470 million years ago. This is consistent with an estimation
of the divergence time of liverworts, the earliest extant land
plant lineage, suggesting a Late-Ordovician origin (Heinrichs
et al., 2007). The oldest accepted land plant macrofossils are
from Mid-Silurian rocks with an age of about 425 million
years and have been described as isotomously branched sporo-
phyte axes bearing terminal Cooksonia-type sporangia
(Edwards and Feehan, 1980). Macrofossils recognized as zos-
terophylls (e.g. Bathurstia and Zosterophyllum; Kotyk et al.,
2002) or basal lycopsids (eg Baragwanathia; Richards,
2000), both relatively advanced members of the tracheophyte
lineage (Kenrick and Crane, 1997a, b), have been described
from Late-Silurian compressions about 410 million year old.
Thus, although sparse and somewhat controversial, the paleo-
botanical evidence indicates that the transition from the bryo-
phyte grade to the polysporangiate grade took place during a
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45 million year interval between the Mid Ordovician and Mid
Silurian. Molecular clock analyses suggest earlier origins for
major embryophyte clades (e.g. 568–815 million years ago
in Clarke et al., 2011), possibly implying a longer time for
the bryophyte to polysporangiophyte transition.

The mature sporophyte of liverworts consists of a sporan-
gium or capsule, containing the spore-forming apparatus, a
seta elongating solely by cell expansion (Thomas, 1980),
and an absorptive foot. This body plan is established by forma-
tive cell divisions (Gunning et al., 1978) at an early stage of
development; subsequent sporophyte growth depends on pro-
liferative cell division and cell expansion in the absence of
any localized area of cell division recognizable as a meristem
(Cooke et al., 2004). The mature sporophyte in mosses has a
similar anatomy to that in liverworts, but the seta and a part
of the foot arise from a transient meristem developing in the
middle of the spindle-shaped embryo. The mature sporophyte
of hornworts lacks a seta and consists of a foot and a sporan-
gial axis, the latter growing from a basal meristem that remains
active throughout sporophyte life (Cooke et al., 2004;
Sakakibara et al., 2008; Ligrone et al., 2012). The sporophyte
body plan of polysporangiophytes, in its basic form epito-
mized by leafless rhyniopsid plants (Taylor et al., 2009), is a
free-living branched axial body (the sporophyte shoot) devel-
oping from a persistent apical meristem (the shoot apical meri-
stem, or SAM) and eventually producing multiple terminal
sporangia. In the following discussion, the term sporophyte
shoot will be used to indicate the vegetative part of the sporo-
phyte in polysporangiophytes, independent of the presence of
leaves. We define the embryo as the post-fertilization develop-
mental stage during which the sporophyte body plan is estab-
lished. In liverworts this coincides with the phase of formative
cell division. The same does not hold true for mosses, horn-
worts and polysporangiophytes because here, owing to the de-
velopment of a meristematic area, formative cell divisions
persist after the establishment of the sporophyte body plan.
For these three groups, we view the appearance of a meristem
(either basal or apical) as the event marking the transition from
embryonic to post-embryonic sporophyte development.

Despite profound differences in ontogeny, the sporophyte
shoot in polysporangiophytes has generally been assumed to
have evolved from the seta of mosses (Smith, 1955; Mishler
and Churchill, 1985). Rejecting this view, Kato and
Akiyama (2005) interpreted the seta as part of the bryophyte
sporangium, and the sporophyte shoot as a novel structure
interpolated between the embryo and sporogenesis. This
appears to overlook the fact that evolution is a contingent
process that produces innovations by modifying already exist-
ing structures or mechanisms rather than creating new ones
(Jacob, 1977). Indeed, a growing body of evidence points to
a substantial and, until recently, unrecognized continuity in
anatomy, biochemistry, physiology and genetics between the
bryophyte and polysporangiophyte grade (Cooke et al., 2004;
Raven and Edwards, 2004; Floyd and Bowman, 2007;
Ligrone et al., 2012). We infer that the sporophyte shoot prob-
ably evolved by modification of an ancestral bryophytic pattern
of embryo development. The present paper explores the origin
of the sporophyte shoot in the putative bryophytic ancestor of
polysporangiophytes and its possible evolutionary relationship
with the sporophyte in mosses and hornworts.

STOMATA AS A GUIDELINE FOR ANALYSING
THE ORIGIN OF THE SPOROPHYTE SHOOT

Stomata are one of the most distinctive features of the sporo-
phyte shoot. By adjusting their aperture in response to multiple
external and internal signals, stomata work to maintain a fa-
vourable balance of water loss and CO2 uptake (Brodribb
et al., 2009; Lawson, 2009; Brodribb and McAdam, 2011).
Stomata also occur in the sporophyte of mosses and hornworts
(Paton and Pearce, 1957), and molecular evidence (Bergmann
and Sack, 2007; Peterson et al., 2010; Rychel and Peterson,
2010; Chater et al., 2011) supports a monophyletic origin of
stomata in the putative common ancestor of the three lineages.
Because of this, mosses, hornworts and polysporangiophytes
have been collectively referred to as the stomatophytes
(Ligrone et al., 2012).

As an adaptation pivotal to the evolution of homeohydry
and of large-sized land plants (reviewed in Raven, 2002;
Proctor, 2007), stomata have had a tremendous impact on the
biology and geochemistry of the planet (for reviews, see
Beerling, 2007; Berry et al., 2010). However, the existence
of stomata in poikilohydric bryophytes indicates that these
structures might not have been associated with homeohydry
since their origin. It has been suggested that stomata evolved
in the sporophyte of the ancestral stomatophyte as a means
to divert water and solutes from the parental gametophyte
and, at maturity, also facilitate spore dispersal (Ligrone
et al., 2012).

The ancestral stomata were most probably simple apertures
lacking an opening/closing mechanism, and arguably more
advanced functions evolved in parallel with an increasingly
complex sporophyte body. Unfortunately, the current under-
standing of the evolution of stomatal responsiveness is incom-
plete, due in part to conflicting data in bryophytes and early
diverging tracheophytes (Brodribb and McAdam, 2011;
Chater et al., 2011; Ruszala et al., 2011; McAdam and
Brodribb, 2012).

More informative in the context of the present analysis is
stomatal distribution. In mosses, stomata are localized in the
sporangium, and the same has been assumed for the putative
ancestral stomatophytes; stomata are expressed throughout
the fertile sporophyte axis in hornworts, whereas in polyspor-
angiophytes they are found in the sporophyte shoot (Ligrone
et al., 2012). Stomata also occurred in the sporangia of
Early Devonian polysporangiophytes such as Aglaophyton
major, Nothia aphylla and Cooksonia pertoni (Edwards
et al., 1998); hence, the lack of stomata in the sporangia of
extant polysporangiophytes is probably a loss (Ligrone et al.,
2012). We conclude that (1) the ancestral stomatous part of
the stomatophyte sporophyte is the sporangium; and (2) stoma-
tal distribution is a phylogenetic trait holding essential clues
on the origin of the sporophyte shoot and its relationship
with the sporophyte in mosses and hornworts.

EVOLUTION OF SPOROPHYTE BODY PLANS IN
STOMATOPHYTES AND ORIGIN OF THE

SPOROPHYTE SHOOT

In a previous analysis of land plant evolution, we argued that
the sporophyte of ancestral stomatophytes had a vascularized
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seta and a sporangium with stomata, air spaces and chlorench-
yma (Ligrone et al., 2012). This pattern of sporophyte anatomy
was assumed to be plesiomorphic in mosses, and the lack of
one or more of the above characters in early diverging or
advanced moss lineages was considered to be the result of in-
dependent loss (Ligrone et al., 2012). In line with the above
considerations, here we assume that the sporophyte of the an-
cestral stomatophyte developed from a moss-like spindle-
shaped embryo (Cooke et al., 2004; Sakakibara et al., 2008;
Uzawa and Higuchi, 2010; Ligrone et al., 2012) consisting
of a sporangium primordium, a haustorium of hypobasal der-
ivation and, between these, a unifacial basal meristem
(Fig. 1A, B).

A major character distinguishing the hornworts and poly-
sporangiophytes from mosses is an amplification of the part
of the sporophyte body expressing stomata and photosynthetic
tissue. This coincides with the whole sporangium in the horn-
worts and the sporophyte shoot in polysporangiophytes.

The early embryo of hornworts consists of two tiers of four
cells, with eight cells in total. This octant stage is sharply dif-
ferent from the spindle-shaped embryo of mosses but is found
in most pteridophyte embryos during initial development
(Johnson and Renzaglia, 2008, 2009). The upper and lower
tier of the 8-celled hornwort embryo are a sporangium primor-
dium and a foot primordium, respectively (Renzaglia, 1978).
As in mosses, a meristematic area develops at the base of
the sporangium primordium after delineation of an endothe-
cium and amphithecium (regions restricted to the sporangium
of mosses and hornworts) but before the sporogenous tissue
(archesporium) is defined (Renzaglia, 1978; Fig. 1C). As in
mosses, this meristem is unifacial and produces new tissue
acropetally; hence, it is referred to as the basal meristem.
Unlike mosses, however, the basal meristem in hornworts
reproduces the developmental pattern of the sporangium prim-
ordium and remains active for the life of the sporophyte.
Consequently, the sporangial axis of the hornwort sporophyte
is an indeterminate structure that arises almost entirely from
the basal meristem, with a very minor contribution from the
sporangium primordium (Fig. 1D).

With reference to the putative moss-like ancestral embryo,
we suggest that the hornwort sporophyte developmental
pattern evolved through ectopic expression of the morpho-
genetic programme of the sporangium in the meristematic
area ancestrally deputed to producing the seta. Having lost
the tissue contribution from the basal meristem, the foot
acquired a bulbous shape and the seta was suppressed
(Fig. 1D).

The key event marking the divergence of the polysporangio-
phyte lineage was the evolution of a SAM, a bifunctional
apical meristem performing two alternative morphogenetic
programmes. In the vegetative mode, the SAM produces an in-
determinate sterile axis, i.e. the sporophyte shoot (Fig. 1F),
and in the reproductive mode a determinate sporangial axis
(Fig. 1G), the transition from vegetative to reproductive
growth involving the loss of the initial cell(s) and consequent
end of indeterminate growth (reviewed by Stahl and Simon,
2010). An apical meristem either evolved de novo from the
sporangium primordium or, more simply, the meristematic
area shifted from an intercalary to a superficial location.
Based on the common octant stage of present-day hornwort

and polysporangiophyte embryos, we speculate that the latter
is the likely scenario and that this transition, involving the
loss of the ancestral sporangium primordium, took place
after the basal meristem had acquired an indeterminate charac-
ter and had been co-opted into the production of sporangial
tissue. The conversion of the newly evolved apical meristem
into an ancestral SAM entailed two further key changes. One
was the interpolation of a phase of vegetative growth preceding
the development of the archesporium; the other an inversion in
the polarity of formative cell divisions. These were no longer
integrated between already determined tissues as in hornworts
but rather were positioned in such a way that the initial cell(s)
could maintain an apical position and thus ‘lead the way’ for
iterative growth. We postulate that, although lacking the
ability to produce leaf primordia, the apical meristem of the
leafless unbranched sporophyte in ancestral polysporangio-
phytes possessed the fundamental properties of a SAM, i.e.
an indeterminate meristematic activity and delayed sporogen-
esis (Fig. 1E).

DISCUSSION AND CONCLUSIONS

Appearing ancestrally in a poikilohydric sporophyte and most
probably originally lacking a functional link with photosyn-
thesis (Ligrone et al., 2012), stomata have turned out to be a
key tool affording a better control of water balance and more
efficient photosynthetic activity. If terrestrialization gave
plants access to greater relative amounts of carbon dioxide,
the evolution of stomata and air spaces was the innovation
that enabled them to exploit this opportunity to its full
extent (Raven, 1996, 2002; Raven and Edwards, 2004).
Arguably, the conversion of ancestral stomata into the multi-
sensing ‘smart’ valves of present-day angiosperms was
gradual (Franks and Farquhar, 2007; Brodribb et al., 2009).
Recent studies suggest that the stomata in hornworts
(J. G. Duckett, Natural History Museum, London, UK,
unpubl. res.), lycophytes and ferns (Brodribb and McAdam,
2011; McAdam and Brodribb, 2012) lack key responses to
abscisic acid; moreover, hornwort stomata exhibit only
partial closure under water stress and remain open when
dead (J. G. Duckett, Natural History Museum, London, UK,
unpubl. res.). It is nevertheless significant that in mosses and
hornworts stomata are associated with well-defined chlorench-
yma with schizogenous air spaces (Raven, 1996; J. G. Duckett,
Natural History Museum, London, UK, unpubl. res.) and,
hence, most probably the anatomical organization was in
place in the ancestral stomatophytes to support the evolution
of opening and closing cycles.

Once they appeared, stomata were the major driver of sporo-
phyte evolution. We suggest that the ancestral role of the basal
meristem in stomatophytes was to push the expanding sporan-
gium out of gametophytic tissues, thereby permitting the
stomata and underlying air spaces to become functional in
gas exchange as early as possible. This is the condition typic-
ally observed in extant mosses (Uzawa and Higuchi, 2010;
Ligrone et al., 2012). The conversion of the basal meristem
into an indeterminate meristem producing sporangial tissue
instead of a seta entailed a significant amplification of the
stomata–air space–chlorenchyma system in ancestral
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hornworts and polysporangiophytes. It is parsimonious to
assume that this condition evolved before the two lineages
diverged. Possibly, a pre-adaptation leading the way to the
loss of the seta and diversion of the basal meristem towards
the production of sporangial tissue was a reduction of mechan-
ical constriction from the gametophytic tissue surrounding the
young sporophyte. The resulting sporophyte body plan
remained substantially unaltered in the hornwort lineage,
except in the genus Notothylas which has a reduced sporo-
phyte (Renzaglia et al., 2009). The longitudinal division of
the zygote is a hornwort apomorphy possibly related to the
sunken nature of the archegonium (Renzaglia et al., 2009).
The same innovation appeared independently in eusporangiate
ferns (Johnson and Renzaglia, 2009).

In the scenario proposed here, further elaboration of the
sporophyte body plan and underpinning embryo organization
in the polysporangiophyte lineage involved suppression of the
sporangium primordium, meristem apicalization and a temporal
splitting of the developmental programmes for the vegetative
(epidermis with stomata and photosynthetic tissue) and repro-
ductive part of the sporangium (archesporium and associated
tissues). The key agent of positional/temporal shifting and si-
lencing of developmental programmes is homeotic mutation,
a class of mutations affecting regulatory genes and/or their
targets, and recognized as a major driver of body plan change
in plants and animals (Vinicius, 2010; Pires and Dolan,
2012). In a broad sense, homeotic genes also embrace genes en-
coding small RNAs associated with the timing of developmen-
tal transitions (Moss, 2007; Poethig, 2009).

The hypothesis that the ancestral SAM arose from an
embryo area pre-determined to produce sporangial tissue
implies interpretation of the sporophyte shoot as a sterilized
sporangial axis intercalated between the early embryo and
the fertile sporangium. Sterilization and diverted development
of reproductive structures is a recurrent mechanism of morpho-
logical innovation in plants. Striking examples are the modifi-
cation of marginal flowers in the inflorescences of Asteraceae
into sterile structures for attraction of pollinators, the conver-
sion of stamens into staminodes and even the origin of
petals from parts of the androecium (reviewed by Crane and
Kenrick, 1997). Other likely examples are microphylls in lyco-
phytes and interseminal scales in Bennettitales, both suggested
to be derived from sterilized sporangia, for the former as an al-
ternative to the enation model (Crane and Kenrick, 1997).
Indeed, partial sterilization of the sporangium is also the
likely mechanism at the origin of the capsule neck or apophy-
sis in peristomate mosses, that is a specialized sporangium
segment containing stomata and chlorenchyma but lacking
archesporial tissue (Goffinet et al., 2009). It may also be
observed that sterilization of potential sporogenous cells is at
the very origin of the sporophyte vegetative tissue in embryo-
phytes (Hemsley, 1994).

With reference to the putatively ancestral condition found in
extant mosses, the sporophyte body plans in hornworts and
polysporangiophytes may be viewed as the expression of op-
posite heterochronic events, i.e. an anticipation (progenesis)
and a delay (neoteny), respectively, in the development of
the sporangium (Gould, 1977; Alberch et al., 1979; Ridley,
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2004). In hornworts, the sporophyte starts producing arche-
sporial tissue in the embryo and young sporophyte
(Renzaglia et al., 2009), whereas in polysporangiophytes the
sporophyte vegetative body grows for a relatively long time
before sporangial development initiates. In either case, the
result is a pedomorphic sporophyte permanently retaining ju-
venile characters: an active meristem and the potential to
produce spores.

The evolutionary model presented here assumes that a moss-
like spindle-shaped embryo is plesiomorphic in stomatophytes
and that the embryo and sporophyte body plans in hornworts
and polysporangiophytes arose by sequential elaboration of
this ancestral pattern. This model is consistent with molecular
phylogenies as well as with substantial similarity in the sporo-
phyte body plan of mosses and liverworts, the latter being the
earliest diverging extant embryophyte lineage (Qiu et al.,
2006, 2007; Qiu, 2008; Chang and Graham, 2011). An alterna-
tive scenario assuming the ancestral stomatophyte embryo to
be similar to the globular embryo of hornworts and the
spindle-shaped embryo to be an apomorphy of mosses would
be less consistent with phylogenetic evidence but would still
be compatible with our model, its main implication being, in
our opinion, that the seta of mosses should be interpreted as
an innovation derived from a sterilized sporangial segment.
An independent origin of the moss seta by partial sterilization
of the sporangial axis appears to be a plausible hypothesis, al-
though less parsimonious than our model because it implies
two separate events of sporangial sterilization in stomatophytes
and rules out homology with the liverwort seta. A
polysporangiophyte-like plesiomorphic embryo would not
only be at sharp variance with phylogeny but would also
imply a sequence of events far less parsimonious than the
scenarios outlined above.

Unlike determinate sporophyte development in liverworts
and mosses, sporophyte development in hornworts and poly-
sporangiophytes is essentially a stochastic process involving
an unpredictable number of cell divisions although producing
highly regular forms. Arguably, the evolution of an indeter-
minate body increased the photosynthetic and reproductive po-
tential of the sporophyte but possibly also amplified a conflict
of interest with the parental gametophyte, at least in terms of
allocation of water and mineral nutrients (Haig and Wilczek,
2006). Probably this was the major factor driving sporophyte
evolution towards autonomy in polysporangiophytes.
Because of the absence of vascular tissue, stomatal transpir-
ation in the hornwort sporophyte presumably is lower than
might be expected in a comparable vascularized system, and
this may have worked in reducing potential conflict with the
gametophyte; moreover, the basal position of the meristem
in the hornwort sporophyte is probably incompatible with
branching, which presumably was an essential prerequisite
for evolving root-like structures and gaining autonomy
(Ligrone et al., 2012). Taken together, these two factors may
account for the retention of a bryophytic life cycle in
hornworts.

The root apical meristem (RAM) and leaf primordium
present in the embryo of extant polysporangiophytes
(Johnson and Renzaglia, 2008, 2009) are additions that fol-
lowed the evolution of branching and were associated with
roots and leaves; each appeared at least twice independently,

in lycophytes and euphyllophytes (Raven and Edwards,
2001; Pires and Dolan, 2012). The leaf primordium most prob-
ably resulted from further segregation from the SAM (Johnson
and Renzaglia, 2009), whereas the origin of the root is more
uncertain (Raven and Edwards, 2001; Pires and Dolan,
2012). Several regulatory genes that in angiosperms control
SAM functioning have homologues expressed in the RAM
(Stahl and Simon, 2010), suggesting that the RAM originated
by duplication of the SAM.

In the last two decades, molecular research has identified
several classes of genes involved in the control of the SAM.
Major examples include Class III HD-Zip and Class 1
KNOX transcription factors, both essential for the initiation
and maintenance of the SAM in angiosperms, gymnosperms
and ferns, and KANADI genes whose ectopic expression in
the SAM causes terminal differentiation in arabidopsis
(Emery et al., 2003; Floyd et al., 2006; reviewed by Floyd
and Bowman, 2007). The functioning of the SAM in arabidop-
sis and other angiosperms also depends on a regulatory loop
between clavata and wuschel genes (Schoof et al., 2000;
Taguchi-Shiobara et al., 2001; Suzaki et al., 2006). MIKC
MADS-box genes control flower development and include
the ABC homeotic genes (Soltis et al., 2007). The LEAFY
gene is involved in the control of the transition from vegetative
to reproductive growth in angiosperms by regulating the tran-
scription of ABC genes; AP2 genes, a gene family associated
with floral development in angiosperms, include sequences
involved in stem cell maintenance and transition from vegeta-
tive to reproductive growth in both early diverging and more
derived tracheophytes (reviewed by Floyd and Bowman,
2007).

The recent addition of the near complete genome sequence
of the moss Physcomitrella patens (Rensing et al., 2008) has
permitted the identification of moss homologues for most of
the above-mentioned genes (Tanahashi et al., 2005; Singer
and Ashton, 2007; Sakakibara et al., 2008; see also reviews
by Floyd and Bowman, 2007; Shaw et al., 2011; Pires and
Dolan, 2012).

The overall evidence indicates that the evolution of the
complex gene networks underpinning sporophyte development
in angiosperms entailed repeated events of duplication, func-
tional co-option and neo-functionalization of genes already
present in the ancestral genotype. A similar picture is produced
by comparative analysis of growth-promoting hormones in
early diverging and more derived land plants (Ross and
Reid, 2010). So, it is increasingly evident that understanding
the molecular bases of sporophyte evolution and development
requires filling the knowledge gap between angiosperms and
bryophytes. Essential to this purpose is nuclear genome se-
quencing in liverworts and hornworts.

It is anticipated that the present analysis will inspire
future research and provide a framework for data testing and
interpretation. Even within the boundaries of limited current
knowledge, the hypotheses presented are amenable to
experimental testing. Research on shared genetic signatures
of sporophyte meristems in mosses, hornworts and polysporan-
giophytes not only might permit assessment of homology but
also is a promising line of enquiry for genetic markers of the
transition from embryonic to post-embryonic development.
The same applies for testing the hypothesis of a common
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origin of indeterminate sporophyte development in hornworts
and polysporangiophytes. Likely candidates include homolo-
gues of Class 1 Knox and Class III HD-Zip genes. In
Physcomitrella the former control formative cell division in
the sporangium primordium and basal meristem whereas
they are not expressed in the gametophyte (Sakakibara et al.,
2008). Class III HD-Zip homologues are expressed in the
haploid bodies of Chara, the three bryophytic lineages, and
the fern Ceratopteris (Floyd et al., 2006), and expression has
also been reported in the sporophyte in the hornwort
Phaeoceros and several tracheophytes including Ceratopteris
(Floyd et al., 2006). Our model points to differences in the
timing of spore production as a major character distinguishing
mosses, hornworts and polysporangiophytes. Expression and
functional analysis of genes controlling the transition
from vegetative to reproductive growth, notably EP2 genes
(Floyd and Bowman, 2007), is likely to produce data useful
to test our model and, in particular, our heterochronic
interpretation of sporophyte evolution in hornworts and
polysporangiophytes.
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