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SUMMARY
It is important to investigate whether genetic susceptible variants exercise the same effects in
populations that are differentially exposed to environmental risk factors. Here, we assess the
power of four two-phase case-control design strategies for assessing multiplicative gene-
environment (G-E) interactions or for assessing genetic or environmental effects in the presence of
G-E interactions. With a di-allelic SNP and a binary E, we obtained closed-form maximum
likelihood estimates of both main effect and interaction odds ratio parameters under the constraints
of G-E independence and Hardy-Weinberg Equilibrium, and used the Wald statistic for all tests.
We concluded that i) for testing G-E interactions or genetic effects in the presence of G-E
interactions when data for E is fully available, it is preferable to ascertain data for G in a
subsample of cases with similar numbers of exposed and unexposed and a random subsample of
controls; and ii) for testing G-E interactions or environmental effects in the presence of G-E
interactions when data for G is fully available, it is preferable to ascertain data for E in a
subsample of cases that has similar numbers for each genotype and a random subsample of
controls. In addition, supplementing external control data to an existing casecontrol sample leads
to improved power for assessing effects of G or E in the presence of G-E interactions.
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1. INTRODUCTION
Many genetic variants have recently been found to be associated with complex human
phenotypes in genome-wide association studies (GWAS). Capitalizing on these findings for
personalized medicine calls for investigations on the synergy between these genes and
environmental risk factors. In the post GWAS era when genotype data for millions of
genomic loci has been made available for thousands of people, it is of great interest to
consider how to best utilize this existing resource to achieve improved power in G-E
interaction studies. Similarly, it is important to consider how to expand case-control studies
that did not collect biological samples for cost-effective studies of G-E interactions. In
general, the two-phase design, which is a cost-effective option for studying expensive risk
factors, has recently been advocated for the study of G-E interactions [1]. In this design, data
for either genetic variants or environmental exposures is collected only on a judiciously
selected subgroup of subjects. In this work, we consider two-phase case-control study
designs for assessing multiplicative G-E interactions. We also evaluate the efficiency of
these designs for jointly testing genetic or environmental main and G-E interaction effects,
as these joint tests may lead to improved power for detecting genetic variants or
environmental risk factors in the presence of G-E interactions [2].

Efficient study designs must be discussed in conjunction with statistical methods for
analysis. While the prospective likelihood method for analyzing case-control genetic
association studies is frequently applied [3], recent years have seen important advances in
the development of statistically efficient methods for assessing G-E interactions. To analyze
binary genetic and environmental variables in relation to a rare phenotype, under the
constraint of G-E independence, the case-only method, which ignores data from controls and
estimates the G-E interaction odds ratio (OR) parameter as the OR for G-E association in
cases, is much more precise than the prospective case-control method [4]. This case-only
OR estimate is actually the maximum likelihood estimate (MLE) of the same parameter in a
log-linear model under the constraint of G-E independence in controls [5]. Chatterjee and
Carroll [6] proposed to exploit the G-E independence in the maximum likelihood analysis of
case-control data under a logistic regression model. Their method had much improved
precision for estimating OR parameters that quantify joint G-E effects. Based on these
powerful methods, Mukherjee et al. [7] proposed practical sample size calculation methods
for designing case-control G-E interaction studies. In this work, we consider a di-allelic SNP
and a binary environmental exposure for a rare phenotype and adopt a retrospective
likelihood method for analysis. Our method not only constrains the control population by the
G-E independence, but also by the Hardy-Weinberg Equilibrium (HWE) for the genotype
variable. The analysis of two-phase designs coupled with this powerful method of analysis
yields novel insights into cost-effective designs of G-E interaction studies.

This paper is organized as follows. In Section 2, we provide closed-form formulas for OR
parameter estimates that quantify G-E main and interaction effects with standard case-
control data. In Section 3, we provide closed-form formulas for the analysis of two-phase
case-control data by extending results in Section 2. Using these formulas, we discuss the
efficiency of four slightly different two-phase designs, where either G or E is collected only
on a subset of cases and controls, or data for G or E from additional controls is
supplemented. In Section 4, we perform extensive simulation studies to assess implications
of the HWE constraint for testing OR association parameters with the standard case-control
data and assess the efficiency of various two-phase design sampling strategies. We discuss
practical implications of our findings in Section 5.
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2. Maximum Likelihood Estimation with Standard Case-Control Data
Let E denote a binary environmental factor, G denote the count of the minor allele for a di-
allelic SNP, and Y denote the case-control status (Y = 1: case; Y = 0: control). Data for (G,
E) is collected from n1 cases and n0 controls. We describe the association between Y and (G,
E) by a logistic regression model

(1)

where f(G) is a pre-specified function that reflects different numerical codings for G. For
example, f(G) can be the count of the minor allele with f(G) = G (log-additive model), can
be the presence or absence of the minor allele with f(G) = I(G>0) (dominant model), or can
be an indicator function for the genotype with f(G) = (I(G=1),I(G=2)) (co-dominant model).
Denote β = (βg, βe, βI). The case-control data for fitting model (1) is summarized in Table 1,
for which the standard retrospective likelihood function can be written as

. Following a result in Satten and Kupper [2], this standard likelihood
function can also be written as

(2)

Without any constraints, the nuisance probability p(Gj, Ej|Yj = 0) in the above likelihood can
be fully parameterized by 5 parameters. When the phenotype is rare, joint maximization of β
and these 5 nuisance parameters leads to an estimate of β that is identical to that obtained
from standard prospective likelihood analysis. We assume G-E independence and HWE in
the control population,  and

, where pa denotes the minor allele frequency (MAF). Let pe
denote p(E = 1|Y = 0). The retrospective likelihood function can then be written as

which we maximize to obtain the MLE of (β, pa, pe). We calculate the estimates in two
steps. First, simple algebra leads to solutions  and

(3)

Then we solve for  and OR estimates of genetic effects among the exposed and
unexposed, eβg and eβ*g = eβg+βI, from the following profile log-likelihood obtained by

replacing (pa, eβe) by  in the likelihood function L(β, pe, pa):
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The estimate  can then be obtained as . The estimate of the MAF,
, is the same regardless of the numerical coding adopted for G.

Below, we provide explicit formulas for  and  corresponding to different numerical
codings for G, focusing on results for the most widely used log-additive model for G. We

also provide formula for  under the log additive model for G.

Estimation of OR Parameters under the Log-additive Model for G—Under the

log-additive model for G, estimates  can be expressed explicitly as functions of
the cell counts in Table 1:

We found that both G-E independence and HWE constraints are required to obtain these
closed-form formulas. That is, the HWE constraint does have an impact on the estimation of
parameters that characterize the joint G-E effect. In the above formulas, the MAF estimate

 appeared only in  but not in . Therefore, we may conjecture that the impact will be
mainly on the estimation of genetic main effect parameter βg, but not much on the

interaction parameter βI. In fact,  is the OR estimate based on a case-only analysis as
follows. First, create a contingency table for cases that cross-classifies E and the two alleles,
treating each chromosome as a subject and the environmental exposure E as the outcome

variable. Then  is the standard OR estimate from this 2-by-2 table. This result reminds the
allelic OR for analyzing standard case-control SNP data, which is valid only under certain
conditions [8]. These conditions, when applied to the current context, are as follows: i) the
log-additive model is the true model for relating binary E and G in cases and ii) the HWE
constraint is valid in the population of unexposed cases. Since the G-E independence and
HWE in controls imply the HWE among the unexposed (E = 0), these two conditions are
guaranteed as long as the penetrance model (1) is correct.

Interestingly,  and  , and thus , can also be obtained directly via a stratified analysis

as follows. That is, > is the allelic OR based only on the unexposed cases and all n0

controls regardless of the exposure status, and  is the allelic OR similarly based only on
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exposed cases and all n0 controls. Note that the allelic OR within each stratum is the MLE
based on a similar likelihood as (2) where p(G|Y = 0) satisfies the HWE constraint. These
observations reveal the impact of G-E independence and HWE constraints: analysis that is
stratified on E with the most efficient analysis performed within each stratum results in the
most efficient estimates of all association parameters. It is straightforward to obtain the

variance-covariance matrix for  using results for standard multinomial
distributions:

Estimation Under the Co-dominant and Dominant Codings for G—We focus on

the estimation of βg and βI, since  can not be simplified as that under the log-additive

coding. Similar to the log-additive model, closed-form estimates  and  can be obtained
via efficient stratified analysis. For the analysis of case-control SNP genotype data under the
co-dominant coding, the MLEs for the two OR parameters that exploit the HWE in controls
have the same forms as the standard OR estimates based on 2-by-3 contingency tables but
with the observed control counts replaced by the expected numbers under the HWE [9]. Let
βg = (β1, β2) be the logarithm of the two genetic main effect ORs, and βI = (βI1, βI2) be the

two interaction effects log ORs. Then ,  and ,  are obtained by
applying results of Chen and Chatterjee [9] directly to unexposed cases and all controls and
exposed cases and all controls, respectively. The closed-form formulas are as follows:
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It appears that the HWE constraint indeed has an impact on the estimation of genetic main
effects through the estimated MAF . But the estimated interaction OR parameters

 appeared to be the same as those obtained under only G-E independence
constraint, which approach the true parameter values as the sample size increases. Therefore,
the estimation of interaction ORs is robust with respect to the HWE constraint under the co-

dominant coding for G. Similar to the results under the log-additive coding,  can
be obtained based on the case-only analysis using cases with G = 0 or G = 1 or cases with G
= 0 or G = 2, respectively. The estimates of all OR parameters can also be obtained by
applying results of Chen and Chatterjee [9] separately to the analysis of all controls together

with either exposed or unexposed cases. The variance-covariance matrix for ,
following Chen and Chatterjee [9] formula, is as follows:

When the dominant coding is adopted for G, the MLE of eβI,

, is the OR estimate from the case-only analysis with
E being the binary outcome variable, which is the same as that obtained under only the G-E
independence constraint by Umbach and Weinberg [5]. The estimate of the main effect eβg

under the additional HWE constraint is different from that without the HWE constraint:

The variance-covariance matrix for  is

The Estimation Bias when the G-E Independence or HWE is Violated—All
above estimates approach the true parameter values as the sample size increases when the
penetrance model (1) and both constraints are correct. It has been well recognized that
deviation from the G-E independence constraint can lead to intolerable biases in parameter
estimates even when the HWE constraint is not imposed [5,10]. Here, it appears that the

consistency of the main effect OR estimates, , requires that the HWE hold. For the
estimation of the interaction OR parameter βI, under the log-additive model, its consistency
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requires both G-E independence and HWE constraints. But under other models, only the G-
E independence is required. The closed-form formulas we provided facilitate explicit
quantification of the magnitude of the bias. We will not further discuss the bias issue since
the main interest of the current work is to provide guidelines on optimal study designs. The
power for different study designs assuming the above methods for analysis is optimal when
the two constraints hold, and the corresponding sample sizes similarly represent the
minimum required.

3. Two-Phase Case-Control Designs Under G-E Independence and HWE
In the simplest two-phase case-control design for assessing joint G-E effects, data for either
E or G is available for all cases and controls, but that for the other one is available only on a
selected subset. Without imposing the G-E independence or HWE constraints, the balanced
design [11], which “balances” the numbers of phase II subjects, that is, those for whom both
E and G are ascertained, in strata defined by the case-control status and variables completely
collected on cases and controls (“phase I variable”), is nearly optimal for estimating the
main and interaction effect parameters when analyzed by the maximum likelihood method
[12]. Here, we consider four variants of the two-phase design: E is the phase I variable and
G is ascertained on a subset of cases and controls (Design I) selected with or without
referring to E; G is the phase I variable and E is ascertained on a subset of cases and controls
selected with or without referring to G (Design II); Data on E is available on an external set
of controls (Supplemented Design I); and data on G is available on an external set of
controls (Supplemented Design II). The two supplemented designs are obviously special
cases of designs I and II, respectively. Below we focus on the log-additive coding for G, and
results under other codings can be obtained in a straightforward manner.

Qualitative Results on Merits of Four Designs—The results above for the standard
case-control data immediately suggest efficient two-phase sampling strategies for the
estimation and testing of genetic and environmental effects. First consider Design I where E
is available for all cases and controls. Above, only the data from cases is used in interaction
OR parameter estimates, where cases with E = 1 are used as “cases”, and cases with E = 0
are used as “controls”. To avoid confusion, below we refer to cases with E = 1 as “c-cases”
and those with E = 0 as “c-controls”. The accompanying association model is

(4)

where f(G) is the same as that in model (1). Now consider that we design such a case-control
study. Intuitively, standard principles for designing a retrospective case-control study would
apply here: a desirable design would balance the numbers of c-cases and c-controls to
achieve an optimal power. For analysis, one can simply ignore the selective sampling and
perform standard prospective analysis. The estimate of βI would be valid, although the
intercept parameter estimate is not a consistent estimate of αo [3]. The most efficient
estimate of βI is obtained by applying the retrospective likelihood method that exploits the
HWE [9] to the data from the sampled c-cases and c-controls. Due to the G-E independence
in the control sample, stratification on E in controls would not help improve the precision
for estimating any association parameters. Therefore, Design I that selects a balanced sub-
sample of exposed and unexposed cases and a random sample of controls for ascertaining G
is preferable for the estimation and testing of genetic and environmental effects. Similarly,
supplementing data for E (Supplemented Design I) is not expected to help the estimation of
βI, although it is expected to lead to improved prediction for estimating pe and βe.

For Design II where G is available for all cases and controls, the case-only analysis with
model (4) using phase II cases yields valid estimates for both αo and βI, although the most
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efficient analysis would also utilize data for G for cases who are not selected into phase II.
Similar as the arguments above, a balanced selection of cases with G = 0, G = 1 and G = 2 is
expected to lead to improved efficiency for estimating βI. In addition, data for G from
additional controls (Supplemented Design II) would improve the efficiency for estimating
βg, but not βI.

Estimation with Design I and Supplemented Design I—Let R be a binary variable
taking values 1 or 0 depending on whether a subject is selected into phase II or not. For
Design I, we obtained the parameter estimates by maximizing the likelihood function

We found that  has the same form as (3) and , the estimates obtained when
(E,G) is available for all n1 cases and n0 controls. For estimating (pa, βg, βI), we found that
the same profile likelihood as that for the standard case-control design above applies, except
that only phase II cases and controls who have both G and E measurements are used.

Therefore, estimates  and their variance-covariance matrix are largely the same as
those for the standard case-control design above, except that each count in the formula is
replaced by the corresponding one in the phase II data. Let m1 and m0 denote the respective
number of phase II cases and controls, and mijk has the same meaning as nijk. Under the log-

additive coding for G, formulas for  and var  are as follows:

In Supplemented Design I where data on E is available for m additional controls, let  and

 be the number of supplemented controls with E = 1 and E = 0, respectively. We obtain

. Under the log-additive coding for G, the estimated main environmental
effect and its asymptotic variance are as follows:

Estimates of other parameters remain the same as the standard case-control design.
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Estimation with Design II and Supplemented Design II—Let R, m, and mijk be
defined similarly as those for Design I. The likelihood function for Design II, where the
selection of cases and controls for collecting E may stratify on G, can be written as

Contrary to Design I, one generally can not get closed-form estimates for OR estimates. This
result may seem counter-intuitive since E and G appear to be symmetric in their relationship
to the phenotype variable. But the difference in the analysis of Design I and Design II is that
the distribution of the phase I variable G in Design II is constrained via the HWE, but the
phase I variable E in Design I was not constrained. In an important special case where data
for both E and G is collected for cases (but E is still available only for a subset of controls),
the closed-form solutions exist for all OR parameters. In this case, , and

For Supplemented Design II where G is collected from ms additional controls, the OR
estimates and variance-covariance matrix have the same form as those for the standard case-

control design, but with  where  ,  are the
respective number of supplemented controls with genotypes 1 and 2.

4. SIMULATION STUDIES
We conducted extensive simulation studies to evaluate the power of different study designs
for testing three hypotheses: i) null G-E interaction effect, βI = 0; ii) null genetic effect, βg =
βI = 0; and iii) null environmental effect, βe = βI = 0. We assumed the log additive model
for G and used the Wald statistic for all tests based on the closed-form estimates provided in
the above sections. First, we assessed the impact of imposing the HWE constraint on the
estimation efficiency and power for testing different sets of association parameters under the
standard case-control design. We considered the standard prospective method (“Standard”),
the method that imposed the G-E independence constraint but not the HWE constraint (“GE-
O”), and the method that imposed both the G-E independence and HWE constraints (“GE-
HWE”). The comparison of these methods would shed light on the power improvement
incurred by the two constraints. Next, with GE-HWE as the method of analysis, we
compared the efficiency of four two-phase sampling strategies for testing the three
hypotheses above. We considered a range of penetrance models in the form of (1) by
varying the magnitude of OR parameters. For example, G may have an effect only in the
presence of E, or E may have an effect only in the presence of G. We first generated data for
controls, assuming that E followed a Bernoulli distribution and SNP genotype data G
satisfied the HWE. Then we generated (G, E) for cases from the conditional distribution
p(G, E|Y = 1) where
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In all tests, we set the nominal level at 0.0001, assuming that 500 tests were performed. In
practice, the test of βg = βI = 0 may be at a different significance level than that for testing
βe = βI = 0. Here we used the same level mainly to facilitate power comparison. The test for
all three hypotheses had type I error rates that were close to the nominal level, as shown in
Table 2. We generated 5,000 replicates for assessing the power of all tests.

Relative Power of GE-HWE for the Standard Case-Control Design
Panels A and B in Figure 1 demonstrate the relative power of the three methods for testing
βI = 0 and βg = βI = 0, where βg = 0 for Panel A and βg = ln(1.2) for Panel B. For testing βI
= 0, the power of GE-HWE appeared to be similar to that of GE-O, and both are higher than
the standard method with the difference rising sharply with the magnitude of βI. For
example, with βI = ln(1.5), the power difference was around 20%. But with βI = 1.8, the
power difference was around 60%. For testing βg = βI = 0, the power of GE-HWE and GE-
O was very similar but much higher than the standard method. For example, the power
difference was around 60% at βI = ln(1.8) and βg = 0 (Panel A) and was around 20% at βI =
ln(1.8) and βg = ln(1.2). These data indicate that imposing the HWE constraint in addition to
the G-E independence had limited influences on testing genetic effects or G-E interactions
under the log-additive model for G. Panels C and D display the results for the relative power
of the three methods for testing βI = 0 and βe = βI = 0. Regardless of the presence or absence
of the main effect of E (Panel C: βe = 0; Panel D: βe = log(1.5)), GE-HWE and GE-O have
nearly identical power for both tests, and both had higher power than the standard method.
This indicates that the HWE constraint hardly has any impact on power for testing βe = βI =
0.

We quantified the relationship between all parameter values and the ratio of power for GE-
HWE to that for the standard method using simulation studies. We first obtained the relative
power for a wide range of parameter setups. Then we performed linear regression analysis,
using the log relative power as the outcome variable and the true parameter values as
explanatory variables. The estimated mean log relative power for testing βI = 0, βg = βI = 0,
and βe = βI = 0 is 3.5−1.1pa −0.33pe +0.43βg +0.17 βe −2.88βI, 1.51−0.44pa −0.35pe
−0.57βg −0.15βI, and 1.6 − 0.5pa − 0.56pe + 0.02βg + 0.44βe − 0.30βI, respectively.
Therefore, the magnitude of βI plays a dominant role in the relative power for testing G-E
interactions, but the magnitude of βg and βe plays a greater role in testing genetic and
environmental effects, respectively.

Table 3 presents the mean estimates, averaged estimated asymptotic variances, and
empirical variances of the three methods, where the data was generated using the same
parameter setup as that for panels A and B in Figure 1. The mean estimates with GE-HWE
appeared to be close to the true parameter values. The averaged estimated asymptotic
variances for all parameter estimates appeared to be close to their empirical counterparts.
The empirical variances of main effect parameters estimated with GE-HWE were generally
close to those of GE-O but smaller than that those under the standard method, and that for
the interaction parameter βI could be smaller by more than 60%.

Power of Design I and Design II for Testing βg = βI = 0 and βe = βI = 0
We investigated efficient two-phase design strategies for testing the genetic effect βg = βI =
0 and environmental effect βe = βI = 0 using GE-HWE for analysis. In each replicate, we
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first generated (Y, G, E) for 1,000 cases and 1,000 controls. Then we created a two-phase
sample by selecting an equal proportion of cases and controls into phase II, and either data
for G (Design I) or E (Design II) were deleted for those unselected. For cases, we selected
the phase II subset either randomly or following a “balanced design” strategy by stratifying
on E in Design I or G in Design II. The balanced design included all cases with E = 1 for a
rare exposure in Design I, and it included as equal as possible numbers of cases with G = 0,
G = 1, or G = 2 in Design II, respectively. With a small MAF, all cases with G = 2 are
selected. To further evaluate the impact of control selection on the efficiency of the design,
we considered two-phase designs with 300 phase II cases but a varying proportion of phase
II controls ranging from 30% to 100%.

Figures 2 displays the power of Design I for testing βg = βI = 0 and βe = βI = 0 as a function
of the proportion of phase II cases and/or controls. In general, the power under balanced
sampling for testing βg = βI = 0 was much higher than that under random sampling, with the
power difference becoming greater at smaller phase II case/control proportions and larger
MAF (Panel A). But the difference between the two sampling strategies was small for
testing βe = βI = 0 (Panel B). With a fixed subset of phase II cases, the power for testing
genetic and environmental effect is nearly identical under both stratified and random
sampling of controls (Panels C and D), and it increased with the proportion of selected
controls for testing βg = βI = 0 (Panel C) but remained constant for testing βe = βI = 0 (Panel
D). These results suggest that sampling stratified on E in cases is generally preferred for
testing genetic effects or G-E interactions when data on E is available on all subjects.
Parameter estimates corresponding to Panel C are presented in Table 4.

Figure 3 displays the power of Design II for testing βg = βI = 0 and βe = βI = 0 as a function
of the proportion of phase II cases and controls. In general, for testing βg = βI = 0, the
difference between the two sampling strategies appeared to be small (Panel A), and the
power remained constant with a varying proportion of phase II controls (Panel C) when the
subset of phase II cases is fixed. On the other hand, the power under balanced sampling for
testing βe = βI = 0 was much higher than that under random sampling, with the power
difference getting greater at smaller phase II case/control proportions and larger prevalence
of E (Panel B). The power under both balanced and random sampling of controls when the
subset of phase II cases was fixed slightly increased with the proportion of selected controls
(Panel D). These results suggest that sampling stratified on G in cases for ascertaining data
for E is generally preferred for assessing environmental effects.

Power of Supplemented Designs I and II
Figure 4 displays the power of Supplemented Design I for testing βe = βI = 0 as a function
of the number of supplemented controls m at different values of pe. The magnitude of power
increase due to the supplement of additional control data for E increased with βe, βI, and pe,
particularly when m was less than 500. For example, with pa = 0.2, pe = 0.15, βg = log(1.2),
βe = βI = log(1.5) (Panel A), supplementing E from 500 and 2, 000 additional controls to
data from 500 cases and 500 controls led to around 20% and 40% increase in power,
respectively. But with βe reduced to log(1.2), the respective increase was only around 5%
and 10%. The power of Supplemented Design I for testing βI = 0 and βg = βI = 0 remained
constant regardless of the number of supplemented controls (data not shown).

Figure 5 displays the power of Supplemented Design II for testing βg = βI = 0 as a function
of m, the number of additional controls with data on G. Similar as Supplemented Design I,
the power increase at a given m appeared to be larger with increasing βg. For example, with
pa = 0.2, pe = 0.15, βg = log(1.2), and βI = log(1.5) (Panel A), supplementing G from 500
and 2000 controls to 300 cases and 300 controls led to 10% and 24% increase in power,
respectively. But with pa = 0.2, pe = 0.15, βg = log(1.2), and βI = log(1.3), the respective
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increase was only 7% and 16%. In the absence of genetic main effect (βg = 0), the respective
increase became negligible. The increase also became sharper with a greater pa. Not
surprisingly, the power of Supplemented Design II for testing βI = 0 and βe = βI = 0 remains
nearly constant regardless of the number of supplemented controls (data not shown).

DISCUSSION
We assessed the efficiency of two-phase case-control designs for assessing genetic and
environmental effects when the control population is constrained by the G-E independence
and HWE. A balanced selection of the exposed and unexposed cases appears to be a nearly
optimal strategy for testing G-E interactions when data for cases can not be completely
ascertained. Random sampling of controls suffices in the sense that stratified sampling in
controls does not lead to improved power for association analysis. Supplementing data for G
or E from additional controls generally does not help improve the power for testing G-E
interactions. For testing genetic effects in the presence of G-E interactions, supplementing
data for G from additional controls is helpful, particularly when the genetic effect is
moderate or large. Similarly, supplementing data for E from additional controls is helpful for
assessing environmental effects in the presence of G-E interactions, and the power increase
becomes higher with increased environmental effects. Although we considered a binary
environmental variable in this work, we expect that our conclusions hold when the
environmental variable is continuous.

We obtained closed-form formulas for odds ratio association parameter estimates assuming
a di-allelic SNP and a binary environmental variable. Regardless of the numerical coding
adopted for the SNP genotype, we found that the estimation of the G-E interaction odds ratio
parameter requires only the data of cases. In particular, the allelic odds ratio estimate in the
case-only G-E interaction analysis is the MLE under the log-additive coding for the SNP
genotype. Thus, our results generalized the case-only analysis with a binary genotype
variable to a broader range of numerical coding schemes. For testing genetic effects or
environmental effects in the presence of G-E interactions, incorporating the HWE constraint
leads to improved power, although the HWE constraint hardly has any effect on the power
for testing G-E interaction effects beyond that it is required to obtain closed-form estimates
under the log-additive coding.

In this work, we assumed that the same numerical coding for the genotype variable was
adopted in the main and multiplicative interaction effects. If the specification of the main
effects is incorrect, the test for interaction would be invalid. In practice, one may base a test
for interaction on a model where the co-dominant coding is adopted for the main effect of G.
Then a valid test is guaranteed under the null hypothesis of no interaction. We did not
consider this approach in this paper, mainly because we did not find closed-form estimates
for OR parameters and because our conclusions for two-phase designs appeared to hold
under this model.
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Figure 1.
Power of the three methods under the standard case-control design. Panels A and B display
the power for testing βI = 0 or βg = βI = 0 in the absence (panel A) or presence (panel B) of
the genetic main effect (eβg = 1.2). Other parameters included pe = 0.3, pa = 0.3, and eβI =
1.5. Each of the 1,000 replicates included 500 cases and 500 controls. Panels C and D
display the power for testing βI = 0 or βe = βI = 0 in the absence (panel C) or presence
(panel D) of the environmental main effect (eβe = 1.5). Other parameters included pe = 0.3,
pa = 0.3, and eβg = 1.2. Each of the 1,000 replicates included 300 cases and 300 controls.
The size of the test was set at 0.0001.
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Figure 2.
Power of GE-HWE under Design I when phase II subjects were selected randomly or by
stratifying on E. Phase I included 1,000 cases and 1,000 controls, and the significance level
was set at 0.0001. Panels A and B present the power when an equal number of cases and
controls were selected into phase II. Panels C and D present the power when 300 cases were
selected into phase II by stratifying on E and varying numbers of controls were selected
either randomly or also by stratifying on E. Other parameters included pe = 0.15, eβg = 1.2,
eβe = 1.2, and eβI = 1.5.
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Figure 3.
Power of GE-HWE under Design II when phase II subjects were selected randomly or by
stratifying on G. Phase I included 1,000 cases and 1,000 controls, and the significance level
was set at 0.0001. Panels A and B present the power when an equal number of cases and
controls were selected into phase II. Panels C and D present the power when 300 cases were
selected into phase II by stratifying on G and varying numbers of controls were selected
either randomly or also by stratifying on G. Other parameters included eβg = 1.2, eβe = 1.2,
eβI = 1.5, and pa = 0.2.
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Figure 4.
Power of GE-HWE for testing βe = βI = 0 under Supplemented Design I, where data for (G,
E) for 300 cases and 300 controls was supplemented by data for E from varying numbers of
controls. The significance level was set at 0.0001. The OR for the genetic main effect was
eβg = 1.2, and the MAF was pa = 0.2.
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Figure 5.
Power of GE-HWE for testing βg = βI = 0 under Supplemented Design II where data for (G,
E) for 500 cases and 500 controls was supplemented by data for G from varying numbers of
controls. The significance level was set at 0.0001. The OR for the environmental main effect
was eβe = 1.5, and the MAF was pe = 0.15.
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