Skip to main content
. 2012 Sep 21;7(9):e45535. doi: 10.1371/journal.pone.0045535

Table 1. Performance comparison of the EM MSTkNN with k-Means, SOM, CLICK and the original MSTkNN algorithms, in terms of homogeneity and separation.

Data Methods/Algorithm Parameter Havg Savg #Clusters Time
AD Signature data set(n = 1,372) k-Means k = 5 0.179 0.121 5 <0.5 min
k = 120 0.394 0.172 120 <1 min
SOM 2X5 grid 0.185 0.183 6 <0.5min
5X5 grid 0.217 0.142 14 <1 min
CLICK 0.606 0.245 5 <1 min
MSTkNN 0.780 0.369 226 <0.5 min
EM MSTkNN(this paper) 0.789 0.370 228 <0.2 min
AD ratios data set(n = 941,885) k-Means, SOM,CLICK, MSTkNN Not Available Not Available Not Available Not Available
EM MSTkNN(this paper) 0.812 0.420 40,139 30 min
AD ratios- sums-diffs-prods dataset(n = 3,763,403) EM MSTkNN(this paper) 0.879 0.521 121,611 120 min

The implementations of the k-Means, SOM, CLICK algorithms are obtained from the Expander microarray data cluster tool in [124]. The homogeneity and separation are computed using the definition in [124]. The AD ratio metafeatures data set is generated by taking pair-wise ratios between the features in 1,372-probe AD signatures [5] and including MMSE score, NFT count, Braak staging, JSDcontrol and JSDsevere as five progression markers. The other data set contains four different types of metafeatures (ratios, summations, differences and products) and the aforementioned progression markers.