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ABSTRACT We present a method for discovering con-
served sequence motifs from families of aligned protein
sequences. The method has been implemented as a computer
program called EMOTIF (http://motif.stanford.edu/emotif).
Given an aligned set of protein sequences, EMOTIF generates
a set of motifs with a wide range of specificities and sensitiv-
ities. EMOTIF also can generate motifs that describe possible
subfamilies of a protein superfamily. A disjunction of such
motifs often can represent the entire superfamily with high
specificity and sensitivity. We have used EMOTIF to generate
sets of motifs from all 7,000 protein alignments in the BLOCKS
and PRINTS databases. The resulting database, called IDENTIFY
(http://motif.stanford.edu/identify), contains more than
50,000 motifs. For each alignment, the database contains
several motifs having a probability of matching a false positive
that range from 10~ to 10~5. Highly specific motifs are well
suited for searching entire proteomes, while generating very
few false predictions. IDENTIFY assigns biological functions to
25-30% of all proteins encoded by the Saccharomyces cerevisiae
genome and by several bacterial genomes. In particular,
IDENTIFY assigned functions to 172 of proteins of unknown
function in the yeast genome.

Assigning function to genes in newly sequenced genomes
requires highly specific search and comparison methods (1-4).
The process involves first identifying all ORFs or coding
regions in the genome and translating them into putative
protein sequences. These protein sequences then are com-
pared with (i) databases of individual protein sequences, (ii)
databases of protein consensus sequences, or (iii) families of
aligned proteins (4-9). Finally, the remaining unassigned
proteins may be compared with known protein folds or
structures by using sequence-structure alignment or threading
methods (10-16).

In large-scale searches for biological function, a high level of
specificity is critical to minimize the number of false predic-
tions made among the thousands of genes in a genome. Many
popular sequence similarity methods calculate expectation
values that can be used together with a threshold to guarantee
a specific level of false predictions. However such highly
specific similarity search methods often sacrifice sensitivity
and fail to find all of the members in a particular protein family
in a genome. On the other hand, protein sequence motifs
usually are generated manually in an attempt to maximize the
sensitivity while sacrificing specificity, thus giving rise to
relatively high frequencies of false predictions (17, 18).

In this paper, we present a highly systematic and objective
method for determining sequence motifs from aligned sets of
protein sequences called EMOTIF (19). Unlike most methods
that attempt to find a single “best” motif optimized at one level
of sensitivity and specificity, EMOTIF generates many possible
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motifs over a wide range of sensitivity and specificity. Thus,
EMOTIF can generate extremely specific motifs that will pro-
duce fewer than one expected false prediction per 1010 tests, as
well as more sensitive motifs that cover all members of a family.
EMOTIF also can be used to find several highly specific motifs
that characterize different subsets of a protein family. By
combining these highly specific motifs together in a disjunc-
tion, we can potentially describe a protein family with both high
specificity and sensitivity.

We have applied EMOTIF to two large data sets of aligned
proteins of families, the BLOCKS and the PRINTS databases (7,
9, 20). Together, these data sets contain nearly 7,000 align-
ments representing protein active sites, substrate binding sites,
superfamily signatures, and so on. By applying EMOTIF to all of
these alignments, we have generated a database called IDEN-
TIFY, which contains more than 50,000 sequence motifs with
specificities varying from one expected false positive predic-
tion in 10° tests to as low as one expected false positive
prediction in 10'° tests. IDENTIFY can be used to scan newly
sequenced ORFs from genomic sequences for function. Each
IDENTIFY motif has an associated specificity, indicating the
likelihood that a match is a true or false prediction.

By using the IDENTIFY database of motifs, we have scanned
all ORFs in several bacterial genomes and in the yeast genome
for function. IDENTIFY was able to determine the function of
25-30% of all of the proteins in these genomes, usually
resulting in 3-4 motifs per protein identified. In particular,
IDENTIFY was able to assign a function to 172 of the 833 ORFs
whose function was labeled as unknown.

METHODS

Motif Substitution Groups. A sequence motif is a particular
kind of representation called a regular expression (21). It
represents a generalization about the range of variability that
occurs in corresponding positions across a family of protein
sequences. A sequence motif represents variability by speci-
fying a group of amino acids permitted in that position. In our
notation, this group of amino acids is enclosed by brackets, e.g.,
[ILMV]. When only a single amino acid is allowed in a position,
that amino acid is represented by a single character without
brackets. On the other hand, when a position has no mean-
ingful conservation, all 20 amino acids are permitted; in that
case, we use the wild-card character ‘.. For a sequence to
match a motif, each of the amino acids in the sequence must
be permitted by the corresponding group in the motif. In some
cases, we may relax this requirement to allow one or more
mismatches.

To characterize the types of variability observed in nature,
we conducted a study of amino acid groups, by using empirical
studies of two databases of protein families. The BLOCKS
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database (22) contains short, ungapped regions that are highly
conserved, according to sequence characteristics. The HSSP
database (23) contains global alignments of sequences based
on structural alignments. We examined all possible subsets S
of amino acids to find those groups that are well conserved. We
had two criteria for conservation: (i) compactness—amino
acids within the group should substitute for one another with
relatively high frequency, and (if) isolation—amino acids
outside the group should substitute for those in the group with
relatively low frequency. These criteria follow those often used
in cluster analysis (24).

To measure compactness and isolation, we first used the
BLOCKS and HSSP databases to provide a set of conditional
counts c(a|S), which equals the total number of occurrences of
amino acid « in all aligned positions that contain the group S.
Conceptually, we found all aligned positions that contain S,
and then tabulated all amino acids from those positions. Then,
we computed conditional frequencies

c(alS)
Esc(a’|S)’

where the quantity f(a|S) is defined only for amino acids a not
in group S.

For each group, we computed the expected conditional
frequencies and the standard error of the proportion for amino
acids outside the group:
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where c(a’) is the marginal count of amino acid a’ over all
aligned positions.

We then computed a separation score for each group, as
follows:

S) — S
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Sep(S) = min Z(a|S — {a}) — max Z(a'|S),
agS a' ¢S

where Z(a|S) is a conditional relative deviate, or Z-score. The
first term represents our measure of compactness, and the
second term represents our measure of isolation. Based on
these separation scores, we found all amino acid groups that
had a separation score greater than three standard errors,
which is equivalent to a significance level of 0.01. Further
details of our analysis are presented in ref. 25.

Our criteria were met by 30 substitution groups in the
BLOCKS database and 51 substitution groups in the HSSP
database. The HSSP database yielded more groups because of
its larger size, and because our criterion is based on statistical
significance. Twenty substitution groups were conserved em-
pirically in both databases, and the validation by both data-
bases provides good evidence that these groups are indeed
conserved in nature. If we arrange these groups hierarchically,
we obtain the set of amino acid groups shown in Fig. 1. We
used these substitution groups to define the space of motifs
available to describe protein families.

Motif Enumeration and Ranking. A conserved region may
be described by many possible motifs, with different levels of
coverage and specificity. To better understand the choices
involved, consider the sequence alignment in Fig. 2a. We can
cover all sequences in the training set if we select the smallest
group of amino acids that accounts for all of the amino acids
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F1G. 1. Substitution groups. Groups of amino acids found to occur
together in columns of aligned sequences in both the BLOCKS and HSSP
databases. Only groups of amino acids that occur together at a
significant frequency and are separated from all other amino acids at
a level of significance of less than 0.01 are included. The substitution
groups are arranged hierarchically to show relationships between their
physical properties.

in each position. For example, every sequence has methionine
in the first position, so the first position of the motif should
specify M. In the second position, both phenylalanine and
tyrosine occur. The smallest group of amino acids from Fig. 1
that accounts for the entire position is [FYW], which allows
tryptophan to occur in addition to phenylalanine and tyrosine.
Using this group is tantamount to inferring that this position
requires an aromatic amino acid. In the third position, no
allowable group can account for the diverse amino acids that
are observed, so to achieve complete coverage we must place
a wild-card character in this position.

The resulting motif, shown in Fig. 2b, has complete cover-
age, because it describes the entire training set, but it can be
affected by problems with the data. Consider again the align-
ment in Fig. 2a. In the eighth position from the right, every
sequence but one contains a leucine. The first sequence,
however, contains a proline at this position. This may be the
result of a sequencing error, a rare mutation, or a sequence
that has been erroneously assigned to the family. In any case,
if the first sequence was removed from consideration in the
formation of the motif, this position in the motif would change
from .’ to L. Doing this reduces the coverage of the motif by
one sequence, but makes it more specific.

Even in the absence of problems in the data, motifs with high
coverage generally may have low specificity, thereby resulting
in false positives. In constructing a motif, we are faced then
with a fundamental tradeoff between coverage and sensitivity.
The EMOTIF algorithm explores this tradeoff for a particular
alignment by exhaustively generating all possible motifs using
the allowable substitution groups and quantifying the coverage
and specificity for each motif.

Another feature of our example bears discussion. The
sequences can be partitioned into two subclasses based on the
amino acid in the fourth position. The first group has arginine
in this position, whereas the second group has lysine. All
sequences in the first group have tyrosine in the final position,
whereas none in the second group do. Indeed, partitioning the
sequences in this way allows the conserved region to be
described by two highly specific motifs, rather than a single,
more general one. Fig. 2c shows the motif for the first group.
Thirteen positions are more specific than the motif for the
entire set of sequences, resulting in an factor of 1010 increase
in specificity. Thus, by finding motifs that cover only part of the
training set, EMOTIF is potentially able to discover subfamilies
within a superfamily and characterize them with a specific
motif.

We define specificity as the probability that a random
sequence would match the motif. To calculate this, we assume
that the distribution of amino acids in each position of a
random sequence is independent and identically distributed.
We use the observed distribution of amino acids in the
SWISS-PROT database as an estimate for this distribution. The



Colloquium Paper: Nevill-Manning et al.
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Fic. 2. Aligned block of 34 tubulin proteins and two motifs
representing these sequences. (¢) An aligned block of 34 tubulin
proteins and the sequence variation observed among them. (b) One
possible sequence motif for the alignment in a that can be formed by
using the amino acid substitution groups from Fig. 1. (¢) A much more
specific sequence motif that can be used to represent the upper 19
tubulin sequences, which form a group more closely related to each
other than to the lower 15 sequences.

specificity of a motif then is simply the product of the
probabilities in each position. A wild-card character matches
with probability 1.0, and a specific amino acid matches with the
probability taken from database. A group of amino acids
matches with the sum of the probabilities of the individual
amino acids. So the probability of the motif in Fig. 2b is

p(M)-1-[p(F) + p(W) + p(Y)][p(K) + p(R)]-1-1:p(F)-. . 1.

We have found empirically that this estimate accurately pre-
dicts false positive rates for matches of motifs against large
protein databases, so the assumption of independence of
positions is reasonable in practice.

The EMOTIF algorithm exhaustively generates all possible
motifs for a particular alignment using the allowable substi-
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tution groups, and quantifies the coverage and specificity for
each motif. The graph in Fig. 3 illustrates the tradeoff between
these quantities. Each point in the graph corresponds to a
single motif for the alignment of 159 segments of tubulin
sequences similar to those shown in Fig. 2a. The vertical axis
is the specificity of the motif, which ranges from 1 to 10744, The
horizontal axis is the coverage of the motif, measured as the
number of training sequences that the motif matches. In this
case, the training set contains 159 sequences, and motifs
covering fewer than 30% of the total (47 sequences) were not
generated. The EMOTIF algorithm uses a lower limit on cov-
erage to help prune the search space and to allow all motifs to
be generated efficiently. Typically, the lower limit on coverage
is 30%, but this value may be specified by the user. Because
coverage of the training set is an integer, the graph consists of
a series of vertical lines, one for each number of sequences
covered. Note that even if two motifs lie in the same vertical
line, meaning that they cover the same number of sequences,
they do not necessarily cover the same particular subset of
sequences.

An ideal motif would lie in the lower right of the graph, with
complete coverage and maximum specificity. However, the
tradeoff between coverage and sensitivity makes the ideal
motif unattainable. Motifs at the extremes are generally un-
desirable. Motifs in the lower left of the graph are very specific,
accounting for only 30% of the training set. Motifs in the upper
right are very sensitive, but result in a high number of expected
false positives. Because EMOTIF displays the tradeoff between
coverage and specificity explicitly, we may choose optimal
motifs that achieve a desired level of specificity. One strategy
for searching a large database is to require that the expected
number of false positives be less than one. The expected
number of false positives is approximately equal to the spec-
ificity of the motif multiplied by the number of possible match
positions in the database. For example, a search of the
GenPept protein sequence database, which contains 108 amino
acids, achieves fewer than one expected false positive when the
motif has a specificity of 10™8 or less. This specifies those
motifs below a particular horizontal position in the graph. For
searches of smaller databases, the line would be higher, and
therefore, we could use more sensitive motifs. For searches of

0.1

specificity p(M)

10%

48 V sequences covered 159

F16.3. Enumeration of tubulin motifs by EMOTIF. EMOTIF generates
all possible sequence motifs that can cover at least 30% of 159 tubulin
sequences in a training set. Each motif is plotted as a dot in the figure
where the horizontal axis gives the coverage of the motif (number of
sequences covered in the training set), and the vertical axis plots the
specificity of the motif as the probability of matching a random protein
segment. The motifs occur in vertical lines because coverage is an
integer quantity. The lower curve is the Pareto-optimal curve, which
represents the most specific motif at each level of sensitivity.
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larger databases, the line would be lower, and we would require
more specific motifs. Given this restriction, the optimal motif
for a particular level of specificity would be the one beneath the
line having the highest sensitivity, as approximated by cover-
age of the training set.

The space of optimal motifs also is reduced by the principle
of dominance. For any particular level of coverage, a motif that
is more specific dominates one that is less specific. On the
graph, for any vertical line, a motif that has fewer expected
false positives specificity dominates those with more expected
false positives. A similar argument can be made for motifs with
a particular level of specificity. A motif with high coverage
dominates those with lower coverage. The dominating motifs
lie along a Pareto-optimal curve, shown in Fig. 3 as a line along
the lower right frontier of motifs. No motif on that line can be
made more specific without reducing its coverage, nor be made
to cover more sequences without reducing its sensitivity.
Therefore, motifs on or near this line should be used for
searching tasks. In practice, we select the motif on the Pareto-
optimal line with maximum coverage at the desired level of
specificity.

Disjunctive Motifs. By allowing only part of the training set
to be covered, we obtain motifs that may fail to describe an
entire family or superfamily, thereby resulting in lower sensi-
tivity. To solve this problem, we use disjunctive motifs to
achieve high specificity and sensitivity. After we apply EMOTIF
to a given training set and select an optimal motif at a given
level of specificity, we can invoke EMOTIF on the sequences that
were not covered. This generates a second motif, which in
conjunction with the first motif, covers more of the training set
than the first motif alone. This process may be continued until
some coverage criteria is met, such as coverage of 90% of the
training set.

To evaluate the increase in coverage possible with this
approach, we obtained disjunctive motifs for each of the 7,000
multiple sequence alignments in the BLOCKS and PRINTS da-
tabases. The disjunctive motif strategy requires one parameter:
a desired minimum level of specificity. We applied our strategy
for five levels of specificity, from 1076 to 10710, by factors of
10. For each level of specificity, we measured the number of
motifs required to achieve 90% coverage for each sequence
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alignment. The results of our experiments are shown in Fig. 4.
At a specificity level of 10710, 65% of the sequence alignments
had 90% coverage by a single motif, whereas at a specificity
level of 1076, 80% of the blocks had 90% coverage by a single
motif. At a specificity level 10719 80% of the sequence
alignments had 90% coverage by a disjunction of two motifs,
whereas at a specificity level of 10~°, nearly 95% of blocks had
90% coverage by a disjunction of two motifs. It appears that for
reasonable levels of specificity, one or two motifs are sufficient
to cover most sequence alignments reasonably well in these
databases.

A disjunction of motifs may identify subfamilies in the
training set. Each subfamily can be described specifically by its
own motif. For instance, the graph in Fig. 3 shows motifs that
are clustered into distinct groups. The clustering suggests the
presence of several subfamilies in the training set. In fact, the
training set, which consists of tubulins, can be divided biolog-
ically into subfamilies, and the various clusters in the figure
correspond to motifs that cover a-tubulins only, B-tubulins
only, both «- and B-tubulins, and «-, B- and +y-tubulins. We
have developed methods for identifying subfamilies optimally
using criteria from statistics and minimum description length
principles. These methods are discussed in further detail in ref.
19.

The IDENTIFY Motif Database. We used the results of the
above experiments to produce a motif database for evaluating
individual sequences and searching sequence databases. At
each level of specificity, we obtained approximately 10,000
motifs. The collective database of motifs is called the IDENTIFY
database. The motifs are grouped according to the level of
specificity for which they are optimal. For large databases
requiring high specificity, motifs at the 1071 level are most
appropriate. For smaller databases requiring less specificity,
motifs at the 10~ level may be appropriate.

RESULTS

Unidentified ORFs from Yeast. We have applied the IDEN-
TIFY database to predict functions in unidentified ORFs in
Saccharomyces cerevisiae. At the time of the experiment (May
1997), there were 6,220 known ORFs in the yeast genome

proportion of motifs

log,, specificity

FiG. 4. The number of motifs required to cover at least 90% of the protein family in the IDENTIFY database. EMOTIF was used to generate one
or more motifs that cover at least 90% of all the sequences in each of 7,000 alignments in the BLOCKS or PRINTS databases at five different levels
of specificity. Plotted are the number of motifs that are required to cover at least 90% of the sequences in the alignment.
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database (http://genome-www.stanford.edu/Saccharomy-
ces), of which 833 had no confirmed function (26). We applied
the IDENTIFY database to each translated ORF, and assigned
a predicted function based on matches to motifs. Table 1 shows
how many ORFs are identified by motifs at each level of
specificity. For example, using the motifs at a specificity of
10710, we assigned putative functions to 61 ORFs. Forty-one
of these had no annotation whatsoever, indicating that other
methods (e.g., BLAST, PROSITE, etc.) had failed to identify any
significant homology to a known protein. Based on the calcu-
lated specificity of the motifs, along with the number of motifs
and size of the ORFs database, the expected number of false
positives is 0.02, so it is highly likely that all of the assignments
are correct. Relaxing the procedure a little by using motifs with
specificity at least 1072 produces 86 assignments, including 59
not previously annotated. Again, the expected number of false
positives is less than one. At the other end of the spectrum, the
1077 set produced 172 predicted functions, but the expected
number of false positives is 17.

To test these 172 predictions, we compared our results with
those in the Sacch3D database (http://genome-www.stan-
ford.edu/Sacch3D) (S. Chervitz, J. M. Cherry, and D. Bot-
stein, personal communication). This database compares each
of the translated ORFs in S. cerevisiae against proteins of
known structure by using sensitive alignment and threading
approaches. Of the 833 unidentified ORFs, 83 had functions
assigned by Sacch3D alone, 124 had functions assigned by
IDENTIFY, and 48 had functions assigned by both programs. Of
the 48 functions assigned by both programs, all assignments
were identical. Overall, 255 of the unidentified ORFs had a
putative function assigned by one or both of the programs.

We analyzed our results at the level of motifs. The BLOCKS
and PRINTS databases often contain several sequence align-
ments for a given family of proteins. Each alignment corre-
sponds to a different conserved segment of the protein. On
average, these databases contain three sequence alignments
per protein family. Therefore, a match of a sequence to several
distinct motifs from the same family provides independent
confirmations of the predicted function. In the 48 ORFs
with functions assigned by both IDENTIFY and Sacch3D, the
IDENTIFY database matched 137 distinct motifs. Of these 137
motif matches, 129 of the predicted functions were the same as
those of Sacch3D. We believe that independent predictions of
function provides an indication of the reliability of motif
matches by IDENTIFY.

Whole Genome Analysis. We applied IDENTIFY to search for
functions in all ORFs in several genomes including S. cerevi-
siae, Haemophilus influenzae, and Methanococcus jannaschii.
To assess the performance of IDENTIFY, we tested our assign-
ments against the annotations for each genome as follows. For
those ORFs with annotations, we extracted keywords from the
description, ignoring common words such as protein, enzyme,
and domain. We also extracted significant keywords from the
associated entry for the motif from the BLOCKS or PRINTS
sequence alignment databases. We considered an assignment
correct if the significant keywords from the genomic annota-
tion matched significant keywords from the alignment anno-
tation. If there was no match, then the prediction was incor-
rect, or the annotations were either insufficient or described

Table 1. Assignment of function to 833 yeast ORFs of
unknown function

# ORFs # Expected # of

# ORFs  assigned with Motifs false motif
Specificity —assigned no annotations assigned assignments
10710 61 41 179 0.02
10-° 86 59 238 0.2
108 103 69 301 1.7
1077 172 121 488 17
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the same function differently. To decide among these alter-
natives, we examined each of the remaining predictions man-
ually (4,647 in total over three genomes).

Table 2 summarizes the predictions for the seven genomes
by using motifs from IDENTIFY at different levels of specificity.
For each genome and level of specificity, the third column
shows the number of correct predictions, as determined by
automatic keyword matches. The fourth column contains the
number of predictions that could not be verified by automatic
keyword matching, but were found to be correct by manual
inspection. In the fifth column are the number of predictions
that were not confirmed by the annotations. Many of these
cases corresponded to ORFs without annotations, whereas
other cases showed conflicts between the annotated function
and the function predicted by IDENTIFY. The conflicting
predictions may be incorrect or may perhaps be plausibly
related to the annotated functions. The sixth column shows the
number of incorrect predictions expected by chance, based on
the number of motifs, their specificity, and the size of the
genomes. In the bacterial genomes and in the yeast genome
with the most specific motifs, there was less than expected
incorrect predictions. The seventh column shows the number
of ORFs for which a function was predicted correctly by
IDENTIFY. This is different from the number of correct pre-
dictions, because each ORF may match several motifs in the
database, each resulting in a predicted function. The eighth
column shows the total number of ORFs in the entire genome,
and the final column shows the percentage of ORFs for which
a function was predicted by IDENTIFY.

Depending on the level of specificity used, the IDENTIFY
program predicts functions that match the genomic annotation
for 22-26% of ORFs in the yeast genome, 28-30% of the
ORFs in H. influenzae, and 9-11% of the ORFs in M.
Jjannaschii. The relatively few predictions for M. jannaschii may
be because of its evolutionary divergence from those species
that have been sequenced more extensively. In addition, the
IDENTIFY program predicts several functions that are not
confirmed by the genome annotations. Based on a 10~° level
of specificity, we predict novel functions in 31 ORFs in yeast,
33 OREFs in H. influenzae, and 21 ORFs in M. jannaschii. On
the average, three motifs are assigned to each ORF that is
identified. These ORFs often represent distinct BLOCKS or
PRINTS alignments from a single protein family, thus support-
ing each other in the assignment of a particular function to a
protein. Because these ORFs often confirm or support each
other, the probability of a false positive prediction is likely to
be much less than that of a single motif match.

DISCUSSION

Principled Motif Generation. Motifs, including those in the
PROSITE database (17, 18), generally have been generated
manually. In this paper, we introduce a method for generating
motifs automatically. Automated methods are becoming in-
creasingly important as sequence databases grow. An auto-
mated method requires knowledge about sequence conserva-
tion. For EMOTIF, this knowledge is encoded as an allowed set
of amino acid substitution groups. Although we have presented
a empirical analysis that supports a certain set of groups (Fig.
1), the algorithm may be easily adapted to use other sets of
amino acid substitution groups. For instance, substitution
groups based on chemical principles (27, 28) may be appro-
priate in certain cases.

Other researchers have generated motifs from a predefined
set of substitution groups (29, 30), but these sets of allowable
groups often have been too limited. Previous sets of substitu-
tion groups generally have been mutually exclusive, meaning
that each amino acid may belong to only a single group. In
contrast, we use overlapping groups, which allows each amino
acid to belong to more than one group. This is biologically
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Table 2. Genomes scanned by using IDENTIFY

Proc. Natl. Acad. Sci. USA 95 (1998)

% of
Total motifs Motifs total
assigned & verified Assignments Expected false ORFs Total ORFs

Genome Specificity verified manually unverified assignments identified ORFs identified
S. cerevisiae 10-10 4,442 909 9 0 1,345 6,220 22%
107° 4,679 1,027 31 5 1,466 24%
10-8 4,994 1,114 124 42 1,621 26%
H. influenzae 10-10 1,804 644 11 0 479 1,697 28%
107° 1,899 703 33 0 503 30%
M. jannaschii 10-10 349 115 3 0 157 1,680 9%
107° 403 135 21 0 192 11%
M. genitalium 10-10 297 75 4 0 96 467 21%
1079 331 87 7 0 108 23%
Syn. sp. 10-10 1,369 389 21 2 447 3,169 14%
107° 1,569 461 34 20 513 16%
M. pneumoniae 1010 304 75 6 0 101 677 15%
107° 350 89 8 0 117 17%
H. pylori 10-10 476 100 16 0 200 1,566 13%
1079 576 121 18 0 233 15%

The ORFs encoded in the genomes of S. cerevisiae, H. influenzae, and M. jannaschii were scanned by using the IDENTIFY database. The motif
assignments then were verified as described in the text. The number and percentage of ORFs identified by these motif assignments also were
calculated. On average, approximately three motifs were assigned to each ORF that was identified.

appropriate, because each amino acid has several properties
and can serve different functions, depending on the biochem-
ical context. In some contexts, the size of an amino acid may
be critical; in others, its charge may be the conserved property.

By using only an allowed set of substitution groups, we avoid
the problem of overfitting, which occurs commonly when
motifs are generated manually. Overfitting occurs when a
motif is designed to cover all variability in a training set, even
when such variability may be caused by errors or may not be
biologically meaningful. Errors in training sets may arise for a
variety of reasons: (i) the sequence data may contain errors,
including insertions, deletions, or substitutions; (if) one or
more sequences may be misaligned; (iif) the sequences may be
contaminated, meaning that some sequences in the alignment
may not truly belong to a particular family; or (iv) the family
may contain subfamilies or subclasses, each of which may
generalize well individually, but not together. Biologically
meaningless variation occurs when the observed variation is
caused by mutations that do not affect the structure or function
of the protein. For instance, if a position in a protein family
were to contain one example each of alanine, cysteine, and
valine, the observed variation likely would be biologically
meaningless because we know of no chemical or physical
reasons that these three amino acids should be conserved
together. Therefore, a motif that contains the group [ACV]
would be an example of overfitting the data. A biologically
meaningful generalization of the observed variation would
depend on the available substitution groups. In our set of
substitution groups, these three amino acids would be gener-
alized by the wild-card character.

Nevertheless, groups that are difficult to interpret biologi-
cally, such as [ACV], occur frequently in prosite. In that
database, motifs are constructed by using 867 distinct amino
acid substitution groups. A few groups are used frequently,
such as [ILMV], which occurs 826 times in prosite. In fact, the
20 most frequently used groups account for 60% of the groups
used by motifs in prosite. On the other hand, the vast majority
of distinct groups—more than 70%—occur in only a single
motif, and an additional 13% of groups occur in only two
motifs. These groups are probably examples of overfitting.

Opverfitting is of concern in machine learning, because at
some point, further fitting of the training set worsens perfor-
mance on future test sets. For example, the group [ACV] may
cover the training set entirely, but it does not allow for any

other amino acid at that position, which may worsen predictive
power if, in fact, there is no true conservation at that position.

Enumeration Strategy. EMOTIF uses an enumeration strat-
egy that generates all possible motifs for a given protein family.
It is somewhat surprising that, in most cases, EMOTIF is able to
enumerate all motifs within a few seconds. Most enumeration
strategies in computer science are impractical because the
space of solutions is typically so large that a complete enu-
meration cannot be performed in tractable time. In fact, in an
early version of a motif generating program called SeqClass
(31), we used a heuristic search strategy to find the single best
motif. However, heuristic search strategies are not guaranteed
to find the globally optimal solution. On the other hand, an
enumerative strategy, if tractable, will guarantee an optimal
solution. The tractability of EMOTIF relies on the fact that
sequences in a protein family are related, so a single motif may
be the most specific one for many different subsets of the
training set. Therefore, the space of possible motifs often is
limited in practice by the amount of variability possible in the
protein family. For additional efficiency, EMOTIF sets a lower
limit on coverage of the training set; motifs that cover less than
30% of the training set are not enumerated. The value of 30%
still enables EMOTIF to recognize up to three equal-sized
subfamilies.

Enumeration affords three major advantages over heuristic
search. First, as mentioned above, it guarantees finding the
optimal motif for a particular criterion. Second, an enumera-
tion approach finds optimal motifs for multiple criteria simul-
taneously. For example, EMOTIF provides optimal motifs for a
wide range of specificities, each of which may be useful for a
particular task. For example, scanning an entire database may
require highly specific motifs, whereas characterizing a single
protein sequence may require motifs with much lower speci-
ficity. A single run of EMOTIF on a single protein family will find
the optimal motif at each level of specificity in advance. We
have exploited this advantage in constructing the IDENTIFY
database, which provides optimal motifs at different levels of
specificity for different tasks.

The third advantage of an enumeration strategy is that it
produces a two-dimensional graph, such as in Fig. 3, which
characterizes variability in a protein family. The graph pro-
vides clues about possible subfamilies, as exemplified by the o-,
B-, and y-tubulins. In addition, the shape of the Pareto-optimal
line also gives insight into the structure of the set of sequences.
Bulges in the line toward the lower right indicate clusters of
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sequences, whereas a hyperbolic line along the top and left of
the graph results from sequences that form no discernible
clusters. Finally, the graph helps users view the tradeoff
between coverage and specificity for various motifs and allows
them to select motifs interactively.

Assigning Function to Novel Proteins. The motifs in the
IDENTIFY database are particularly valuable for assigning
function to newly sequenced proteins, either individually or in
large-scale searches. Motifs are particularly well-suited to
large-scale searching tasks. Motifs can be used to search a
database very quickly, and many fast algorithms for perform-
ing regular expression searches exist. In addition, because
motifs in the IDENTIFY database are characterized by their
specificity, a search using motifs can be tailored to provide
maximum sensitivity for a given desired level of specificity and
to minimize false positives.

Each motif also is linked to the BLOCKS or PRINTS databases,
which describe the family of proteins from which it was derived.
Because these protein families typically have several members,
a match to a motif may provide an association with several
other members of the family. In addition, when a match to a
motif is obtained, that motif may be used to search sequence
databases, such as SWISS-PROT and GenPept, for other proteins
that share this motif. This function, which is implemented in
IDENTIFY, provides all sequences that may share a closely
related form of the motif and thereby represent a particular
subfamily containing the motif.

More importantly, most families in the PRINTS and BLOCKS
databases are represented by several motifs, each correspond-
ing to a different conserved region of the family. On average,
each family has 3-4 conserved regions. The presence of
multiple conserved regions increases the sensitivity of a search
using motifs. Furthermore, they provide additional certainty
about a functional assignment, above the statistical estimate of
significance, when several independent motifs match a given
unknown sequence.

Motifs, such as those in IDENTIFY, are useful for assigning
functions to proteins even in the absence of any homology
apart from the limited motif regions. Unlike similarity search
methods that weight every position in a sequence alignment to
some extent, motifs evaluate only those positions that show
conservation in the training set. Hence, motifs can discover
function and assign a protein to a family even if that protein
is so distantly related that it shows no sequence similarity
outside the motifs. This explains why IDENTIFY can assign
function to 172 proteins from the yeast genome that have no
significant homology to any known protein. The frequency
with which IDENTIFY assigns function to these nonhomologous
proteins (172/833 = 21%) is somewhat less than the frequency
with which IDENTIFY assigns function to the bulk of the yeast
proteins (1,621/6,220 = 26%). The ability of motifs to assign
function by using only homology at particular positions makes
them particularly useful for evaluating newly sequenced ge-
nomes such as M. jannaschii, most of whose proteins are not
homologous to other organisms.

Currently, IDENTIFY assigns function to about 25-30% of
novel protein sequences. This limit reflects, among other
things, the fraction of newly sequenced proteins that share at
least one motif with a current protein family present in the
BLOCKS or PRINTS databases. As more genomes are sequenced
and more protein families are defined in these databases,
IDENTIFY should be able to assign function to a larger fraction
of proteins. Despite this current limitation, IDENTIFY is a
valuable tool for assignment of function to newly sequenced
proteins, especially in those cases where there are no signifi-
cant sequence similarities by alignment, profile, or hidden
Markov methods.

Proc. Natl. Acad. Sci. USA 95 (1998) 5871

Availability. Access to the EMOTIF and IDENTIFY programs
is available over the Internet at http://motif.stanford.edu/
emotif and http://motif.stanford.edu/identify. Nonprofit in-
stitutions wishing to install the programs locally may send
requests to D.L.B. (brutlag@stanford.edu). Commercial and
for-profit institutions can license the programs from Pangea
Systems Inc. or from Stanford’s Office of Technology Licens-
ing.
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