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Abstract
Kinetic isotope effects (KIEs) and their temperature dependence can probe the structural and
dynamic nature of enzyme-catalyzed proton or hydride transfers. The molecular interpretation of
their temperature dependence requires expensive and specialized QM/MM calculations to provide
a quantitative molecular understanding. Currently available phenomenological models use a non-
adiabatic assumption that is not appropriate for most hydride and proton-transfer reactions, while
others require more parameters than the experimental data justify. Here we propose a
phenomenological interpretation of KIEs based on a simple method to quantitatively link the size
and temperature dependence of KIEs to a conformational distribution of the catalyzed reaction.
The present model assumes adiabatic hydrogen tunneling, and by fitting experimental KIE data,
the model yields a population distribution for fluctuations of the distance between donor and
acceptor atoms. Fits to data from a variety of proton and hydride transfers catalyzed by enzymes
and their mutants, as well as non-enzymatic reactions, reveal that steeply temperature-dependent
KIEs indicate the presence of at least two distinct conformational populations, each with different
kinetic behaviors. We present the results of these calculations for several published cases and
discuss how the predictions of the calculations might be experimentally tested. The current
analysis does not replace molecular quantum mechanics/molecular mechanics (QM/MM)
investigations, but it provides a fast and accessible way to quantitatively interpret KIEs in the
context of a Marcus-like model.
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The detailed mechanisms of enzyme-catalyzed H-transfer reactions have tantalized
researchers for many years, owing to the important intellectual questions and medicinal
applications associated with enzymes. It is now well accepted that both enzyme-catalyzed
and non-enzymatic hydrogen transfers involve quantum mechanical tunneling, the
phenomenon where a particle passes through an energy barrier due to its wave-like
properties. Since tunneling is highly mass dependent, kinetic isotope effects (KIEs) are
excellent probes of these reactions. In recent years, the temperature dependence of KIEs has
emerged as an important indication of the nature of tunneling and has suggested that
fluctuations of the donor-acceptor distance (DAD) may be mechanistically important.1–9

Here the DAD is defined as the distance between the two heavy atoms transferring the
hydrogen.
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Conventional transition state theory (TST) models chemical kinetics under a set of
assumptions where the width of the barrier is unimportant; all that affects the rate is the
height of the barrier. Some attempts to account for the effects of tunneling on KIEs rely on
corrections to TST of the form

[1]

where kTST is the TST rate for the light (L) or heavy (H) isotope, and Q is the correction for
tunneling effects for each isotope. The tunneling correction is generally based on a parabolic
barrier with some more sophisticated treatments available, but the barrier is assumed to be
static.10 Tunneling corrections can reproduce both temperature-dependent and temperature-
independent KIEs, but such simple corrections to TST cannot reproduce small and
temperature-independent KIEs where the rate is temperature dependent (Ea>0). Certain
enzymatic, as well as non-enzymatic, reactions, however, exhibit just that: large activation
energies, but temperature-independent KIEs that are not inflated.11–19 To account for this
behavior, many researchers have adapted Marcus theory of electron tunneling20 to the
situation of hydrogen tunneling (Figure 1). The Marcus-like models6,8,21 (also known as
full-tunneling models,22 environmentally-coupled tunneling,1 and vibrationally-enhanced
tunneling5) suggest that heavy-atom motions bring the system to a tunneling-ready state
(TRS), where the vibrational energy levels for the hydrogen in the reactant and product
states are degenerate and tunneling can occur.1,2,8,9,23–28 This type of model gives a rate
constant (k) with the functional form

[2]

In this equation the factors in front of the integral include the electronic coupling between
the reactants and products (V) and the thermally averaged equilibrium probability of heavy-
atom “reorganization” to reach the TRS, which depends on the reaction driving force (ΔG°),
the reorganization energy (λ), and the absolute temperature (T); kB is Boltzmann's constant.
These factors are nearly completely insensitive to the mass of the transferred particle, so
only the integral contributes to the isotope effects. The integral computes the probability of
tunneling to form products once the system reaches the TRS. The first factor inside the
integral gives the probability of tunneling as a function of the mass (m) of the transferred
particle (H, D, or T) and the DAD. The second factor in the integral is a Boltzmann factor
giving the probability of being at any given DAD. Thus, since the thermal reorganization to
reach the TRS is isotopically insensitive, but tunneling at the TRS is isotopically sensitive,
the model accounts for either temperature-dependent or temperature-independent rates with
temperature-dependent or temperature-independent KIEs. Previous studies have reported all
four possibilities for both enzymatic and non-enzymatic systems, requiring a flexible model
that can accommodate all of these outcomes. We note that this kind of model assumes that
all the motions of the system are in thermal equilibrium with the environment, in accordance
established theories.3,9,23,29,30

Interestingly, several enzymes that exhibit temperature-independent KIEs have mutants
where KIEs are temperature dependent. Qualitative arguments have rationalized that
differences in thermal fluctuations of the DAD (the Boltzmann factor in the integral of eq. 2)
can account for both behaviors (Figure 2).1,8 In the case of temperature-dependent KIEs,
thermal excitations that populate conformations with shorter DADs, where the heavy isotope
can tunnel, will lower the KIE as temperature increases. In contrast, if the enzyme stabilizes
a TRS with a very short DAD, where tunneling is efficient for both isotopes, then thermal
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activation will not alter the magnitude of the KIE.31 Although this model appears to account
for the wide range of experimental observations, few attempts have tried to quantitatively
link the size and temperature dependence of KIEs to the population distribution along the
DAD coordinate,14,24,32 and in most cases, detailed QM/MM simulations have been
necessary to achieve a molecular understanding of the reaction.26,33–35

To assist experimentalists in quantitative analysis of data, we expand on previous efforts to
connect the temperature dependence of KIEs to a simple physical model. The value of such
a phenomenological model, like that of most statistical models, is that it captures the
essential physics of the problem for initial assessment of the system under study without all
of the molecular detail of an explicit simulations. Although cases where a detailed molecular
interpretation is required to understand the chemistry motivate high level simulations, e.g.,
QM/MM, they are not necessary in many situations where an analysis using a modified TST
or Marcus-like models provides sufficient physical insight into the reaction dynamics
(including assessment of whether molecular simulation is needed). We apply the proposed
model to several different enzymes and their mutants, including dihydrofolate reductase
(DHFR),12,36–39 morphinone reductase (MR),14 thymidylate synthase (TSase),13,40 alcohol
dehydrogenase (ADH),11,41 formate dehydrogenase (FDH),42 and pentaerythritol tetranitrate
reductase (PETNR),15 as well as two non-enzymatic sigmatropic rearrangements.17,43 In
contrast to some previous fitting models we maintain that the experimental data correspond
to a single exponential relationship, and thus, any fitting model must be limited to two
adjustable parameters. The question for the experimentalist trying to interpret data is what
physical quantities those parameters represent. Fits to the Arrhenius equation and the
parameters of that equation have limited physical meaning (i.e., ΔEa and AH/AD) for these
kinds of reactions. The method described here allows experimental enzymologists and
organic chemists to obtain a quantitative interpretation of their results in terms of a
distribution of DADs, but without requiring the expertise, time, and resources necessary to
conduct costly QM/MM simulations.3–5,26,33–35,44–48 Furthermore, the present calculations
result in a number of intriguing predictions that could be examined experimentally.

Methods
We conducted all geometry optimizations and potential-energy surface (PES) scans at the
B3LYP/6–31+G* level with Gaussian 03.49 We did all other calculations with Mathematica
7.50

The overall framework used here follows the model developed by Kuznetsov and Ulstrup
(ref. 23, eq. 2), but with significant modifications relative to other attempts to implement
this type of model.14,24,32,51 Since the factors outside the integral of eq. 2 are essentially
isotopically insensitive (i.e., affected by motions of many heavy atoms with little or no
contribution of the isotopically labeled atom), the following ratio of integrals contains the
experimental 1° KIEs:

[3]

As mentioned above, the first factor in each integral represents the probability of tunneling
as a function of the DAD and the mass of the transferred particle and the second factor is a
Boltzmann factor, giving the probability of being at any given DAD. The integral is
formally over all DADs, but in reality it is negligible outside of a small region within which
the DAD is short enough to give a non-zero tunneling probability (DAD < r2) but long
enough that van der Waals repulsions between the donor and acceptor are small (DAD > r1).
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Since when calculating KIEs many of the assumptions and expressions that are not
isotopically sensitive drop from the equation, and because many experiments directly
measure KIEs, without measuring individual rates,21 this equation should have greater
utility than individual rate equations.

The Tunneling Probability
Previous calculations of this type have based the tunneling probability on non-adiabatic
models using harmonic24,51 or Morse14,32 potentials to describe the donor and acceptor
wells. For many reactions, though, adiabatic coupling is very important.52 Thus, we allow
for strong coupling between the donor and acceptor wells, which is more relevant to hydride
and proton transfers and gives markedly different results (see below). As with previous
models, we assume that the probability of tunneling as a function of DAD does not differ
among similar reactions. For computational simplicity, therefore, we base our calculations
on the hypothetical symmetric transfer of H− from reduced to oxidized nicotinamide
moieties, in a manner similar to a model for symmetric H-transfer in solution.53 The donor
and acceptor moieties are analogous to the ubiquitous nicotinamide biological cofactor
NAD(P)+. A hydrogen truncates the nicotinamide rings where they normally link to the
ribosyl moiety of NAD(P)+, so the system contains a total of 33 atoms (Figure 3) and an
overall charge of +1. Heavy-atom geometries of the two nicotinamide moieties are
optimized at a range of DADs from 2.6 Å to 3.5 Å with the C-H-C angle constrained at 180°
and the hydrogen at the midpoint between the donor and acceptor C4 atoms. We previously
found this approach sufficient for assessment of the structure of the TRS in yeast ADH.54 At
each DAD, we scanned the PES for linear hydrogen transfer with all other atoms frozen and
fit these scans (least-squares) to symmetric quartic potentials (Figure 4). When the system
reaches the TRS, the hydrogen is localized in the donor well. Before the degeneracy of the
TRS is broken, the donor wavefunction evolves so that some probability density ends up in
the acceptor well (Figure 3). To calculate the time evolution of the probability density, we
construct donor and acceptor wavefunctions for each isotope from linear combinations of
the ground (φ0 and first excited (φ1) eigenstates of the potentials in figure 4.

[4]

[5]

When the system reaches the TRS, the non-stationary donor wavefunction evolves in time
by coherent oscillations between the donor and acceptor state with a period (τ) dependent on
the tunneling splitting (ΔEt),55 where

[6]

and ΔEt is the difference in energy between φ0 and φ1:

[7]

We calculate ΔEt for each DAD for H, D, and T by numerical solution of the Schrödinger
equation as described previously.54 To get an expression for ΔEt as a function of DAD, we
fit (least-log-squares) the calculated values to a sum of two exponentials, which correspond
to the behaviors above and below the barrier, respectively (Figure 5). When the zero-point
energy (ZPE) of the hydrogen is above the barrier, the process is not formally tunneling, but
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an advantage of this methodology is that the calculations smoothly transition between the
region of tunneling27 and the region of over-the-barrier events.56

The oscillations of the hydrogen wavefunction result in a probability density in the acceptor
well (corresponding to net transfer) as a function of time (t) after reaching the TRS given by
the expression

[8]

After reaching the TRS, however, environmental perturbations lead to dephasing of the
coherent wavefunction, such that the oscillations effectively cease after a short dephasing
time. Calculating the rate of dephasing is not within the scope of the present model, but we
can approximate the rate as an exponential decay with time constant of θ=10 fs.57 This
approximation is consistent with other treatments that calculated the decay of the probability
flux correlation function based on the spectral density of the environment,58,59 a method
first described for solution reactions60 that has found much subsequent use in solution and
enzymes.25,61 Furthermore, the general behavior of the model is not sensitive to the value of
θ within the range of 1fs<θ<100fs. Using this exponential dephasing, the overall probability
of tunneling as a function of DAD (Figure 6) is

[9]

We expect this term to be nearly invariant among different hydride transfers between carbon
atoms, and at least to yield reasonable trends for other types of hydride and proton transfers.
The utility of this function for several different reactions is explored below.

The DAD Population Distribution
In equation 3, the Boltzmann factor within the integral represents the population distribution
along the DAD coordinate. This term dictates the size and temperature dependence of the
KIEs. We analyze experimental data that range from reactions with completely temperature-
independent KIEs (within experimental error) to reactions with steeply temperature-
dependent KIEs. Most surprisingly, we find that a model with a single population could not
fit the steeply temperature-dependent KIEs. Thus, we present two models below: a single-
population model for KIEs with little or no temperature dependence and a model with two
populations that accounts for KIEs with all levels of temperature dependence. We use these
two forms of the Boltzmann factor in eq. 3 to fit the KIEs. Importantly, we use only two
parameters to fit the data with either model. Since experiments measure the temperature
dependence of KIEs across a narrow temperature range, and this dependence follows a
single exponential relationship, at most two fitting parameters are justified.

Temperature Independent KIEs: One Population
Previous methods used a harmonic potential to approximate the PES that describes the DAD
coordinate,14,24,32,33,51 and where possible, we follow this standard. This gives a Gaussian
population distribution of the form

[10]

where the average DAD (DAD0) and the force constant (f) of the corresponding harmonic
potential are adjustable fitting parameters when this factor is substituted into eq. 3. Formally
speaking, this distribution is normalized, but since the probability distribution of DADs is
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not mass-sensitive, the normalization constants for the two isotopes are equal and thus
cancel one another. This type of distribution can fit KIEs with little to no temperature
dependence, but even allowing for physically unreasonable parameters, this distribution
cannot lead to the small, steeply temperature-dependent KIEs observed in some reactions
(Figure S1).

Temperature Dependent KIEs: Two Populations
It is not surprising that simple distributions like Eq. 10 fail in some cases. For reactions
where the donor and acceptor are not well constrained in reactive orientations, they are
unlikely to have the same steep potential-energy gradient at long separations (when held by
“soft” protein or solvent forces) as when closely approaching each other (under van der
Waals radii), as implied by a harmonic potential. Our efforts to fit the temperature-
dependent KIEs with more sophisticated functions lead to the conclusion that at least two
distinct populations are required to fit these experimental data in the context of a Marcus-
like model.

After exploring a number of ways to describe the population distribution in systems with
steeply temperature-dependent KIEs, we find that the simplest model that can fit the data is
as follows: One population is centered at a short enough DAD (DADshort) that all isotopes
cross the dividing surface between reactant and product with similar probabilities (i.e. the
KIE is unity for this population). We choose this population as the zero of free energy (G=0)
for computational simplicity. A second, lower-energy population is centered at a longer
DAD (DADlong), where the overall tunneling probability is lower but the isotope effect is
larger. In the present model, the precise DAD of the shorter population does not
significantly affect the fit to the data, so long as the DAD is short enough that the ZPEs of
all three isotopes are above the reaction barrier (cf. vertical lines in Figure 6). This
population effectively corresponds to a semiclassical transition state.34,62,63 We assume that
the two conformational populations are in thermal equilibrium with one another and that the
temperature-dependent change in the relative populations gives rise to the temperature
dependence of the KIEs. Thus, the population distribution (the Boltzmann factor in Eq. 3)
has the form

[11]

where the two fitting parameters are DADlong (the DAD of the population at longer
distance) and ΔG (the difference in free energy between the two populations). Including a
distribution about the average DADs of the two populations requires more parameters and
does not yield a better fit, so we leave the populations as delta functions. As with Eq. 10,
this distribution function need not be normalized to calculate KIEs.

Fitting the KIEs
We fit (least-squares) experimental KIEs as a function of temperature to eq. 3, using both
the single Gaussian distribution (eq. 10) and the two-population distribution (eq. 11). Except
in cases where one attempts to fit steeply temperature-dependent KIEs to a single
population, the fits converge to 16-digit precision within a few seconds, using a Sony laptop
with an Intel Core2Duo P8700 processor (2.53 GHz) and 8 GB of RAM. The Mathematica
program for conducting this type of fitting is available free of charge on the web at
http://chemmath.chem.uiowa.edu/webMathematica/kohen/marcuslikemodel.html.
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Results and Discussion
We propose a simple phenomenological model that enables quantitative fitting of
experimental KIEs and their temperature dependence, yielding up to two physically
meaningful parameters that describe the distribution(s) of DADs. To do so, we have
modeled the tunneling probability, assuming adiabatic coupling between the donor and
acceptor wells. This approach expands the space of possible reactions that can be modeled
beyond those where strictly non-adiabatic tunneling is appropriate.24,32 Several studies have
provided in-depth analyses of the differences between adiabatic and non-adiabatic
approaches in this type of vibronic model.52,64 Here, we find that the coupling of the donor
and acceptor increases the length of the C-H bond and substantially decreases the height of
the barrier, yielding large regions of wavefunction overlap at DADs where non-adiabatic
models predict negligible probabilities of tunneling (Figure 7). As a result, our adiabatic
model demonstrates that tunneling occurs from DADs relatively close to the van der Waals
distance of the two heavy atoms (3.4 Å for carbon). While several high level simulations
suggest tunneling from DADs between 2.6–2.8 Å,34,63 we have shown that there is no
barrier to H-transfer at that distance (Figure 4) and that distance actually corresponds to the
semi-classical transition state. Tunneling from longer DADs, however, is consistent with a
model of the TRS of yeast ADH based on 2° KIEs54 as well as high level QM/MM
simulations of DHFR.26 A further advantage of the present method is that we need not
assume that every reactive trajectory occurs by tunneling. The transferred hydrogen in the
current model behaves as a quantum particle, regardless of the electrostatic environment
applied by the heavy atoms of the system. Whether above the barrier or below the barrier,
the hydrogen is wave-like.56 Thus, as shown in Figure 6, the transmission probability
smoothly transitions between DADs where the ZPE is below the barrier to those where it
exceeds the barrier height. Even for these over-the-barrier trajectories, though, the heavy-
atom reorganization remains the primary motion leading to H-transfer65,66 (i.e., “the
reaction coordinate is the solvent coordinate”56). In this type of mechanism, all isotopes
cross the dividing surface to products with similar probability once they are above the
barrier. As discussed below, this result turns out to be of vital importance in describing
steeply temperature-dependent KIEs.

Our approach also expands the range of temperature dependencies of KIEs that can be
quantitatively interpreted by a full-tunneling model. The previous phenomenological
methods, which used only single harmonic potentials to describe the DAD coordinate,
cannot reproduce the steep temperature dependence of KIEs that has been observed in a
number of systems (See SI). By allowing for two populations along the DAD coordinate, the
present model fits a variety of KIEs that have been reported for biological hydride and
proton transfers, as well as non-enzymatic H-transfers (see examples below). As discussed
under methods, the nature of the experimental data (KIEs over a narrow temperature range,
which conform to a single exponential) allows for at most two meaningful fitting
parameters.

Fitting the KIEs
The present method gives good fits to experimental KIEs exhibiting a wide range of
temperature dependences (ΔEa), resulting in physically meaningful population distributions
along the DAD coordinate in a variety of reactions. The fitted parameters for each reaction
are presented in Table 1. The experimental data are from measurements by a number of
independent researchers who used an assortment of techniques, and all cases represent
intrinsic KIEs that are not masked by kinetic complexity. To give a sense of the quality of
the fits, we present the results for the enzyme DHFR and two series of mutants in Figure
8.38,39,67 The model achieves similar accuracy for the other systems we examine (see details
and figures in the SI): the nicotinamide-dependent C-H→C transfers in thermophilic ADH
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from B. stearothermophilus, bsADH,11,41 and FDH42, the C-H→N transfer between flavin
and nicotinamide in two flavoenzymes, MR14 and PETNR,15 the hydride (C-H→C) and
proton (C-H→O) transfers that are part of the kinetic cascade in TSase,13,40 and two non-
enzymatic [1,5]sigmatropic rearrangements.17,43 Given the method of parameterizing the
tunneling probability (Eq. 9), the details of the current model are most applicable to C-
H→C transfers involving nicotinamide cofactors (DHFR, bsADH, and FDH). One should
interpret the precise results for the other three enzymes (MR, PETNR, and TSase) and the
non-enzymatic reactions with caution, but we believe the overall trends among those
reactions are fairly robust. In order to obtain more accurate results for those reactions, one
could re-parameterize the tunneling probability (Eq. 9) to focus on H-transfers more relevant
to those systems.

We display the KIEs of Figure 8 (and those in the SI) as Arrhenius plots (1/T vs. KIE on log
scale), following the tradition of phenomenological analysis of KIEs by the Arrhenius or
Eyring equations1,8

[12]

where Ai is the Arrhenius pre-exponential factor for isotope i, and ΔEa is the difference in
activation energy between the two isotopes. By this analysis, temperature-independent KIEs

give a ΔEa close to 0, often associated with  greater than the semi-classical limits (i.e.,
greater than unity). Some temperature-dependent KIEs, however, show a very large ΔEa that

cannot be accounted for by mere isotopic differences in ZPE and, furthermore, show 

much lower than the semiclassical limit. For other reactions,  is close to unity and ΔEa
also falls within the semiclassical limits. Despite this large variation in the behavior of KIEs,
the method described here provides excellent fits to the entire range of results, using either a
single population (where possible) or two distinct populations. Among the systems
examined here, we find a cutoff at around ΔEa=1.5 kcal/mol (at 298 K) for H/T KIEs, above
which a single conformational population cannot fit the KIEs (See SI). Thus, as seen in
Table 1, all of the systems where the H/T KIE exhibits ΔEa>1 kcal/mol at 298 K can only
be fit with the model that uses two populations. Thus, in those systems, the parameters in the
single population model are listed as not applicable (NA). Since the experimental data
conform to a single exponential function, two parameters are necessary and sufficient to
describe the data. In the cases where ΔEa=0 (within experimental error), the information

content of the experimental data reduces to a single parameter , so only a lower bound
is given for the second fitting parameter in each model in Table 1. Truly temperature
independent KIEs imply no DAD sampling (f=∞ or ΔG=∞), so the lower bound indicates
the certainty (based on experimental errors) that the KIEs are truly temperature independent;
a larger lower bound means more certainty. It is important to note that different values of
this lower bound report on the quality of the data analyzed rather than the nature of the
system under study. One of the mutant enzymes in ref. 14 (V108A) apparently exhibited
inverse temperature dependence (ΔEa<0), but the data and statistics are far from the quality
of other data in the same work. Given the quality of these data and the fact that negative ΔEa
could not be appropriately modeled by either one population or two populations, and since
much higher levels of theory have examined only a few such cases,68 we do not address
these data here.
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In general, the distributions we obtain using a single population for DHFR and its remote
mutants agree qualitatively with QM/MM simulations that calculated the DAD PES for
these enzymes,26 suggesting that this kind of model truly captures the essential physics
involved in H-transfer. Furthermore, in most cases our fits agree with the trends found using
nonadiabatic-tunneling models.24,32 The fits to KIEs with little temperature dependence
(ΔEa<1 kcal/mol) show a correlation between ΔEa and both the average DAD and the force
constant of the corresponding harmonic potential (Table 1): a steep force constant and a
short DAD gives a small ΔEa, while a longer DAD and a smaller force constant gives a
larger ΔEa. Thus, in accordance with another recent analysis,30 small force constants give
smaller KIEs at higher temperatures because barrier compressions decrease rather than
increase nuclear quantum effects. Barrier compression decreases the width and height of the
barrier (Figure 4), allowing the isotopes to behave more similarly to one another. This
behavior is consistent with the qualitative arguments that have emerged during recent years
to describe these experimental results.1,8

The observation that changes, such as mutations, alternate substrates, and non-physiological
temperature ranges, can change temperature-independent KIEs into temperature-dependent
KIEs motivates the hypothesis that the conformational distribution along the DAD
coordinate is important for enzyme-catalyzed reactions.14,24,26,38 In the context of small
ΔEa, the DAD potential has a lower force constant and longer average DAD.14,24,32,51 We
cannot, however, model the steeply temperature-dependent KIEs (ΔEa > 1 kcal/mol at 298
K) with a single population and require at least two populations at the TRS. As with the one-
population model, some clear trends emerge in how the interplay between the two
populations affects the temperature dependence of the KIEs with ΔEa > 1 kcal/mol (Table
1). If the DAD of the long population is especially long and much lower in energy, the
system exhibits larger ΔEa.

The molecular interpretation of the two conformational substates for reactions with large
ΔEa warrants further discussion. Perhaps the simplest interpretation of the models presented
here comes in the context of the series of active-site mutants for E. coli DHFR (Figure 8A).
This set of experiments examined the effects of a hydrophobic residue in the active site (I14)
that appears to hold the nicotinamide ring of the H-donor in place through steric effects.39,67

As the size of the residue decreases from I to V to A to G, ΔEa gets larger and larger. The
wild type has ΔEa≈0, and thus, both fitting models converge to a single, narrowly defined
conformation with a DAD of 3.06 Å. At the other end of the series, the I14G mutant has a
ΔEa of 3.31 kcal/mol, and only the model with two populations can fit the data. One can
interpret this as an indication that the missing side chain leaves so much space in the active
site that the substrates can adopt different conformations, as also suggested by molecular
dynamics (MD) studies.67 The I14V and I14A mutants (ΔEa of 0.30 kcal/mol and 0.38 kcal/
mol, respectively) can be modeled by either a single population or two populations. The
results of a single population suggest that they have a smaller force constant and longer
average DAD than the wild type; under the two-population model they have a smaller ΔG
and shorter DADlong than I14G. Since both models give adequate fits to these systems, the
present methods cannot indicate a preference for one interpretation over the other, and
higher-level simulations will be necessary to make a judgment.

A closer examination of the differences between wild-type DHFR and its I14G mutant
reveals how two distinct populations may lead to the steep temperature dependence of KIEs
exhibited by the mutant (Table 1 and Figure 8A). In the mutant, the vast majority of the TRS
population has a DAD long enough (3.33 Å) that the probability of H-tunneling is much
larger than the probability for T (or D). A small portion of the population (≈0.1 % at 298 K),
however, is at a short enough DAD that all isotopes can cross the dividing surface between
reactant and product equally well. At low temperatures, far greater overall population

Roston et al. Page 9

Biochemistry. Author manuscript; available in PMC 2013 August 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



resides at the long DAD, where 1H has a large advantage in tunneling, leading to a large
KIE. Increasing temperature populates the short DAD (from which heavy isotopes can also
be transferred), so the relative advantage of 1H tunneling from the longer DAD decreases,
resulting in strongly temperature-dependent KIEs. For the wtDHFR, on the other hand, a
change in temperature will have the same effect on both isotopes: it will not cause a
population shift, and the KIE change with temperature will be minimal.

The idea of a “steric hole” opening in the active site in the DHFR I14G mutant is a
reasonable and intuitively satisfying explanation, but a similar interpretation of the
conformational distributions of the G121V-M42W double mutant (residues distant from the
active site, Figure 8B), for example, seems less obvious. A limitation of the present model is
that it merely finds a 1-D distribution of DADs, without regard to other conformational
fluctuations that may be important.44 Thus, the distributions obtained represent ensembles of
conformations, i.e., different states of “pre-organization”.1,8

bsADH
In all cases, the analysis of temperature independent KIEs leads to a single population of
DADs with a narrow distribution. This is true whether data are analyzed by one or two
populations, as the large ΔG for the two population model simply indicates one meaningful
population. The finding of distinct populations along the DAD coordinate is reminiscent of a
recent suggestion that anomalously large Arrhenius pre-exponential factors in bsADH (and
its mutants) result from the sampling of distinct conformations, each of which has different
kinetic properties.69 Additionally, pre-steady-state experiments on a mutant of MR also
suggested multiple kinetically distinct, reactive conformations and indicated that steady-
state rate measurements cannot probe the nature of such conformations.70 Here we have
shown that analysis of the temperature dependence of KIEs can uncover such reactive
conformations, regardless of how the intrinsic KIEs were measured. Another recently
published model of KIEs also suggested distinct reactive conformations.71 Like the two-
conformation model presented here, the model by Mulholland and coworkers71 proposed
one reactive conformation that proceeds by tunneling and one that surmounts the barrier.
Like that model, our two states model for temperature dependent KIEs does not depend on
DAD fluctuations (only ΔG° between the states). This being said, nothing in the functional
form of the model excludes the possibility of DAD fluctuations as we use for temperature
independent KIEs. A difficulty with that model, however, is that it requires 9 parameters to
describe data that fit to a single exponential (or two exponentials if the individual rates of
the isotopes are considered). The model presented here, though, uniquely fits the
temperature dependence of KIEs using just two fitting parameters.

Conclusions
We present a simple and user-friendly adiabatic model of H-tunneling in hydride and
proton-transfer reactions that can be used to generate a population distribution along the
DAD coordinate by fitting to experimental KIEs and their temperature dependence.
Practically, this new fit converts the isotope effect on entropy and enthalpy one gets from
fitting to the Arrhenius or Eyring equations into two parameters indicative of the distribution
of DADs. We suggest these two parameters provide a more molecular interpretation of the
experimental data than ΔEa and AH/AD. We demonstrate the utility of this fit for several
enzymatic and non-enzymatic systems, including a number of different types of C-H→C
and other H-transfers. This simple, quantitative fitting of the experimental data, which is
readily accessible to all experimentalists, gives a physically meaningful picture of how the
temperature dependence of KIEs reflects the arrangement of H-donor and H-acceptor. In the
case of enzymatic reactions, this model provides parameters that correlate with the effects of
mutations, alternative substrates, or changes in conditions that alter the ensemble of reactive
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conformations. For the non-enzymatic reactions, the parameters correlate with the rigidity of
the reacting system, e.g. an intramolecular reaction in a fused ring system versus reactants
with more conformational flexibility (see SI). Importantly, the results imply that reactions
with steeply temperature-dependent KIEs must occur from at least two distinct
conformational substates: one that involves inefficient tunneling from a long DAD and one
where heavy-atom rearrangement (isotopically insensitive enzyme or solvent motion) brings
the system to a short DAD where the ZPE of the transferred particle is above the barrier. In
contrast to earlier phenomenological models, the current procedure also reproduces small,
steeply temperature-dependent KIEs (see SI). Like previous phenomenological methods, the
model presented here does not assume non-statistical dynamic effects and uses the
equilibrium distribution of DADs to calculate the tunneling probability. Since the model
here that allows for multiple conformations can explain the full range of experimental data,
while a single-population model cannot, this two-population model is more generally
applicable. Of course, all the reactions studied here may occur from many different
substates, and our model projects the full ensemble of substates onto two populations
because the most one can extract from the given experimental data (KIEs and their
temperature dependence) is two states, defined by two parameters. Additional experiments,
as well as high-level calculations and simulations, will be necessary to determine more
details of conformations that contribute to H-transfers for each specific system. This new
tool is not meant to replace proper molecular calculations by QM/MM methods, but those
techniques are expensive and highly specialized, whereas this program is very simple to use
and is available, free of charge at
http://chemmath.chem.uiowa.edu/webMathematica/kohen/marcuslikemodel.html

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

KIE kinetic isotope effect

DAD donor acceptor distance

TST transition state theory

TRS tunneling ready state

DHFR dihydrofolate reductase

ADH alcohol dehydrogenase

MR morphinone reductase

PETNR pentaerythritol tetranitrate

TSase thymidilate synthase

PES potential energy surface

ZPE zero point energy

MD molecular dynamics
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Figure 1.
Marcus-like model of hydrogen tunneling. The heavy atoms reorganize to bring the reactant
(blue) and product (red) potential surfaces to a point of transient degeneracy (‡, the TRS)
where the hydrogenic wavefunction (green) can pass from the donor well to the acceptor
well, referred to as tunneling. The TRS actually represents a seam in multi-dimensional
space, including all conformations where the reactant and product surfaces are degenerate.
Figure 2 highlights how the fluctuation of the DAD along this seam dictates the probability
of tunneling at the TRS.
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Figure 2.
PES of the DAD coordinate along the seam where the reactant and product surfaces are
degenerate (the TRS). Slices along the orthogonal tunneling coordinate are shown at three
different DADs, demonstrating the change in overlap between reactant (blue) and product
(red) wavefunctions. The wavefunction overlap at each distance is proportional to the
tunneling probability at that distance and is isotopically sensitive. The present model uses
the temperature dependence of KIEs to determine the population distribution of DADs,
which is dictated by this PES.
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Figure 3.
The time evolution of the 1H-wavefunction tunneling between two NAD+ moieties frozen
with a DAD of 3.2 Å. All the heavy atoms used in the calculations are shown, along with
hydrogens of particular interest. When the system reaches the TRS (t=0) the hydrogen is
effectively localized in the donor well, but its probability density evolves over time, as
shown. The coherent oscillation of this wave packet dephases due to environmental
perturbations yielding some finite probability of decaying to the acceptor state, resulting in
net transfer. An exponential decay with time constant of 10 fs models the dephasing, which
is consistent with more sophisticated calculations.57–59
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Figure 4.
PESs for linear C-H→C transfer between two NAD+ moieties with the heavy atoms frozen
at a range of DADs (defined as the distance from C4 of donor to C4 of acceptor). Each
surface is a symmetric quartic fit (least squares) to a scan of 15–25 points (depending on the
DAD) calculated at the B3LYP/6–31+G* level. The DAD in Å is labeled above the barrier
for each surface. From this figure it is clear that below 2.8 Å there is no barrier to H-transfer
and calculations of ZPE indicate that the hydrogen is above the barrier at even longer
distances, depending on the isotope (cf. Fig. 5).

Roston et al. Page 19

Biochemistry. Author manuscript; available in PMC 2013 August 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Tunnel splitting (△Et) of the three isotopes of hydrogen as a function of DAD (eq. 7),
calculated as the difference in energy of the first two eigenstates of the potentials in Fig 4.
The vertical lines indicate the DAD at which each isotope's ZPE is greater than the height of
the reaction barrier.
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Figure 6.
Transmission probability for each of the three isotopes of hydrogen as a function of DAD
(eq. 9). The vertical lines indicate the DAD at which each isotope's ZPE is greater than the
height of the reaction barrier.
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Figure 7.
Comparison of the wavefunction overlap between donor (blue) and acceptor (red) states
of 1H for the nonadiabatic limit, using Morse potentials (top), and the adiabatic limit used in
the present calculations (bottom). In both examples the DAD is set at 3.2 Å. The Morse
wavefunctions are the ground eigenstates of the Hamiltonian and the wavefunctions for the
double-well potential were constructed as linear combinations of the ground and first excited
eigenstates of the Hamiltonian.
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Figure 8.
The reaction catalyzed by DHFR and the fits to KIEs from a series of active-site mutants
(A), and a series of distal mutants (B). All fits correspond to the two-population model.
Experimental data are from refs. 38, 39, and 67.
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