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Abstract

We conducted a population-based case-control study of single nucleotide polymorphisms (SNPs)
in selected genes to find common variants that play a role in the etiology of limb deficiencies
(LD)s. Included in the study were 389 infants with LDs of unknown cause and 980 unaffected
controls selected from all births in New York State (NY'S) for the years 1998 to 2005. We used
cases identified from the NYS Department of Health (DOH) Congenital Malformations Registry.
Genotypes were obtained for 132 SNPs in genes involved in limb development (SHH, WNT7A,
FGF4, FGF8, FGF10, TBX3, TBX5, SALL4, GREM1, GDF5, CTNNB1, EN1, CYP26A1,
CYP26B1), angiogenesis (VEGFA, HIF1A, NOS3), and coagulation (F2, F5, MTHFR). Genotype
call rates were >97% and SNPs were tested for departure from Hardy-Weinberg expectations by
race/ethnic subgroups. For each SNP, odds ratios (OR)s and confidence intervals (Cl)s were
estimated and corrected for multiple comparisons for all LDs combined and for LD subtypes.
Among non-Hispanic white infants, associations between FGF10 SNPs rs10805683 and
rs13170645 and all LDs combined were statistically significant following correction for multiple
testing (OR=1.99; 95% Cl=1.43-2.77; uncorrected p=0.000043 for rs10805683 heterozygous
genotype, and OR=2.37; 95% CI1=1.48-3.78; uncorrected p=0.00032 for rs13170645 homozygous
minor genotype). We also observed suggestive evidence for associations with SNPs in other genes
including CYP26B1and WNT7A. Animal studies have shown that FGF10induces formation of
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the apical ectodermal ridge and is necessary for limb development. Our data suggest that common
variants in FGF10increase the risk for a wide range of non-syndromic limb deficiencies.
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INTRODUCTION

Limb deficiencies (LD) occur in approximately 8/10,000 births [Gold et al., 2011; Stoll et
al., 2010]. Although mechanical disruption (chorionic villus sampling) and teratogens
(thalidomide, misoprostol) have been linked to LDs, genetic factors, including chromosomal
abnormalities and single gene defects are thought to be common causes [Barham and
Clarke, 2008; Gold et al., 2011]. In particular, genes in a number of signaling pathways
regulate different aspects of limb bud growth and patterns of development in three axes:
dorsal-ventral, anterior-posterior, and proximal-distal [Barham and Clarke, 2008; Johnson
and Tabin, 1997]. Disruptions in such genes or those important in vascularization or
coagulation have been associated with LDs [Barham and Clarke, 2008; Carmichael et al.,
2006a; Carmichael et al., 2006b; Fantel et al., 1997; Gregg et al., 1998; Hunter, 2000;
Johnson and Tabin, 1997].

Based on experimental studies using vertebrate limbs, the following genes are recognized as
being involved in normal human limb development: fibroblast growth factors (FGFs) FGF4,
FGF8, and FGF10, sonic hedgehog (SHH); gremlin 1 (GREMI); WNT7A; engrailed-1
(ENI); LIM homeobox transcription factor 1-beta (LMBXI); Beta-catenin (CTNNBI); bone
morphogenetic protein (BMP) genes including GDF5; HOX genes HOX3HOX13, T-box
(7BX) genes 7TBX2- TBX5; Sal-like protein 4 (SALL4); and cytochrome P450 genes
CYP26B1and CYP26A1 (through control of retinoic acid levels) [Barham and Clarke,
2008; Johnson and Tabin, 1997]. In humans, pathogenic mutations in many of these genes
may cause syndromes that commonly include LDs. Examples include WNT7A mutations
and Fuhrmann syndrome (OMIM #228930), FGF10mutations and lacrimo-auriculo-dento-
digital syndrome (OMIM #149730), GDF5 mutations and Du Pan syndrome (OMIM
#228900), 7BX3and ulnar-mammary syndrome (OMIM #181450), and 7BX5and Holt-
Oram syndrome (OMIM #142900).

A functioning vascular network is also essential for the progression of normal limb
development. Genes regulating angiogenesis, including vascular endothelial growth factor
(VEGFA), hypoxia-inducible factor 1 alpha (H/F1A) and nitric oxide synthase 3 (NOS3,
also known as endothelial NOS) are important in establishing a network of blood vessels. As
an example, LDs have been observed in NOS3-deficient mice [Gregg et al., 1998] and in
rats exposed to NOS3 inhibitors [Fantel et al., 1997]. Coagulation abnormalities have been
proposed as a cause of LDs. In a small study, Hunter [2000] found suggestive evidence that
hypercoagulability was more common in patients with LDs.

To date, little is known about the relationship between LD and common variants in genes
important for limb development, angiogenesis, and coagulation. Our objectives were to
identify markers for common genetic variants that play a role in causing congenital LDs by
examining single nucleotide polymorphisms (SNPs) in genes involved in limb development,
angiogenesis, and coagulation. Using a population-based cohort of infants with LDs and a
sample of non-malformed infants, we tested 132 SNPs in 20 candidate genes for
associations with LDs.
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Case and control infants were selected from the population of live births in New York State
(NYS) during the years 1998 through 2005 (N= 2,023,083). The NYS Congenital
Malformations Registry (CMR) obtains reports of infants diagnosed with major congenital
anomalies from hospitals statewide. The methods by which cases are ascertained by the
CMR have been described previously [Sekhobo and Druschel, 2001]. CMR ascertainment of
major malformations is estimated to be about 89% complete based on a comparison of CMR
reports with reports from the active case-ascertainment of the National Birth Defects
Prevention Study in New York State (C. Druschel unpublished data, 2002).

All infants reported to the CMR as having a LD were included in this study with the
exception of those with known chromosomal anomalies or known or suspected genetic
syndromes. We defined congenital LDs similarly to the definition of Gold et al. (2011) to
include defects in which all or part of a “long bone, metacarpal, metatarsal, or phalanx of
one or more limbs” was absent. Transverse, longitudinal, and intercalary deficiencies were
defined respectively, as missing bone(s) beyond a specific point, missing bone(s) parallel to
the axis of the limb, and missing bone(s) with more distal structures present.

The coding of transverse, longitudinal, and intercalary deficiencies was based on text
descriptions of the malformations reported to the CMR. Inadequate detail sometimes
prevented us from assigning the type of deficiency to one of these categories. If both a
longitudinal deficiency and an apparent transverse deficiency were reported for the same
infant, we classified the infant as having a longitudinal deficiency. In some cases, we could
not distinguish a limb shortness or hypoplasia from a deficiency in which part of a limb was
absent. We coded such cases as uncertain and excluded them from subanalyses.

Following an initial screening of CMR cases to exclude infants with diagnosis codes
indicating the presence of a chromosomal anomaly, we identified 434 infants with LD.
Review of diagnoses descriptions enabled us to make the following additional exclusions: 7
cases with chromosomal anomalies (3 trisomy 21, 1 trisomy 13, 1 trisomy 18, 1 trisomy
mosaic 22, 1 Turner syndrome) and 10 with syndromes with known or suspected genetic
cause with or without LDs as a component defect (2 Beckwith-Wiedemann, 1 Pena-Shokeir,
4 Holt Oram, 2 thrombocytopenia-absent radius, 1 Baller-Gerold). An additional 21 cases
reported as having amniotic band “syndrome” were excluded. Following exclusions, 396
infants classified in the CMR as having LDs were included in the study.

A random sample of non-malformed control infants born 1998 to 2005 and frequency-
matched 2:1 to cases on race/ethnicity was selected from NYS Newborn Screening Program
records. Cases and controls were matched to NYS birth certificates to obtain data on socio-
demographic factors. Archived newborn screening samples from LD case and control
infants were identified and checked to determine that there was sufficient blood remaining
for analysis. Specimens from three case infants could not be located or did not have
sufficient blood for analysis, leaving 393 case infants available for genetic analysis. Of 1003
control infants selected, two were excluded because they were sibs of infants in the study,
and bloodspots could not be retrieved for 12, leaving 989 control infants available for
genetic analysis.

Personal identifying information was removed from study records before analysis.
Institutional Review Board approval from the NYS Department of Health was obtained for
this study. The study was reviewed by the Office of Human Subjects Research at The
National Institutes of Health.
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Gene selection

We selected genes that regulate various aspects of limb development and for which there
was animal or human evidence that mutations caused LDs. Genes were not included if
mutations only produced other types of limb abnormalities such as curvatures, contractures
or extra digits. To maximize the number of genes surveyed, with two exceptions, we
excluded genes that would have required more than 20 haplotype-tagging SNPs (htSNPs) to
cover the gene.

A total of 14 genes involved in limb development were selected for study: SHH, WNT7A,
FGF4, FGF8, FGF10, TBX3, TBX5, SALL4, GREM1, GDF5, CTNNB1, EN1, CYP26A1,
and CYP26B1. Three genes judged to be important regulators of angiogenesis (VEGFA,
HIF1A, and NOS3) and three genes for which diagnostic testing of coagulation
abnormalities is clinically available (2, F5, and MTHFR) were also selected.

SNP selection

For each gene, the UCSC Genome Browser; assembly: Mar 2006 (NCBI36/
hg18);http://genome.ucsc.edu/; was used to visualize the gene and identify the region 5kB
upstream and 2kB downstream of the gene. htSNPs were selected within the defined gene
region. Genotype data for SNPs in the gene region, based on the HapMap CEU population
of northern and western European ancestry, were downloaded from HapMap Data Release
27 —Phase 11 + 111, Feb09, on NCBI B36. The Tagger program was used via Haploview
version 4.2 to select htSNPs with a minor allele frequency of >0.05 and r2<0.8 [Barrett,
2009]. For genes involved in coagulation abnormalities, rather than htSNPs, we genotyped
established functional variants associated with thrombophilia [Kupferminc et al., 1999]:
MTHFR677C>T (rs1801133), the Factor V Leiden mutation (F5rs6025), £5rs1800595
(4070A>G) representing the £5HR2 haplotype, and prothrombin 20210 G>A (F2
rs1799963). We used the SNPnexus database [Chelala et al., 2009] to determine the possible
functional consequences of SNPs that were associated with LDs in our analysis.

Laboratory Methods

Genomic DNA was extracted from 3 mm dried blood spot punches using a laboratory-
developed protocol for DNA extraction using sodium hydroxide precipitation described
previously [Mills et al., 2012]. At least 30 ng of the extracted DNA was whole-genome
amplified by KBiosciences (Herts, UK) using a primer extension pre-amplification (PEP)
method. To maximize the genotype call rate and to minimize potential errors introduced by
the whole genome amplification, for each subject, two amplifications were carried out and
the amplification products were each genotyped separately. SNPs were genotyped by
KBiosciences using KASPar technology (proprietary fluorescent-based competitive allelic
discrimination assays). Genotyping was initially attempted on 140 SNPs; results were
obtained on 126. Following selection of replacement htSNPs and redesign of some assays,
results for an additional six SNPs passed quality control checks. Overall, eight SNP assays
did not pass quality control measures of the genotyping facility and were dropped from the
study. High quality genotypes were obtained for 132 SNPs, in which call rates were >97%,
and no discordant genotypes were detected when comparing results from the two
independent amplification reactions or when repeat genotyping was performed on >4% of
the samples. Four cases and nine controls with low call rates (<20%) for all SNPs were
excluded from analysis, leaving a final study population of 389 cases and 980 controls.

Hardy-Weinberg equilibrium was tested among controls separately by race/ethnic group for
all 132 SNPs (p<0.000095 was considered significant based on correction for 528 tests).
WNT7A rs11128663 deviated significantly from Hardy-Weinberg expectations among non-
Hispanic black controls and was removed from analyses for all race/ethnicities combined
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and those restricted to non-Hispanic black infants. None of the other SNPs deviated from
Hardy-Weinberg equilibrium in any of the race/ethnic groups.

Statistical analysis

RESULTS

Genotype distributions overall and by race/ethnic group were calculated; the minor allele
frequency (MAF) was based on the controls overall. The main analysis included all race/
ethnicities (non-Hispanic white, non-Hispanic black, Hispanic, Asian, other) and all LD
phenotypes. Race/ethnic group-specific and phenotype-specific analyses were also
conducted. We used unconditional logistic regression to estimate odds ratios (ORs) and 95%
confidence intervals (ClIs). In analyses of all race/ethnic groups combined, adjusted ORs
were calculated with race/ethnicity included as the only covariate in the logistic regression
models. An unrestricted genetic model was employed in which two ORs were calculated,
one comparing the heterozygous genotype to the homozygous major allele genotype
(reference) and the second comparing the homozygous minor allele genotype to the
homozygous major allele genotype. We corrected for 132 tests using the Bonferroni method
to adjust for multiple testing. Analyses were performed using SAS software, version 9.1
(SAS Institute Inc., Cary, NC).

Of the 389 infants with LDs on whom genotype data were available, isolated LDs were
reported for 301; the remaining 88 had multiple congenital anomalies (one or more
additional major anomalies of other organ systems). The type of LD was classified as
transverse (164; 42%), longitudinal (159; 41%), or intercalary (43; 11%). Twenty-three
(6%) were “unknown” because the type of deficiency could not be determined based on the
CMR description provided.

Maternal and infant characteristics were fairly similar between case and control infants.
There were lower proportions of multiple births and male infant sex among control infants
(Table I). Overall, 57% of case infant mothers were non-Hispanic white, 18% were non-
Hispanic black, 19% were Hispanic, 4% were Asian, and 2% were “other” race/ethnicity.
The race/ethnicity distributions by LD phenotype are shown in Table I1.

The genotype distributions overall and by race/ethnic group for each of the 132 SNPs
assayed are presented in Supplemental eTable I (see Supporting Information online).
Genotype frequencies often varied by race/ethnicity. For some SNPs, the major and minor
alleles were reversed for certain race/ethnic groups; however, the major allele among all
control infants was used as the reference allele for all analyses.

Logistic regression results overall and for race/ethnic- and phenotype-specific analyses for
each of the 132 SNPs tested are available in Supplemental eTables 1I-1V (see Supporting
Information online). In Table 111, the results for all race/ethnic groups and all phenotypes
combined are presented for SNPs for which a nominally significant result (p < 0.05) was
observed for one of the genotype comparisons. Adjusted for race/ethnicity, nominally
significant results were observed for EN1, FGF10, SHH, TBX5, VEGFA, and NOS3 SNPs.
The strongest findings were for FGF10rs10805683, FGF10rs13170645 and ENIrs893574.
Adjusted ORs for the heterozygous and homozygous minor allele genotypes were 1.49 (95%
Cl: 1.16-1.92; p=0.0017) and 1.88 (95% CI: 1.13-3.12; p=0.015) for FGF10rs10805683 and
1.47 (95% CI: 1.10-1.95; p=0.0089) and 1.83 (95% CI: 1.30-2.59; p=0.0006) for FGF10
rs13170645. For ENL rs893574, the adjusted OR (aOR) for the heterozygous genotype was
1.66 (95% CI: 1.16-2.38; p=0.0059) and the aOR for the homozygous minor allele genotype
was more elevated but nonsignificant due to the small number of homozygous individuals
(MAF = 5.0% among controls). Among non-Hispanic white infants, the associations with
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FGF10 SNPs remained significant after correction for multiple testing (Table 1V). The
estimates are as follows: 1.99 (95% ClI: 1.43-2.77; uncorrected p=0.000043, corrected
p=0.0057) for the FGF10rs10805683 heterozygous genotype, and 2.37 (95% ClI: 1.48-3.78;
uncorrected p=0.00032, corrected p=0.0422) for the FGF10rs13170645 homozygous minor
genotype. For both SNPs, estimates for two copies of the minor allele were farther from the
null than those for only one copy. In the four major racial/ethnic groups studied, linkage
disequilibrium between the two FGF10 SNPs was minimal to modest (D’=0.70-1.0,
r2=0.07-0.43). In the non-Hispanic white population, where the association of the FGF10
SNPs with LDs was the strongest, linkage disequilibrium was high (D’=0.98, r2=0.43).

Table IV presents results for SNPs for which a nominally significant result was observed for
at least one genotype comparison for any race/ethnic group. Among non-Hispanic white
infants, significant ORs were noted for CYP26B1, WNT7A, and FGF8 SNPs in addition to
genes associated with limb deficiencies in the main analysis (ENZ, FGF10, SHH, and
TBX5).

Among non-Hispanic black infants, there were a number of significantly reduced ORs for
SNPs in genes CYP26B1, ENI, WNT7A, TBX5, TBX3, and SALL4, along with one
significantly elevated OR for a WNT7A SNP. Significantly increased ORs were observed
for EN1, WNT7A, TBX5, GDF5, SALL4, VEGFA, and NOS3, along with a significantly
reduced OR for two WNT7A SNPs among Hispanic infants. Among Asian infants, several
significant associations with relatively high ORs (range: 5.6-39.6) were noted for one SNP
each in ENI, WNT7A, and TBX5, and two H/IF1A SNPs.

Table V presents results for SNPs for which a nominally significant result was observed for
the heterozygous and/or homozygous phenotype for at least one of the three LD phenotypes
examined. The aOR between SNPs and transverse limb deficiencies was significantly
reduced for one ENZ SNP and three WNT7A SNPs and increased for one ENZ, TBX5, and
TBX3SNP, four WNT7A SNPs and three FGF10 SNPs. Analysis of longitudinal LDs
showed significantly increased aORs in FGF10 (two SNPs), SHH, SALL4, VEGFA, NOS3,
and HIF1A as well as significantly reduced aORs in GREMZ1 and NOS3. Significant
positive associations were observed between FGF10, FGF4, and TBX5 (two SNPs) and
intercalary LDs, and significant negative associations were observed for 7B8X5and NOS3.
The two FGF10SNPs that were significantly associated with all LDs combined among non-
Hispanic white infants were nominally significant for the heterozygous and/or homozygous
variant genotype for both transverse and longitudinal LDs (all race/ethnicities combined).
None of the estimates from analyses restricted to specific LD phenotypes remained
significant after correction for multiple testing.

We observed that WIT7A rs3762721, rs9863149, and rs1946620 were associated with
transverse deficiencies and with all LDs among Hispanic infants. Therefore, we performed
an analysis of transverse deficiencies among Hispanic infants. We found that ORs for the
heterozygous and homozygous minor genotypes of WNT77A rs3762721, rs9863149, and
rs1946620 were 2.30 (95% CI: 0.83-6.33; p=0.1074), 5.27 (95% CI: 1.66-16.77; p=0.0049);
3.89 (95% CI: 1.38-11.01; p=0.0104), 7.92 (95% CI: 2.00-31.39; p=0.0032), and 2.47 (95%
Cl: 0.75-8.11; p=0.1358), 5.46 (95% CI: 1.65-18.07; p=0.0055); respectively.

No associations were observed between variant genotypes and LDs for CTNNBI or
CYP26A1 SNPs or any of the “coagulation SNPs” (MTHFR, F5, or F2) in the main analysis
or in race/ethnicity- or phenotype-specific analyses. An analysis excluding 39 cases for
which it was somewhat uncertain whether part of a limb was missing or just small in size
produced results similar to those for the main analysis (data not shown).
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DISCUSSION

Our strongest findings were for the FGF10rs10805683 and FGF10rs13170645 SNPs
among non-Hispanic white infants. Associations for these SNPs were statistically significant
following a very conservative correction for multiple testing. Moreover, nominally
significant findings were observed in all three LD phenotypes (transverse, longitudinal,
intercalary) for FGF10rs10805683 and for transverse and longitudinal deficiencies for
FGF10rs13170645 (ORs were elevated but not significant for intercalary deficiencies).
Modest linkage disequilibrium was observed between the two significant FGF10SNPs and
both are intronic. These htSNPs (located in intron 1) may be markers for one or more causal
SNPs or they may be in a regulatory region of the FGF10gene. We searched for variants in
nearby regulatory regions of FGF10because such variants could have functional effects and
may be in linkage disequilibrium with the htSNPs. None of 10 known SNPs within a 1097-
bp intron 1 enhancer region of FGF10[Golzio et al., 2012] were genotyped in HapMap, but
a SNP 334-bp downstream of the enhancer (rs1482679) is in perfect linkage disequilibrium
with the most significant FGF10 SNP, rs13170645 (HapMap CEU population). Both mouse
and human data support our findings and suggest that FGF10variants play a causal role in
limb defects. In fgfZ0null mutant mice, development of limbs, lungs and a number of other
organs is severely affected [Ohuchi et al., 2000; Sekine et al., 1999]. In humans, FGF10
mutations have been found in patients with lacrimo-auriculo-dento-digital (LADD)
syndrome [Milunsky et al., 2006].

For the genes involved in regulating limb development, we observed nominally significant
associations between selected ENI, FGF10, SHH, and 7BX5 SNPs and LDs in the analysis
of all race/ethnicities and all phenotypes combined. Associations emerged for additional
genes in race/ethnic group-specific analyses (CYP26B1, WNT7A, FGF8, TBX3, GDF5,
SALL4) and in analyses by LD phenotype (WNT7A, FGF4, TBX3, GREM1, SALL4). The
importance of each of these genes in limb development has been demonstrated in
experimental studies using vertebrate limb models [Barham and Clarke, 2008; Johnson and
Tabin, 1997].

Most of the variants tested in this study are common haplotype-tagging SNPs found in non-
coding regions of the genome; however, several in coding regions or that are predicted to
have functional relevance were nominally significant [Chelala et al., 2009]. For example,
CYP26B1rs2241057 codes for an amino acid change (p.L264S), and WNT7A rs12639607
results in a synonymous change (p.A105A). SNP rs3796316, downstream of the WNT7A
gene, and rs551510, in a 7BX3intron, are both in predicted transcription factor binding
sites. Three SNPs are in or near CpG islands (rs9309462 in a CYP26B1 intron, WNT7A
rs12639607, and rs6709773 upstream of £NI), and thus may be involved in regulation of
transcription. Several variants, including two that were significant in the overall analysis
(ENZ1rs3754855 and VEGFA rs3025040) are in conserved regions. SNP rs3825214 in
TBX5was found to be associated with electrocardiographic traits in one GWAS [Holm et
al., 2010]. Functional consequences of the other SNPs for which at least nominally
significant associations were observed remain to be determined.

A pilot study by Hunter [2000] measured various biochemical indicators of thrombophilia as
well as diagnostic mutations in MTHFR, F5, and £2among children with transverse LDs
and their mothers. A greater than expected number of children were heterozygous for the
MTHFR variant but no differences were observed for the homozygous MTHFR genotype or
variants in F5or £2compared with the prevalences in the general population; however, only
24 children were included in the study. Another study, by Carmichael et al. [2006a]
examined three SNPs also tested in our study: one SNP each for MTHFR, F5, and FZ.
Carmichael et al. observed an elevated OR for the F5rs6025 heterozygous genotype
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whereas in our study the OR was not significantly increased. Similar to our study,
Carmichael et al. [2006a] observed null results for the MTHFR SNP.

We observed a few associations in genes involved in angiogenesis (VEGFA, NOS3, and
HIF1A), none of which remained significant following correction for the total number of
SNPs tested in our study. High ORs were observed for the homozygous minor allele
genotypes of two H/F1A SNPs among Asians with ORs of 7.50 (95% CI: 1.53-36.71;
p=0.0129) and 39.59 (95% ClI: 3.90-401.49; p=0.00185). However, these estimates were
based on small numbers (17 cases and 46 controls). Despite an expectation that reduced
function of angiogenesis genes might contribute to transverse LDs in particular, via a
hypoxia mechanism, no associations were observed in an analysis restricted to transverse
LDs (all race/ethnicities combined).

There is good biological evidence to support our finding that CYP26B1 and WNT7A are
important in the causation of LDs. Retinoic acid levels affect various aspects of embryonic
development including limb development and the CYP26B81 enzyme degrades retinoic acid
[Pennimpede et al., 2010]. Further research on the implications of the amino acid change
caused by the CYP26B1 rs2241057 variant allele on enzyme function would be useful in
evaluating a causal role for this variant in LDs. For the WNT7A gene, seven nominally
significant findings were observed for transverse LDs. Based on findings of causal WN77A
mutations in syndromes with LDs of varying severity, along with gene expression study
results, Woods et al. [2006] suggested that in humans the W/N/T77A gene is important in
maintaining both the zone of polarizing activity (ZPA) and apical ectodermal ridge (AER)
[Woods et al., 2006]. Because we observed associations among Hispanic infants (all
phenotypes) and several of these SNPs, we conducted a subanalysis of WNT77A variants and
transverse limb deficiencies among Hispanic infants and found estimates farther from the
null for each of the three SNPs that were nominally significant in race/ethnic- and
phenotype-specific analyses. This subanalysis is based on small numbers but provides
support for WNT7A involvement in transverse limb deficiencies. Various WN77A SNPs
were nominally significant in all four race/ethnic groups, providing further suggestive
evidence for this gene.

We are aware of only one previous epidemiologic study of genes involved in angiogenesis
and limb deficiencies. Carmichael et al. [2006b] reported elevated ORs for the heterozygous
and homozygous NOS3rs1800783 genotypes and for the heterozygous NOS3rs1799983
genotype. Despite a much larger sample size (four times as many cases and controls), we did
not detect associations for either of these SNPs.

We used a Bonferroni correction for the 132 SNPs included in this study. We think this is a
fairly conservative correction given that each of the 14 developmental genes (104 htSNPs) is
known to regulate limb development and the remaining 6 (28 SNPs) play a role in
angiogenesis or coagulation. Given that we tested a priori hypotheses based on literature
pointing to the importance of these genes, even significant findings that did not survive
multiple testing correction provide suggestive evidence for genes and SNPs deserving
further study.

Strengths of our study are the large study population, the population-based design
(ascertainment of infants with non-syndromic LDs statewide and random selection of
unaffected infants from the same base population), and high-quality genotyping data.
Limitations of our study should also be noted. Despite the large number of cases overall,
there were relatively small numbers of subjects in some subgroups in analyses stratified by
race/ethnicity and phenotype. Population stratification is also likely to be an issue, especially
in the Hispanic sample. In addition, we selected htSNPs based on the allele distributions in
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the HapMap European population. Resources prevented selecting additional htSNPs to
adequately cover each gene for each race/ethnic group. Another limitation was that case
ascertainment was based on narrative descriptions of birth defects as reported by hospital
medical records personnel to the New York Congenital Malformations Registry. Classifying
cases by the type of LD was inexact if insufficient detail was reported.

CONCLUSION

Animal studies have shown that FGF10induces formation of the apical ectodermal ridge
and is necessary for limb development. Our data suggest that common variants in FGF10
increase the risk for a wide range of non-syndromic LDs. Future studies should focus on
identification of functional variants in linkage disequilibrium with the two FGF10 SNPs that
are responsible for the associations detected in this study; next steps would include
functional studies in relevant tissues. Our findings also provide suggestive evidence for
SNPs in other genes including CYP26B1 and WNT7A.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table |
Selected Char acteristics of Infantswith Limb Deficiencies and Control | nfants

Cases Controls
N=389 N=980
N* % N* %

Maternal age (years)

<20 39 10.0 78 8.0

20-24 73 18.8 176 18.0

25-29 97 24.9 252 25.7

30-39 164 42.2 434 44.3

40+ 16 4.1 40 4.1
Mater nal race/ethnicity

White non-Hispanic 221 56.8 543 55.4

Black non-Hispanic 69 17.7 180 18.4

Hispanic 75 19.3 191 19.5

Asian 17 4.4 46 4.7

Other 7 18 20 2.0
Maternal education (years)

<12 80 20.9 160 16.5

12 120 314 285 29.4

13-15 16 8254 215141 216166 22.217.1

17+ 46 12.0 144 14.8
Maternal prepregnancy BMIJr

<185 29 12.0 45 8.1

18.5-<25 129 53.3 298 53.6

25-<30 34 14.0 116 20.9

30+ 50 20.7 97 17.4
PIuraJityft

Singleton 368 94.6 956 97.6

Twin 20 51 23 24

Triplet 1 0.3 1 0.1
Infant sexi

Male 219 56.3 487 49.7

Female 170 43.7 493 50.3
Limb deficiency phenotype

Transverse 164 42.2

Longitudinal 159 40.9

Intercalary 43 111

23 5.9

Unknown§

Abbreviation: BMI=body mass index (weight in kg/height in m2).
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*

Total counts vary due to missing values for some variables
fData are missing for births occurring in New York City (147 cases and 424 controls).
F.

Chi-square p-value <0.05.

§Cou|d not be definitively classified by type of deficiency.
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