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Abstract

Microparticles (MPs) are small membrane-bound vesicles that arise from activated and dying cells and

enter the blood to display pro-inflammatory and pro-thrombotic activities. MPs are 0.1�1.0 mm in size and

incorporate nuclear, cytoplasmic and membrane molecules as they detach from cells. This process can

occur with cell activation as well as cell death, with particles likely corresponding to blebs that form on the

cell surface during apoptosis. To measure particle expression, flow cytometry allows determination of

particle numbers based on size as well as surface markers that denote the cell of origin; platelet MPs are

usually the most abundant type in blood. As shown in in vitro and in vivo systems, MPs can promote

inflammation and thrombosis resulting from their content of cytokines like IL-1 and pro-coagulant mol-

ecules like tissue factor. Certain particle types can be anti-inflammatory, however, suggesting a range of

immunomodulatory activities depending on the cell of origin. Studies on patients with a wide range of

rheumatic disease show increased MP numbers in blood, with platelet and endothelial particles asso-

ciated with vascular manifestations; increased numbers of particles also occur in the joint fluid where they

may drive cytokine production and activate synoviocytes. In autoimmune diseases such as SLE and RA,

MPs may also contribute to disease pathogenesis by the formation of immune complexes. MPs thus

represent novel subcellular structures that can impact on the pathogenesis of rheumatic disease and

serve as biomarkers of underlying cellular disturbances.
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Introduction

Microparticles (MPs) are small membrane-bound vesicles

that display potent biological activities that can have an

impact on normal physiology as well as the pathogenesis

of immune-mediated diseases. These particles range in

size from 0.1 to 1.0 mm and arise from activated or

dying cells. Although the majority of MPs in the blood

originate from platelets, virtually all eukaryotic cells,

including immune cells, appear to be able to release

MPs. Particle formation thus represents a fundamental

cellular response that affects the particle-producing cell

as well as the target cells with which the particle interacts

[1�4]. Originally considered as inert debris, MPs are now

known to display diverse pro-inflammatory and pro-

thrombotic activities that can influence the course of

rheumatic and other immune-mediated diseases [5]. As

such, the assay of MPs as biomarkers may illuminate

the operation of various pathogenetic mechanisms and

their impact on different tissues and organs.

As shown in studies in in vivo and in vitro systems,

intercellular communication involves signalling elements

whose dimensions vary enormously, extending from

small molecules (e.g. prostanoids, catecholamines and

cytokines) to large structures such as cells. Although

cells display surface proteins and glycoproteins that can

stimulate receptors, they can also form intimate contacts

with other cells, including synapses, bridges and con-

duits, to induce signalling and mediate information trans-

fer. MPs occupy an important place along this spectrum

since they are small enough to carry cytokines but never-

theless large enough to bind other cells to transfer mater-

ial and to present a surface for a facsimile of cell�cell

interaction.

Mechanisms of MP generation

MPs are important components of the extracellular milieu,

including the blood. Although MPs have features of cells
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(i.e. membrane-bound structure), they are much smaller in

size and have an incomplete array of the various ‘omes’

(e.g. proteome) that comprise a cell [6]. These particles

can arise from cells undergoing activation or apoptosis,

detaching from the membrane as formed structures. In

addition to MPs, another particle type called exosomes

can be released from cells [7]. Exosomes are smaller

than MPs (50�100 nm) and are produced through exocyt-

osis of multivesicular bodies. Whereas exosomes are gen-

erated internally, MPs form at the cell surface; these

particle types can therefore differ in their constituent mol-

ecules (e.g. tetraspanin proteins for exosomes). MPs have

also been called microvesicles and ectosomes.

While cell death is an important setting for particle re-

lease, MP formation appears distinct from the generation

of apoptotic bodies. Apoptotic bodies are the collapsed

remains of apoptotic cells as well as large subcellular

fragments that detach from cells as death proceeds.

Apoptotic bodies are much larger than MPs and have a

significant content of nuclear material. Whereas apoptotic

bodies form during the late stages of apoptosis, MPs can

be released during the early stages of this process [4, 8].

Despite differences in their size and time course of pro-

duction, MPs and apoptotic bodies both arise from pro-

cesses that disassemble a cell to facilitate phagocytosis

and safe removal of any immunostimulatory material that

may be produced during cell death. In contrast to the

large dimensions of apoptotic bodies, the small size of

MPs may allow them to avoid phagocytes and to translo-

cate into the extracellular milieu to mediate signalling at

local and distant sites.

As shown in in vitro systems, MPs may originate during

apoptosis from a membrane bud or bleb that detaches

from the cell following stalk fission [9�10]. The formation

of a bleb, which can resemble a bubble, involves nucle-

ation, expansion and retraction steps that are mediated by

phosphorylation of the myosin light chain [11, 12]. The

function of blebbing (and subsequent particle release) is

not understood, although this process may regulate cell

volume during apoptotic shrinkage; particle formation

may also help detoxify cells as deleterious substances

(including chemotherapeutics or activated caspases) are

packaged for removal [13, 14]. Importantly, while hun-

dreds of blebs form on the cell surface during apoptosis,

only a few MPs are released by each cell. In addition to

cell death, particle release occurs during cell activation.

Platelet activation leads to abundant particle production,

although platelet MPs in the blood may also originate from

megakaryocytes. Among triggers of platelet activation,

elements of the extracellular matrix can interact with the

collagen receptor glycoprotein VI, a process that can

occur in the synovium [15, 16].

In the context of immune-mediated disease, stimulation

by TLR ligands and other activating signals can generate

particle formation. Thus, as shown in in vitro systems

using RAW264.7 or THP-1 cells as models for macro-

phages, stimulation of TLR 4 by lipopolysaccharide

(LPS) can induce particle production; for RAW264.7

cells, this process depends on nitric oxide [17, 18].

Since particles emanating from stimulated macrophages

resemble MPs from apoptotic cells in properties, their

origin may reflect a similar mechanism despite the seem-

ingly disparate setting (i.e. activation and apoptosis). As

now recognized, TLR stimulation can lead to apoptosis via

activation-induced cell death, a process that may be im-

portant to host defence. Thus cell death can abort infec-

tion by destroying the reservoir for replication of infective

agents; cell death can also promote immune system ac-

tivation via the generation of danger molecules and immu-

nostimulatory MPs (see further). In this scenario, particle

release may result from those TLR-stimulated cells that

are undergoing cell death, suggesting that the mechan-

isms of particle release would be similar to those operat-

ing during apoptosis. Fig. 1 illustrates mechanisms for

particle release from nucleated cells.

Composition of MPs

Reflecting their cellular origin, MPs contain a wide array of

surface, cytoplasmic and nuclear molecules that are

incorporated into a membrane-bound structure as the

particle leaves the cell; in addition, MPs can contain

small-molecule metabolites (e.g. taurine) present in the

cell cytoplasm [6, 19�22]. The particle structure may be

dynamic, however, with membrane permeability allowing

an exchange of molecules between the particle interior

and the surrounding milieu; serum proteins can also

bind to the MP surface. Thus proteomic studies demon-

strate the presence of immunoglobulin as well as comple-

ment components in particle preparations. These serum

molecules could bind to particles after particle detach-

ment from cells, although they may also deposit on the

surface of damaged cells. In this situation, release of

membrane regions containing antibody and complement

could represent a protective strategy to remove mem-

brane attack complexes that could threaten the cell with

lysis [23].

Of MP components, those on the cell surface are the

most notable since they allow detection by flow cytome-

try. As a common feature, particles expose phosphatidyl-

serine (PS), a consequence of membrane flipping. PS

normally exists on the inner membrane leaflet, with asym-

metry maintained by a trio of enzymes called flippase,

floppase and scramblase; during apoptosis, this process

is inhibited and PS translocates to the outer membrane

leaflet. Not all particles are annexin V-positive, however,

suggesting either heterogeneity in the mechanism of pro-

duction or the presence of PS at concentrations below the

limits of detection. The surface of particles also contains

membrane molecules from the cell of origin (e.g. CD14 for

macrophages, CD61 and CD41 for platelets, and CD62E

and CD144 for endothelial cells). Although there is only

limited information on the particle proteome, studies on

platelets and macrophages suggest heterogeneity in its

composition, depending on particle subtype as well as

mechanism of production [22]. In addition, since particles

may emerge preferentially from regions of the membrane

containing lipid rafts, the content of membrane proteins

may differ from that of the overall membrane [24].
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Among particle components, cytokines are important

for their potential role in the induction of immune re-

sponses by particles. Thus MPs released by the THP-1

monocyte cell line stimulated by adenosine triphosphate

contain very high concentrations of IL-1b [25]. IL-1b also

occurs on MPs from dendritic cells as a result of stimula-

tion of the PX27 receptor in a calcium-dependent process

[26]; platelet MPs can express both IL-1a and IL-1b [13].

The expression of a cytokine on a particle surface may

enhance its action since the cytokine can act in the con-

text of a surface with other receptor ligands [13]. These

observations suggest that immune activation in the setting

of cell death may originate from complexes, aggregates or

particles that concentrate immune mediators, generating

powerful signalling by the simultaneous receptor

interaction.

MPs have a prominent role in haemostasis, reflecting

their display of tissue factor [27�29]. In addition, par-

ticles express other molecules that can affect clotting,

including von Willebrand factor multimers, which can pro-

mote the stability of platelet aggregates, and p-selectin

glycoprotein, which interacts with tissue factor and medi-

ates binding to platelets and neutrophils [28]. Among par-

ticle types, endothelial MPs express adhesion markers

(i.e. e-selectin as well as intercellular adhesion molecule

1), which can lead to binding and activation of leucocytes

and monocytes.

Along with membrane and cytoplasmic constituents,

MPs contain nuclear molecules, and in this respect re-

semble apoptotic bodies [30, 31]. In one of the most pro-

found cellular changes during apoptosis, molecules from

the cell nucleus transit through the cytoplasm to relocate

in blebs [32]. Whereas the mechanism mediating this cel-

lular rearrangement is not known, the end result is the

repositioning of nuclear constituents in a form that may

be more accessible to the immune system, either on the

surface of blebs on the dying cell or on the released MPs.

As shown with cell lines undergoing in vitro apoptosis,

MPs contain DNA and RNA, including mRNA, rRNA and

miRNA [31]. The DNA in the MPs shows a broad size dis-

tribution and, while high molecular weight species are pre-

sent, cleaved DNA with laddering occurs prominently. Of

note, the DNA in particles is accessible to antibody bind-

ing, reflecting either surface location of this molecule or a

very porous structure [31]. Accompanying the DNA, par-

ticles can contain histones and other nuclear proteins [30].

The presence of RNA in particles has suggested a role in

information transfer, especially with miRNA, which has

regulatory activity.

Assay of particles

MPs represent unique biomarkers since they provide in-

formation related to the activation and death of specific

cell populations. Importantly, particles in the blood can

originate from tissues that would otherwise be difficult to

sample without biopsy; particle expression in the blood

can also be readily sampled on multiple occasions to

assess events in pathogenesis over time. For this pur-

pose, flow cytometry [fluorescence-activated cell sorting

(FACS)] provides a sensitive and flexible platform to meas-

ure particles, although biochemical determinations of mo-

lecular components (i.e. protein, PS, nucleic acid) can

allow enumeration in isolated preparations. Assays of

functional activity (i.e. tissue factor) have also been used

for certain particle subpopulations [33�35].

FACS analysis is very informative, although the small

size of particles can present technical challenges.

Indeed, since particles can be 10�100 times smaller

in diameter than a cell, their surface area can be up to

FIG. 1 Mechanism of MP release by nucleated cells. The figure illustrates the two main mechanisms for the generation

and release of MPs from nucleated cells and differences in particle composition. During activation of cells, blebs (shown

as small circles) form at the cell surface and undergo release; since the cell is otherwise intact, the released MPs do not

contain nuclear components. In contrast, during apoptosis, the cell undergoes drastic changes, including shrinkage,

nuclear fragmentation and migration of nuclear constituents into blebs that form at the cell surface. MP release usually

occurs during the later stages of apoptosis. As such, MPs can contain nuclear components that are shown in the darker

blue. MPs differ from apoptotic bodies that are the collapsed remains of apoptotic cells.
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104 times less, limiting detection of surface markers. Inter-

estingly, immune complexes can appear as particles by

flow cytometry, but the formation of particles of this size

range may depend on the nature of the antigen and stoi-

chiometry of immune reactants [36].

For FACS analysis, MP measurement from biological

samples (e.g. blood, effusions) usually involves centrifu-

gation steps to remove cells (including platelets) and

debris. Whereas particles can be analysed in such prep-

arations by establishing gates to delimit objects of particle

size, high-speed centrifugation can pellet the MPs

for more direct analysis. Important issues in particle

analysis concern conditions for blood drawing (e.g. the

anti-coagulant) and subsequent handling and storage

(e.g. duration and temperature); importantly, freezing-

thawing may alter MP counts and phenotype [34, 37]. At

present there is no single procedure accepted as a stand-

ard for the preparation of MP analysis [4]. Fig. 2 depicts a

FACS profile of a culture supernatant of cells undergoing

apoptosis, indicating the size distribution of MP cells com-

pared with marker beads.

Total MPs can be measured in a sample by light scat-

tering, although standard flow cytometers have a detec-

tion limit of �0.2 mm; as such, instruments may not be

able to discriminate smaller MPs from the background

noise. Furthermore, instruments can differ in size reso-

lution [38], although defined size beads can serve as ref-

erence points for measurement. As in the case of cells, the

measurement of cell surface markers forms the mainstay

of FACS analysis. Of reagents for these markers,

fluorescently labelled annexin V can bind PS on the MP

surface [39]; annexin V staining, however, may also result

from the loss of particle membrane permeability that per-

mits access of annexin V to internal sources of PS.

Whereas annexin V binding is often used to identify par-

ticles, a significant proportion of the MPs in a sample may

be annexin V negative [40, 41]. For determination of par-

ticle subpopulations, cell surface markers allow identifica-

tion and quantitation, although marker density must be

sufficient to allow detection.

The presence of nucleic acids provides another means

to measure MPs by cytometry using dyes (e.g. SYTO13)

that interact with DNA and RNA [31, 42]. This approach

works best for MPs from nucleated cells and can allow

detection of particles smaller than those seen by light

scatter alone. The use of nucleic acid-binding dyes can

provide information on the cell of origin of particles since

those from nucleated cells (e.g. lymphocytes or mono-

cytes) have much greater nucleic acid content than

those from platelets.

Biological properties of MPs

MPs display important biological properties that can

impact on many different diseases, serving as potentially

important mediators of disease pathogenesis; indeed, in

their use as biomarkers, MPs can provide important infor-

mation about ongoing pathogenetic processes that would

be valuable clinically for assessing disease activity and

predicting the likelihood of certain events. In many

respects, MPs are like alarmins or death- or damage-

associated molecular patterns (DAMPs). Alarmins are a

diverse group of molecules, both large and small, that

emanate from dead and dying cells to induce inflamma-

tion, promote chemotaxis and potentiate immune re-

sponses [43]. Although certain preformed cytokines can

be classified as alarmins, DAMPs represent molecules

whose immunological activity results from degradation,

post-translation modification (including redox state) or ex-

posure during cell death. A close relationship between the

activity of DAMPs and MPs is likely since they are pro-

duced concomitantly by dead and dying cells and, further-

more, MPs can contain DAMPs.

Whereas the activity of DAMPs and alarmins is usually

conceptualized in terms of single molecules, there is

increasing evidence that the activity of molecules like

HMGB1 reflects its formation of complexes with cytokines

(e.g. IL-1), other DAMPs (e.g. DNA) or pathogen-asso-

ciated molecular patterns (e.g. LPS or endotoxin). As

such, the immune activity of some alarmins may result

from either their capacity for assembly into complexes

or their disposition in a structure like MPs that can contain

cytokines and other DAMPs [44�47]. In this model, MPs

provide a framework or nanostructure to intensify or even

unmask the activity of the component molecules. At

FIG. 2 Size distribution of MPs by flow cytometry. Jurkat

cells were treated with 1 mM staurosporine for 18 h to

induce apoptosis. The culture supernatant was analysed

by flow cytometry by side scatter (SSC), as depicted in the

filled profile. The size of the MPs and cells (indicated in the

filled peaks) was determined by reference to fluorescent

microspheres (Fluorospheres, Size Kit #2, Invitrogen,

Carlsbad, CA, USA) of 0.1, 0.5, 1.0 and 2.0 mm sizes

(dotted peaks). The first filled peak, comprising the MP

fraction, is indicated by the horizontal gate. The second

filled peak beyond the horizontal gate comprises the

Jurkat cells. The FACS instrument was calibrated using

diluent alone to ensure that no background events were

detected by side scatter.
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present, most studies of MPs use preparations that have

not been rigorously analysed in terms of components like

cytokines or DAMPs that may contribute to immune

activity.

Studies on the immune properties of MPs have gener-

ally utilized preparations obtained from cells or cell lines

undergoing in vitro activation or apoptosis, although some

studies have employed MPs isolated from blood or tissue

lesions (e.g. atherosclerotic plaques). These studies have

demonstrated that MPs can, in an autocrine and paracrine

way, stimulate a wide array of cell types, with endothelial

cells, macrophages, dendritic cells and synovial fibro-

blasts among others responding to this type of activation.

Importantly, this stimulation can lead to the generation

of cytokines and chemokines, which can further intensify

inflammation [48�58].

In general, these responses are pro-inflammatory in

nature and are consistent with the function of MPs as a

mega-DAMP that can promote host defence, on the one

hand, or potentiate autoimmunity or inflammation, on the

other. These responses involve activation of NF-kB and

downstream signalling pathways such as the mitogen

activated protein (MAP) kinases. In general, stimulation

requires only a few particles per responding cell, highlight-

ing the potency of this form of stimulation. It is important

to note that, depending on the cell of origin and inducing

triggers, MPs can also have anti-inflammatory activity,

suggesting that the component molecules influence the

activity of the overall structure [59]. Table 1 lists the activ-

ities of MPs.

Given their origin and composition, MPs can stimulate

cells by diverse mechanisms, including the transfer of

molecules such as receptors or mediators such as arachi-

donic acid that have intrinsic immune-activating proper-

ties [60�62]. The process of this transfer is not well

understood, although MPs may interact with target cells

either by fusion or engulfment. The molecules mediating

these contact events can vary depending on particle and

cell type and can include complement components on the

particles that can bind to the CR2 receptor [63]. In other

settings, the transfer of molecules between immune cells

can occur by a process called trogocytosis (from the

Greek trogo, to gnaw) in which cells accept membrane

and cytosolic material from other cells [64, 65]. Such a

transfer can alter the properties of the accepting cell, for

example, by increasing the concentration of a down-

stream mediator of signal transduction, a regulatory

RNA or even a new cell surface receptor. Whereas trogo-

cytosis has usually been considered as a form of cell�cell

interaction, it may also occur with MPs and account for

some of their actions. In addition to stimulating inflamma-

tion, MPs can promote thrombosis because of their dis-

play of tissue factor as well as a membrane structure that

allows assembly of pro-coagulant complexes.

As described above, MPs have a significant content of

nucleic acid and represent an important source of extra-

cellular nucleic acids [31, 42]. Whereas DNA in the blood

exists in both a particulate and non-particulate form, most

of the RNA circulates in the form of particle, likely because

the membrane structure protects the RNA from nuclease

activity. The presence of nucleic acids in particles sug-

gests two distinct possible activities for these structures.

The first is stimulation of cells via internal nucleic acid

sensors, including the Toll-like receptors (TLRs). These

TLRs include TLR3 for dsRNA, TLR7 for ssRNA and

TLR9 for DNA. Since nucleic acids in particles may have

access to these receptors following transfer from MPs,

they could potentially activate programs for innate

immune responses. Interestingly, the presence of nucleic

acids in liposomes or other transfection agents can dra-

matically boost their immune activity, although an analo-

gous activity of nucleic acids in particles has not been

established [66]. Finally, MPs may affect the function of

the target cell with which it interacts by transfer of infor-

mational nucleic acids, with mRNA and miRNA both pre-

sent in particles and capable of inducing new genomic

responses [67]. Transfer of informational RNA occurs

with exosomes and seems plausible with MPs. Table 2

presents activities of MPs relevant to pathogenesis of

rheumatic disease.

The role of MPs in rheumatic disease

Studies on patients with a wide variety of rheumatic and

non-rheumatic diseases have demonstrated significant

elevations in particle numbers compared with those in

control populations, thus supporting the use of MPs as

biomarkers. These elevations are most notable with con-

ditions with a strong vascular component and primarily

involve platelet MPs, although elevations of MPs from

endothelium, among other cell types, have also been

documented [68�78]. The association of elevations of MP

numbers with diseases of the vasculature is consistent

with the origin of particles from activation of platelet and

endothelium as well as the ability of particles to promote

thrombosis and activate endothelium [79]. MPs can also af-

fect angiogenesis and circulating endothelial cell precur-

sors, extending particle effects on the vasculature [80].

TABLE 1 Biological activities of MPs

Activation of NF-kB and MAP kinases

Induction of cytokines and chemokines

Up-regulation of adhesion molecules
Display of tissue factor

Information transfer (receptors, mediators and nucleic
acids)

TABLE 2 Role of MPs in rheumatic disease

Modulate inflammation

Endothelial cell activation
Fibroblast activation

Coagulation

Immune complex formation
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In some situations (e.g. infection or systemic autoimmune

disease), elevations of MPs from lymphocytes, monocytes

and granulocytes also occur, likely reflecting the activation

of these cell populations during inflammation and innate

immune responses. There have been few studies on the

clearance of particles from the blood, although, as noted,

serum proteins can bind to particles to promote phagocyt-

osis while the enzyme phospholipase A2 may degrade

particles [73]. It is not clear therefore whether elevation

of particle numbers results from increased production or

impaired removal.

Elevation of particle numbers in blood occurs in RA, SLE,

APL syndrome, vasculitis and progressive SSc (PSSc), all

conditions characterized by both immune system activa-

tion as well as vascular abnormalities including thrombosis.

The expression of MPs can also occur in SF; since MP

levels can far exceed those of blood, these findings sug-

gest intense local generation in the synovial microenvir-

onment or even preferential localization or trapping of

circulating MPs [16]. The particles in SF may have an im-

portant role in synovitis by promoting coagulation; particles

can drive synovial fibroblasts to produce MMPs as well as

chemokines by a mechanism dependent on NF-kB [52, 53].

In addition to their role as pro-inflammatory and

pro-thrombotic mediators, MPs may contribute to the

pathogenesis of rheumatic disease by the formation of

immune complexes. Thus particles from patients with

RA and SLE may have increased concentrations of IgG

on their surface, with studies on particles in RA also show-

ing increased levels of complement components [81, 82].

Furthermore, studies using both mAbs as well as patient

plasma indicate that anti-nucleosomal antibodies can

bind to particles generated in vitro by apoptotic cells

(Fig. 3). Since these particles contain DNA and other nu-

clear antigens, these findings suggest that particles can

serve as a nidus for immune complex formation by bind-

ing of ANAs; the specificity of the antibodies from RA

blood binding to particles is not known. It is possible,

however, that the presence of antibodies on the particle

surface may result from interaction with Fc receptors on

certain particles rather than binding to exposed nuclear

antigens. The impact of antibodies on particle trafficking

as well as their deposition in sites such as the kidney is

not known, although complexes built with particles as

opposed to soluble antigen could have distinct activities

in terms of pathogenicity or nephritogenicity.

Although the correlation of increased particle numbers

with disease suggests a role in immunopathogenesis, elu-

cidating this role is difficult at present. In this regard, stu-

dies have suggested that increases in particle numbers

are not invariable among rheumatic diseases, and further-

more, may show a paradoxical relationship to disease

activity. Thus, in patients with PSSc, particle numbers

were inversely correlated with skin thickness, whereas,

in a study of patients with SLE, overall particle numbers

were decreased compared with controls [72, 77]. These

discrepancies could occur if particles in the blood or

tissue were bound to other cells or even to each other

to prevent detection by flow cytometry. Furthermore,

as noted above, there is evidence that certain MP subpo-

pulations may have anti-inflammatory activity, with the

overall mix of particles determining clinical outcome.

Delineating a specific role of MPs in immunopatho-

genesis can be complicated by their concomitant expres-

sion with other pro-inflammatory and pro-thrombotic

molecules, such as the DAMPs and alarmins. Since

approaches that would block particle production (e.g. cas-

pase inhibitors, kinase inhibitors) would also block the pro-

duction of these other immune activators, distinguishing

the contributions of MPs in an animal disease model, for

example, may not be possible. Interestingly, studies in

animal models of malaria have suggested that certain

agents can block particle production and clinical disease,

although interpretation of these studies is difficult given the

potentially broad activity of these agents [83, 84]. Finally,

although an agent like anti-IL-1b may work by blocking the

activity of particle IL-1b, it could also inhibit IL-1b in a

non-particulate form, preventing a more precise delinea-

tion of the specific contribution of the particle. In this

regard, the activity of cytokines like IL-1b on the surface

of a particle may be more difficult to inhibit than when the

cytokine is free, limiting certain anti-cytokine therapies.

The role of MPs as biomarkers

As these considerations suggest, MPs may represent

novel biomarkers whose measurement can reveal the

state of tissues involved in disease pathogenesis. While

elevations of either total MP numbers or those of different

MP subtypes may not be specific for different diagnoses,

nevertheless, MP measurement may help delineate the

state of target tissues in disease, especially the vascula-

ture, by simple and non-invasive blood tests; in addition,

MP measurement may provide insight into events (e.g.

immune cell activation) that may involve only a limited

population of cells in the blood or the tissue. Such data

may be useful in longitudinal patient assessment and the

evaluation of new and existing therapies that may poten-

tially affect multiple cell types. Due to technical issues with

current analytic approaches, MP measurement is not yet

routinely performed in the clinical setting, although, with

improvements in assays, MP measurement may be incor-

porated into a portfolio of assays to characterize events in

pathogenesis that may impact on disease course, treat-

ment response and prognosis.

Summary

MPs, originally conceptualized as inert debris from cell

death, are now viewed as an essential outcome of a

well-regulated process that can generate potentially

powerful disease mediators. Importantly, particles

appear to act at low numbers, with only a few particles

capable of driving responding cells to activation and the

production of pro-inflammatory mediators. Although MPs

have properties suggesting a key role in the pathogenesis

of rheumatic disease, evidence for this possibility comes

primarily from model studies as well as observations

on increases of particle numbers in the blood of patients.
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As interest in particles increases, studies in animal models

as well as patients should provide more decisive evidence

of their pathogenicity in rheumatic diseases and provide

new approaches to understand the role of these fascinat-

ing biologic structures in normal and aberrant immunity

and their utility as biomarkers to reveal key events in

immunopathogenesis.

Rheumatology key messages

. MPs are small vesicles released by activated or
dying cells.

. MPs have pro-inflammatory and pro-thrombotic
activities.

. MPs represent novel biomarkers.
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