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Abstract The importance of changing patterns of
obesity in society and its implications for public health
are well recognized. However, the adult life course of
body mass index (BMI) changes in individuals over time
is largely unknown and has mostly been extrapolated
from cross-sectional studies. The present study examines
individual specific variation of BMI during a 15-year
follow-up period in a community-based sample of UK
females. We attempted to establish whether there is a
common, generalized pattern which captures variation in
BMI over time. The participants of this study belong to a
prospective population cohort of British women studied

intensively since 1989: the Chingford Study. The sample
originally consisted of 1,003 women aged 45–68 years,
who were assessed annually for BMI during follow-up
period. Polynomial regression models were used to
assess longitudinal BMI variation. We observed a great
stability in individual BMI variation during the follow-
up period, reflected by high correlations between the
baseline BMI and follow-up BMI 10 and 15 years later
(r=0.876, N=810, and r=0.824, N=638, respectively).
We also found that three different major age-related
patterns in BMI could be clearly identified: no change
in 30.6% in 58% it increased and in 11.4% it decreased
with age. Thus, our data suggest that individual age-
related changes in BMI are very different. Therefore,
simply combining all individuals into groups by any
other criteria (age, sex, etc.) and overlooking the
distinctive patterns of BMI change may lead to biased
inferences in epidemiologic and etiologic research of
the future.

Keywords BMI . Follow-up, curve fitting . Age-
dependent patterns . Longitudinal .Weight gain

Introduction

Currently, it is clear that all body composition
components, including adipose tissue and obesity,
experience very substantial age- and generation-
related changes. Obesity is one of the most widely
spread problems with major public health implica-
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tions in the developed countries all over the world
(Obesity and overweight 2010). Some 60% of the
adult population of North America and Australia is
currently classified as overweight and obese (body
mass index, (BMI)≥25 kg/m2; Torrance et al. 2002;
Cameron et al. 2003; Ogden et al. 2006). A similar
situation occurs in UK and other European countries
(Statistics on obesity 2010; International Obesity Task
Force 2009; Diouf et al. 2010) and even in China and
many developing countries (Wang et al. 2007; Grujic
et al. 2010). Because of its high prevalence, and
increased risk for cardiovascular disease and other
types of morbidity, many risk factors for obesity have
been explored (St Jeor et al. 2004; Nooyens et al.
2008). BMI is the commonest measure to assess
cross-sectional obesity and because of its simplicity
and correlation with many other measures of body
mass. However, the majority of studies were undertak-
en using a cross-sectional approach and studies of
longitudinal modeling of BMI over considerable lengths
of time are rare. There are some studies considering
BMI age-dependent changes in childhood (Aires et al.
2010), from childhood into adulthood (Kvaavik et al.
2003), and in a variety of clinical conditions
(Gustafson et al. 2004). However, there is a paucity
of longitudinal studies analyzing age-related patterns in
BMI changes in an adult general population.

There are several longitudinal studies focused on
tracking BMI in relation to individual age, sex, and
other potential predictors (St Jeor et al. 2004; Kvaavik et
al. 2003). Although these and other studies used quite
sizable samples, they are, as a rule, considered mean
trends observed in subgroups defined by sex, age,
BMI, or other characteristics of interest, but they were
not compared with individual patterns. The present
study examined a large community-based sample of
middle-aged British women who have been studied
intensively for osteoarthritis, osteoporosis, and other
traits since 1989 (e.g., Hassett et al. 2003; Zhai et al.
2008; Livshits et al. 2009). The participants of the
study were assessed almost annually for BMI over
15 years while measuring many other co-factors, and
thus providing us with rare opportunity to examine
individual age-related patterns in BMI variation.

It has been long time accepted in gerontology that
aging and age-related changes are highly individual
phenomenon. It is also commonly accepted that
longitudinal study is the only direct method to determine
how many individuals in the population maintain stable

functional abilities over time, how many improve, and
how many deteriorate. The major aim of the present
study was, consequently, to examine the individual
variability of age-dependent changes in BMI and to
establish whether there is/are common, generalized
pattern(s) similar, for example, to the charts reflecting
childhood growth.

Material and methods

Sample

The participants of this study were taken from the well-
established prospective population cohort of middle-
aged British women studied intensively since 1989
within the framework of the Chingford Study. The
sample originally consisted of 1,003 women aged 45–
68 years, selected through General Practitioner records.
The cohort has been followed annually, and many
clinical, anthropometric, psychosocial, radiological,
and metabolic variables have been recorded at least at
two time points. However, body weight and height were
recorded more frequently, so that up to ten sets of
measurements are available for the longitudinal analy-
sis. For each individual, the registered number of visits
corresponded to the number of the set. The date of each
individual visit was also registered. This enabled us to
determine the individual age at each measurement with
the precision of 1 day. The number of individuals
measured at each visit, varied from 1,003 (visit 1) to 638
(visit 15). For each weight (in kg) and height (in cm)
measurement, BMI (kg/m2) was calculated, so that
available data included 8,075 BMI values. To control
for the variation caused by the number of measure-
ments, we selected 752 individuals who had at least
eight measurements in the course of the study. To
examine whether there are differences between the
individuals included and not included in a follow-up
study, their BMI at entrance examination was com-
pared according to 5-year age cohort. The individuals
not included in a follow-up study tended to have higher
BMI, which reached statistically significant level (p=
0.004) in the oldest available age group, >60: 25.4 (SD=
3.65) vs 27.01 (SD=4.37), Supplementary Table 1.
They were also older in average [54.28 (SD=5.90) vs
55.89 (SD=6.22), p=0.003], which partly explained
the difference. It should be mentioned that surplus of
the overweight individual in the oldest group may
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introduce some bias in population-based inferences of
this study.

The data analysis

Polynomial regression modeling was used to assess age
dependence of BMI. Several models with increasing
degree of age derivatives (from constant to quadratic)
were tested, and the maximum likelihood estimates
(MLE) for model parameters were calculated for
each person separately. Using likelihood ratio test
(LRT), we compared the more complex models with
the hierarchically simpler model (e.g., quadratic poly-
nomial vs linear or linear vs. constant model) to choose
the most parsimonious (MP) and best fitting curve
for each individual. Preliminary review of the total
sample showed that BMI change fell into three main
categories: (a) age-dependent increment (INC), (b) age-
dependent decrement (DEC), and (c) no significant
changes in relation to age (CNST). However, as
illustrated in Fig. 1, each of the INC and DEC groups
can be in turn divided into three sub-categories: pure
linear, and two quadratic types, convex (having
maximum) and concave (having minimum) fitting
curves. In total, it gives seven types of BMI change
pattern. Quadratic model describe sloping regression
line: for example, growing convex model means that
there was a change of growing-up pattern of curve to
constant (or to decline), whereas growing concave
means that there was transition from constant curve
pattern to growth or decline.

For the entire follow-up period, each person was
characterized by initial age (AGEINI) and average BMI

Visit number

1 2 3 4 5 6 8 9 10 15

Sample size 1,003 813 663 854 821 834 841 808 810 638

Age mean 54.7 56.2 57.5 57.4 58.4 59.2 61.2 62.1 64.1 69.1

Age median 54.2 55.9 57.6 57.0 58.0 58.8 60.8 61.7 63.8 68.5

Age IRQ 10.9 10.3 10.4 10.8 10.9 10.7 10.6 10.5 10.7 10.0

Age minimum 44.6 45.6 46.4 47.4 48.4 49.4 51.4 52.3 53.5 59.8

Age maximum 67.9 69.1 70.0 70.7 70.9 71.7 73.6 74.9 77.6 81.9

BMI mean 25.61 25.75 25.96 26.12 26.32 26.65 26.73 27.05 26.78 27.22

BMI median 24.86 25.00 25.15 25.46 25.71 25.97 26.11 26.40 26.26 26.59

BMI IRQ 4.97 5.12 5.29 5.28 5.56 5.54 5.60 5.80 5.86 6.30

Number of visits attended by participant

1 2 3 4 5 6 7 8 9 10

Count of individuals 42 27 29 29 19 38 68 119 305 328

Table 1 Basic descriptive
statistics of the Chingford
Study sample

INCREMENT 

CONSTANT 

DECREMENT 

Growing linear

Growing concave
Transition from 

constant to growing

Declining linear

Declining convex
Transition from 

constant to declining

Declining concave
Transition from 

declining to constant

Growing convex 
Transition from 

growing to constant 

Fig. 1 The different main patterns of BMI age dependence
during the follow-up period in Chingford Study sample
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(BMIAV). We investigated the correlations between
mean age and BMI and found parameter estimates of
the best fitting curve. Since individual BMI variance
clearly increased with the mean BMI (heteroscedastic-
ity), we introduced the ratio of the specific individual
measurement (BMIij) to BMIAVas a measure of relative
magnitude of change (BMIREL). We examined also the
patterns and parameters of age dependence of BMIREL.

To test whether the BMI curve patterns depend on
BMI itself, we examined the distribution curve
patterns by WHO definition of weight (Haslam and
James 2005): (1) normal, with BMIAV<25 kg/m2; (2)
overweight, BMIAV=25–30 kg/m2; (3) obese, BMIAV
>30 kg/m2; and by four age groups (AGEINI≤
50 years; 51–55 years; 56–60 years; AGEINI>
60 years). Finally, we compared BMI fitting curves
generated using the cross-sectional data with the
above longitudinal fitting curves. The cross-sectional
curves were first obtained from the data for each of
the first five visits separately. The heterogeneity of the
cross-sectional curves by visit was tested by LRT.
Since the observed differences were not significant,
the data were combined together. Data analysis was
performed using the program MAN-2009.

Results

Cross-sectional data Table 1 provides the basic
descriptive statistics by visit number and gives sample
size available at each time point. Overall, mean BMI
increased significantly from 25.61 to 27.22 during the
follow-up (paired t test=6.88, p<0.0001), with
average age in the sample, 54.7 at first visit and
69.1 at visit 15. There is a highly significant
correlation (0.909, p<0.001) between the mean age
and mean BMI. However, the situation changes when
the individual BMI data for each of the five first visits
were contrasted with age in a cross-sectional manner
(Fig. 2). The relation between age and BMI was
curvilinear in all five groups; a quadratic equation
described the relation better then a linear equation did
(χ2=14.2, df=1, p=0.0002). The test for heterogeneity
of curve patterns among the five visits showed no
significant differences by LRT (χ2=14.8, df=12, p=
0.25). Mean age explained only a minor portion of the
visit-specific BMI variation, with multiple determina-
tion coefficient from maximal R2=0.011 (p=0.006) for
visit 1 to minimal R2=0.001 (p=0.73) for visit 3. This

was in agreement with virtually zero correlation (r=
0.01, p=0.77) observed between the mean values of
age and BMI.

Longitudinal data Figure 3 shows bi-plot of individual
BMI measurements vs the corresponding mean BMI
and, with just a few exceptions, suggests remarkable
stability of BMI during the follow-up period. Some
91% of the total sample BMI variation was attributable
to BMIAV, suggesting that only minor individual
fluctuations occurred during these years. Indeed the
correlations between the BMI at the entrance exami-
nation and 10 and 15 years later were high and
statistically significant (r=0.876, N=810, and r=0.824,
N=638 respectively, p<0.001 in both instances).

Figure 4 provides individual MP BMI curves
found using MLE approach. The curves were divided
into the seven main categories according to age-
dependent pattern of change (Fig. 1). Comparison of
the first and last available BMI measurement showed
that 57.9% had increasing BMI and in 11.4% BMI
declined. The upper part of Fig. 4 shows BMIREL
curves, the lower part shows unadjusted BMI curves.
For the same individual, both BMIREL and BMI curve
had the similar pattern. Each graph also shows the
mean curve for the given pattern. The observed age
dependencies included 30.6% of the individuals whose
MP curves were best approximated by constant (no age-

 50  60  70 
Age

 20

 30

 40
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I

Fig. 2 Cross-sectional BMI–age relationship for five first visits
in the Chingford Study sample. The data for different visits
shown by different signs. The most parsimonious and best
fitting quadratic function curves for each visit and in total
(bold) shown separately
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dependent changes) model (Fig. 4d). The rest showed
significant age-dependent trends: 34.0% exhibited
linear dependence (Fig. 4a, g) and 35.3% was
approximated best by the quadratic model, including
7.8% of concave curves (Fig. 4b, f) and 27.5% of
convex curves (Fig. 4c, e).

We next examined whether the pattern of BMI
curve depends on BMI and age of an individual.
Figure 5a shows proportions of three major curve
patterns, constant (no change), linear, and quadratic in
three mean BMI subdivisions. The figure suggests
certain dependence between the distribution of the
BMI curve types and mean BMI group and significant
inter-group heterogeneity (χ2=11.08, df=4, p=0.025).
The differences were caused by gradual changes in
frequency of each of the three main curve types. With
BMI increase, the proportion of the constant curves
diminished from 36% to 21% with parallel increase in
the proportion of linear and quadratic curves. Of
interest is also the observation that the percentage of
curves reflecting the increasing BMI (INC) enlarged
especially substantially in this direction (from 49% to
70%), while the proportion of declining BMI curves
(DEC) diminished (Fig. 5b). The heterogeneity test,
comparing the frequency distribution of these three
types of curves (INC, CNST, and DEC, according to
Fig. 1), was highly significant (χ2=25.95, df=4, p=
0.00003) and confirmed the above trend.

Comparing the BMI curves by age cohort revealed
a significant dependence between the two variables
(χ2=24.11, df=6, p=0.0005). As seen in Fig. 6, the
dependence was in particular strong with the propor-
tion of INC curves. It is gradually decreased from
63% among younger participants, AGEINI≤50 during
the follow-up period, to 46% among those who were
AGEINI ≥ 60. The percentage of BMI curves, having
CNST and DEC patterns tended to increase with the
age of the participants. However, the trend is not as
clear as with the INC curves. The consideration of
each of the seven types of curves in relation to mean
BMI and mean AGE is provided in the Supplementary
material.

Using the contingency tables we examined the
multivariate distribution of BMI curve patterns in
relation to three BMIAV categories and in two age
groups (GR1<55 vs GR2≥55, Table 2). Chi-square
test showed significant difference (p<0.001) in the
distribution of the proportions. The most prominent
differences were observed in the frequency of CNST
curves between younger and older individuals with
BMI>30, 16.5% vs 30.6%, and in the frequency of
DEC between younger and older individuals with
BMI<25, 11.4% vs 21.9%. Of interest also, INC
curves portion consistently increased with BMI, and
decreased with age.

Discussion

It is well established that obesity represents one of the
major risk factors for cardiovascular disease and a
huge variety of comorbidities (e.g., Lavie and Milani
2003), although the association may not be simple
(Lavie et al. 2009). However, there is almost complete
lack of longitudinal data concerning individual pat-
terns of age-related variation in obesity. Since BMI
represents a commonly accepted and widely used
measure of obesity, the major aim of this study was to
establish the general patterns of age-related change in
the middle-aged population. Our study is novel in that
it examines individual specific variation of BMI
during the 15-year follow-up period in quite sizable
community-based sample, 1,003 UK females, randomly
collected from the general population. Only individuals
with at least eight BMI measures were included. The
study revealed the following main findings:

 20  30  40 
BMI_av
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Fig. 3 Correlation of the individual BMI measurements with
average individual BMIAV for the entire follow-up period in the
total Chingford Study sample. The variance decomposition
analysis suggests that 9% and 91% of the total BMI variance
are attributable to intra- and inter-individual variation, respectively.
Correlation (r=0.49, p=0.0002) was found between the standard
deviation of the repeated individual BMI measurements and
individual average BMI
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(1) When mean BMI for different visits was compared,
they showed strong correlation with mean sample

age (Table 1), as expected from previous studies
(St Jeor et al. 2004; Sorkin et al. 1999).
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Fig. 4 Longitudinal changes in BMI in relation to age in Chingford Study sample. The results presented for seven types of relation as
defined in Fig. 1. For each type the upper graph shows relative BMI = BMI/BMIAV vs age, and the lower graph shows BMI in kg/m2
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(2) There is a great stability in individual BMI
variation over time (Fig. 3), which was reflected
in high correlations between the baseline BMI
and BMI 10–15 years later (r=0.876, N=810, and
r=0.824, N=638, respectively). This finding is in
accord with previous studies tracking BMI, de-
fined as a proportion of individuals maintaining
their relative position in the trait distribution during

the follow-up period (Mahoney et al. 1991). Thus,
for example, Wilsgaard et al. (2001), who had
16 years follow-up in a large Norwegian sample of
women and men aged 20–61 years, found a high
degree of BMI tracking (standardized regression
coefficients = 0.85 for men and 0.80 for women).
We find it interesting that when this study
computed a simple correlation between the first
and last surveys, their estimate, 0.80, in women
was very similar to ours. Very similar tracking
coefficients were obtained in even larger study
conducted in an Austrian sample (Ulmer et al.
2003). The remarkable finding of this study is that
the tracking coefficients (standardized betas) were
between 0.85 and 0.89, regardless of sex and age
cohort of the enrolled participants. Note finally,
even tracking of BMI from young age, showed
very substantial degree of correlation (r=0.54)
both in women and men (Kvaavik et al. 2003),
contrary to the growth of very young children
(Chivers et al. 2009). These findings are also in
good agreement with familial studies of BMI
heritability, which showed consistently substantial
and significant estimates of the putative genetic
effects on BMI variation in adults (Livshits et al.
1998; Manek et al. 2003).

(3) Despite such an age-related stability, BMI of only
30.6% of the sample showed no age-related
changes at all (Fig. 4d). The BMI of the rest
varied with age and showed different patterns of
association (Fig. 4): BMI in some individuals
(∼58%) increased, but in others decreased with

0%
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40%

50%

60%

70%

80%

90%

100%

Age_ini<=50 51--55 56--60 Age_ini>60

Inc Const Dec

Fig. 6 Proportion of different types of the individual BMI
growth patterns divided in three categories, growing, constant,
and declining, in four AGEINI groups representing quartiles of
the age distribution in the total sample
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Fig. 5 a Proportion of
different types of most
parsimonious polynomial
models (quadratic, linear,
or constant) in three BMIAV
groups: normal, overweight,
and obese. b Proportion
of different types of the
individual BMI growth
patterns divided in three
categories, growing,
constant, and declining,
in three BMIAV groups,
normal, overweight,
and obese
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the age. The corresponding curves were simply
linear (Fig. 4a, g) or could be approximated by
quadratic function (Fig. 4b, c, e, f). The individual
parameter estimates within the curve category,
although significantly heterogeneous, still allowed
their inclusion into the particular class. This was
not the case when curves belonging to different
classes were compared. They were not compatible
by LRT. This is an important observation that
suggests that consideration of the average BMI
“growth” pattern in adulthood and elderly may
not be appropriate. As in the other studies
(Nooyens et al. 2008; Sorkin et al. 1999), when
we consider average BMI in the sample for the
given age, it shows significant increase with the
age (Table 1). Moreover, similar to other studies
(Nooyens et al. 2008; Ogden et al. 2004; Flegal et
al. 2010), when we examine our data as cross-
sectional collection (Fig. 3), they demonstrate
well-known patterns of BMI increase with age
until age 60–65 years and decline thereafter. We
observed this for separately taken five first visits
and for all combined. The average curves were
approximated by the same quadratic equation and
showed no significant heterogeneity when com-
pared. However, as seen in Fig. 4, this could also
be a misleading conclusion in light of profound
differences in the individual longitudinal patterns
of BMI variation.

(4) We saw significant differences in the frequency
distribution of different patterns of BMI curves in
relation to BMI and age at entrance examination or
in average (Figs. 5 and 6). The notable difference
was observed between the individuals with low
BMIAV, who demonstrated the lowest trend to
change, in comparison to obese individuals with
higher proportion of the BMI variation during the
follow-up. Almost 36% of the individuals with

BMIAV<25 showed no significant age-related
changes, as compared to only 21%, among those
with BMIAV>30 (Fig. 5a). Moreover, they had the
highest percentage, 70% of the INC curves vs
47% in lean group (Fig. 5b). Another interesting
observation is that BMI of younger people more
often increase (63% in AGEINI group ≤50) in
comparison to older individuals (46%, in AGEINI
group >60), who also more often diminish their
BMI then younger women (Fig. 6). The later
trend was also observed recently by Nooyens et
al. (2008) during 6 to 11 years follow-up study in
the Netherlands. They observed highest increase
in BMI over 11 years in the youngest group, aged
20–29 years at baseline (2.2 kg/m2), and lowest
increase in the oldest group, aged 50–59 years at
baseline (1.1 kg/m2). However, this longitudinal
study also did not consider the individual growth
curves and presented specific patterns in average
for differently defined cohorts. It means that there
is a probability that the individuals with opposite
growth patterns (INC vs DEC) were combined in
the same cohort. In this case, the observed
average trend would be biased to the extent of
intermixture of different BMI curve patterns. Our
study suggests a very substantial and highly
significant individual heterogeneity in BMI pat-
terns, regardless of the BMI and or age cohort at
baseline or in average. Thus the combination of
individuals in groups, even of similar age or BMI,
may be misleading as the opposite growth
patterns could be combined.

There are several limitations in this study. The major
ones include variety of ages at entrance examination and
therefore a variety of age segments were examined in
the same analysis. This is, however, an unavoidable and
common situation in all community-based projects.

AGE GR BMIAV GR N CNST INC DEC

AGEINI<55 BMI<25 185 71 (0.384) 93 (0.503) 21 (0.114)

BMI 25–30 160 41 (0.256) 111 (0.694) 8 (0.050)

BMI>30 79 13 (0.165) 58 (0.734) 8 (0.101)

AGEINI≥55 BMI<25 137 44 (0.321) 63 (0.460) 30 (0.219)

BMI 25–30 138 46 (0.333) 77 (0.558) 15 (0.109)

BMI>30 53 15 (0.283) 34 (0.642) 4 (0.075)

Total 752 230(0.306) 436 (0.580) 86 (0.114)

Table 2 Frequency
distribution of BMI age-
related curve patterns by
individual initial age and
average BMI during the
follow-up period

The numbers in parenthesis
show pattern frequency in
the given age/BMI category
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Another limitation is the dropout of participants during
the follow-up, which is also inevitable and inherent to
longitudinal studies. The most important drawback of
our study is probably the fact that participants were only
females, and we cannot make reliable inference for
males. Finally, it should be mentioned that although this
is apparently a healthy cohort, diabetes, hypertension,
and other potential morbidity were not taken into
account. Moreover, we did not test the effect of the
potential confounding factors, such as smoking, life-
style, etc., on the rate and pattern of BMI changes, nor
did we enquire about efforts to reduce calorific intake or
increase amount of exercise to facilitate weight loss.

Nevertheless, the results of this study are very clear
and of importance. They show that at the population
level, average BMI increases with age, as it is reported
in many other studies. However, the individuals fell into
a number of different patterns; from age-dependent
increase to no change during 15 years, or even a relative
decrease to baseline examination. The data suggest that
simply combining the individuals in group and
corresponding common adjustment for age affect may
lead to biased inferences and implies that individual
patterns should be taken into account when possible.

This in particular may be important when assessment
regarding the age-related changes of BMI as a risk factor
for vascular (and) other morbidity is considered. It is of
importance when influence of covariates, especially
genetic polymorphisms, on a pattern of BMI variation is
examined. To our knowledge, no study has classified
subjects into the groups on the basis of their individual
patterns. Consequently, additional studies are needed to
fully explore age-related patterns of growth of BMI and
other obesity-related phenotypes in adulthood.
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