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Abstract
Social decision making is arguably the most complex cognitive function performed by the human
brain. This is due to two unique features of social decision making. First, predicting the behaviors
of others is extremely difficult. Second, humans often take into consideration the well-beings of
others during decision making, but this is influenced by many contextual factors. Despite such
complexity, studies on the neural basis of social decision making have made substantial progress
in the last several years. They demonstrated that the core brain areas involved in reinforcement
learning and valuation, such as the ventral striatum and orbitofrontal cortex, make important
contribution to social decision making. Furthermore, the contribution of brain systems implicated
for theory of mind during decision making is being elucidated. Future studies are expected to
provide additional details about the nature of information channeled through these brain areas.

Introduction
Decision making can be understood as the process of selecting an option that is expected to
produce the most desirable outcome. In most cases, the predictions for the outcomes from
alternative actions are based on the previous experience of the decision maker. In addition,
decision making can be considered social, when its outcome depends jointly on the choices
of multiple decision makers. For animals living in groups, including humans and other
primates, purely individual decision making is rare, and most decisions are made in social
settings. This review focuses on recent neurobiological findings that have begun to shed
light on two important features of social decision making. First, predicting the outcomes of
different actions is difficult in social settings, as the actions of other decision makers change
more unpredictably than inanimate objects in the animal's environment. In this regard, the
ability to infer about the intentions and knowledge of other animals, referred to as the theory
of mind, is crucial. Second, social decision making in humans and other primates can be
influenced by other-regarding or social preferences. A central tenet in the classical game
theory is that decision makers, or players, choose their actions purely on the basis of self-
interest. However, the predictions of such classic game theory often fail to predict actual
human behaviors. Moreover, whether and how much the decision maker cares about the
reward given to others is affected by a variety of neural and social factors [1-3].
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Model-based reinforcement learning and social decision making
When humans and animals face an unfamiliar environment or their environment changes
unpredictably, their decision-making strategies will be adjusted accordingly. The
reinforcement learning theory provides a parsimonious account of this process for many
types of decision making [4], including social decision making. In this framework, the
likelihood of selecting each action is determined by a set of value functions that are adjusted
according to the animal's experience. Algorithms in the reinforcement learning theory can be
divided into two categories. In simple or model-free reinforcement learning, changes in the
value functions are driven by the actual outcomes resulting from the actions chosen by the
decision maker. In model-based reinforcement learning, value functions for multiple actions
can be changed simultaneously and more flexibly according to the internal model of the
decision maker about his or her environment without necessarily having to experience the
outcome of each action (Figure 1).

Behaviors of human decision makers in a dynamic but non-social environment are best
accounted for by hybrid learning models that combine the features of model-free and model-
based reinforcement learning models [5••,6]. In a social setting, decision makers might
update their beliefs about the choices of other decision makers according to their newly
observed behaviors, and utilize such information to guide their subsequent choices. This is
an example of model-based reinforcement learning, and is referred to as belief learning in
game theory [7]. As in individual decision making, human behaviors during iterative social
interactions are also more consistent with hybrid learning models than with model-free
reinforcement learning models or pure belief learning models [8, 9••]. Hybrid learning
models also more accurately account for the choices of non-human primates during a
computer-simulated rock-paper-scissors game [10, 11•].

Much of our knowledge about the neural mechanisms of reinforcement learning is based on
the results from experiments in which the observed behaviors of the subjects could not
distinguish between these two different types of algorithms. For example, neurons
modulating their activity according to the rewards expected from a particular state or action
are widespread in the brain [12-16, 17•]. In addition, signals related to the reward prediction
error, namely, the difference between actual and expected rewards are also found in multiple
brain areas, including the ventral tegmental area, substantia nigra pars compacta [18],
striatum [19,20], anterior cingulate cortex (ACC) [21,22•], and prefrontal cortex [23].
However, whether such signals reflect the output of model-free or model-based
reinforcement learning algorithm is still not well understood.

Recently, several studies have begun to elucidate how signals related to the reward values
and prediction errors computed by model-based reinforcement learning algorithms are
distributed in the brain. Signals related to reward prediction errors derived from model-free
and model-based reinforcement learning algorithms might be co-localized in the striatum
[5••, 6]. Interestingly, during strategic social decision making, activity in the rostral ACC
was related only with reward prediction errors derived from a belief learning algorithm [9••].
These results raise the possibility that model-based reward prediction errors might be
processed differently in the brain depending on the social features of the behavioral task.
Additional brain areas, such as the hippocampus and prefrontal cortex, might be involved in
predicting the outcomes of choices according to a model-based reinforcement learning
algorithm in a non-social context [6].

During social decision making, inferences about the likely behaviors of other decision
makers become recursive, as a group of decision makers try to figure out how others in the
group expect each other to behave. A set of brain areas associated with theory of mind, such
as the medial prefrontal cortex (mPFC) and temporoparietal junction (TPJ), might be
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critically involved in such recursive strategic reasoning [24-26]. For example, during the
beauty contest game, in which the object is to pick a number as close to 2/3 times the
average of all the numbers chosen by the participants, subjects who displayed high levels of
strategic reasoning also showed higher activity in the mPFC [27••]. Another study found that
uncertainty in the inferences about the other decision maker's strategy during a stag-hunt
game recruited the rostral medial prefrontal cortex, while activity in the DLPFC increases
with the depth or level of strategic reasoning [28••]. Activity in the DLPFC was also related
to the level of strategic deception during a bargaining game [29••]. These findings suggest
that DLPFC activity during strategic reasoning might reflect the higher demands for
working memory and cognitive control.

Single-neuron recording studies in non-human primates have identified signals related to
specific conjunctions of actions and their outcomes during computer-simulated competitive
games [12, 30•]. Activity related to action-outcome conjunctions provides the information
necessary for updating the value functions for specific actions according to model-free
reinforcement learning algorithms. Neurons involved in updating the value functions for
unchosen actions according to their hypothetical outcomes are co-localized in the same brain
areas that process actual outcomes and the corresponding reward prediction errors, such as
the ACC [31••] and prefrontal cortex [11•]. These areas might provide converging inputs to
the brain circuits responsible for updating the value functions for different actions. In
particular, during a simulated rock-paper-scissors game, neurons in the orbitofrontal cortex
and lateral prefrontal cortex often encode hypothetical reward that could have been obtained
from a particular action, in addition to specific conjunctions of chosen action and its actual
outcome [11•] (Figure 2). In both humans and monkeys, neurons in the medial frontal cortex
encode specific actions produced by others, and thereby might contribute to extracting the
information about hypothetical outcomes associated with the same actions [32, 33••].

Neural basis of social preference
The game theory, originally developed by von Neunman and Morgenstein [34], seeks to
identify a set of strategies expected for a group of rational and selfish decision makers, and
can provide useful approximations to human behaviors observed in a broad range of social
interactions [7]. However, there are many counter-examples violating the assumption of
purely self-interested homo economicus. Not only are people often willing to give up some
of their incomes to benefit others, but they can also choose costly actions to punish others
acting unfairly. The neural correlates of such prosocial preferences are increasingly better
understood.

Charitable donations are common in human societies, and sharing valuable resources or
donating them to others induces activity patterns in the brain that resemble those resulting
from individual gains. For example, decisions to donate to charitable organizations increase
the activity in the ventral striatum, whereas decisions to oppose such donations activate the
lateral orbitofrontal cortex [35]. Furthermore, the ventral striatum and caudate nucleus
showed greater activations when the monetary transfer to the charity was voluntary
compared to when it was forced or taxed [36]. The level of activity in the ventral striatum
and ventromedial prefrontal cortex (vmPFC) is also correlated with the subjective value of
donation to others [37, 38]. Activity in these two areas is temporally correlated with the
activity in other cortical areas implicated in empathy and agency perception, such as the
ACC and posterior superior temporal cortex [37,38], suggesting that they might constitute a
network of brain areas responsible for modulating social preference according to the nature
of interpersonal relationship.

A number of studies have used ultimatum games to investigate the nature of neurobiological
correlates of fairness norms. During an ultimatum game, a proposer receives a fixed amount
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of money and offers a proportion of it to the responder, who then chooses to accept or reject
the offer. Although game theory predicts that a self-interested rational proposer would offer
the smallest amount possible, such small offers are frequently rejected when humans play
this game. Unfair offers leads to activation in the anterior insula, DLPFC, ACC, and
amygdala of the responder [39, 40]. Among these areas, DLPFC is implicated for enforcing
costly actions with the aim of achieving fair outcomes in the long run. For example,
disrupting the DLPFC activity in the responder with repetitive transcranial stimulation
(rTMS) during an ultimatum game makes it more likely for unfair offers to be accepted [41],
and also reduces the activity related to unfair offers in the vmPFC [42••]. Similarly, the
baseline activity of the lateral prefrontal cortex of the responder predicts the rate of
acceptance [43]. Faces of proposers that are judged to be trustworthy also increase the
acceptance rate, and this might be mediated by the lateral orbitofrontal cortex and its
connections with the amygdala and insula [44].

Non-selfish behaviors, including altruistic donations or punishment, can be accounted for by
a model of inequity aversion [45]. In this model, the utility for a particular distribution of
wealth among the members in a group is diminished by both advantageous and
disadvantageous inequity that is related to guilt and envy, respectively. This model has been
corroborated and further elaborated by the results from neuroimaging studies. For example,
inequitable monetary transfer activates the anterior insula [46], and decreases the activity in
the ventral striatum and vmPFC [47••]. Envy and its dissolution (schadenfreude) also
activate ACC and ventral striatum, respectively [48]. In addition, individual variability in the
strength of social preference is correlated with the activation related to inequity in the
amygdala [49]. These results illustrate how effects of multiple contextual factors on social
preference might be mediated by a network of brain areas. Both pro-social and anti-social
preference has been demonstrated in non-human primates [50, 51••], so this remains an
important topic for further research. In addition, activity of neurons in the orbitofrontal
cortex of monkeys is influenced by the reward given to another monkey, suggesting that the
neural mechanisms underlying social preference in humans and other primates might
overlap [51••].

Conclusions
The results from the studies summarized above suggest that the brain regions involved in the
valuation of different options during individual decision making, such as the ventral striatum
and vmPFC, might perform similar functions during social decision making. Other areas,
such as the amygdala and insula, might also contribute to the emotional aspect of decision
making in both social and non-social context. Furthermore, areas involved in specific
aspects of social perception and cognition, such as the TPJ, might be additionally recruited
during social decision making, as when decision makers are engaged in recursive reasoning
to predict the actions of others. Recent studies showed that many of these areas thought to be
important for social decision making are enlarged when the size of the social group
increases [52••, 53], suggesting that additional processing power in these brain areas must be
beneficial during complex social interaction. We expect that the future studies will provide
more detailed insights into the features of our brain that make us socially competent.
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Highlights

1. Human social decision making is characterized by hybrid learning and non-
selfish preference.

2. Striatum and prefrontal cortex underlie learning and inference during social
decision making.

3. Orbitofrontal cortex might be a hub of brain areas that determines social
preference.
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Figure 1.
Components of social decision making and their possible neural substrates. The environment
of a decision maker provides 3 different types of information useful for decision making.
First, it delivers reward, and its deviation from the predicted reward (reward prediction
error) modifies the value functions used to select actions. Second, information about various
physical objects can be used to update the decision maker's model about his or her
environment. Third, observed actions of other actors can be used to update the decision
maker's model about their likely future behaviors. In addition, social preference of the
decision makers can also influence their value functions. FEF, frontal eye field; Hipp,
hippocampus; M1, primary motor cortex; PFC, prefrontal cortex; PPC, posterior parietal
cortex; SC, superior colliculus; SNc, substantia nigra pars compacta; vmPFC, ventromedial
prefrontal cortex; VS, ventral striatum; VTA, ventral tegmental area.
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Figure 2.
Orbitofrontal cortex encodes hypothetical outcomes during a competitive game. (a)
Simulated rock-paper-sciossors task performed by monkeys (adapted from 11•). The animal
was required to shift its gaze towards one of the 3 peripheral targets when the white central
target was extinguished. After a short delay, the peripheral targets all changed their colors
and indicated the amount of reward available from each location (e.g., purple = 2 drops of
fruit juice), which was determined by the payoff matrix of a biased rock-paper-scissors
game shown on the right (R, rock; P, paper; S, scissors). (b) A single neuron in the
orbitofrontal cortex that encoded how much reward could have been earned from an
unchosen winning target (indicated by ‘W’ in the top panels). The spike density function of
this neuron is shown separately according to the position of the winning target (columns),
the position of the target chosen by the animal (rows), and the magnitude of the reward
available from the winning target (colors).
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