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Abstract

Neurogenesis requires negative regulation through differentiation of progenitors or their 

programmed cell death (PCD). Growth regulation is particularly important in the postnatal 

cerebellum, where excessive progenitor proliferation promotes medulloblastoma, the most 

common malignant brain tumor in children. We present evidence that PCD operates alongside 

differentiation to regulate cerebellar granule neuron progenitors (CGNPs) and to prevent 

medulloblastoma.

Here we show that genetic deletion of pro-apoptotic Bax disrupts regulation of cerebellar 

neurogenesis and promotes medulloblastoma formation. In Bax−/− mice, the period of 

neurogenesis was extended into the third week of postnatal life, and ectopic neurons and 

progenitors collected in the molecular layer of the cerebellum and adjacent tectum. Importantly, 

genetic deletion of Bax in medulloblastoma-prone ND2:SmoA1 transgenic mice greatly 

accelerated tumorigenesis. Bax-deficient medulloblastomas exhibited strikingly distinct pathology, 

with reduced apoptosis, increased neural differentiation and tectal migration. Comparing Bax+/+ 

and Bax−/− medulloblastomas, we were able to identify up-regulation of Bcl-2 and nuclear 
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exclusion of p27 as tumorigenic changes that are required to mitigate the tumor suppressive effect 

of Bax. Studies on human tumors confirmed the importance of modulating Bax in 

medulloblastoma pathogenesis.

Our results demonstrate that Bax-dependent apoptosis regulates postnatal cerebellar neurogenesis, 

suppresses medulloblastoma formation, and imposes selective pressure on tumors that form. 

Functional resistance to Bax-mediated apoptosis, required for medulloblastoma tumorigenesis, 

may be a tumor-specific vulnerability to be exploited for therapeutic benefit.
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Introduction

Proliferation of neural progenitors must be strictly regulated during cerebellar development 

and the consequences of failed regulation are significant. A large number of cerebellar 

granule neurons (CGNs) is required to populate the internal granule cell layer (IGL) of the 

cerebellum and cerebellar hypoplasia causes impaired neural development and neurologic 

function (1). Excessive proliferation of cerebellar granule neuron progenitors (CGNPs), 

however, supports the transformation of CGNPs to give rise to medulloblastoma, an 

embryonal tumor of CGNP origin that is the most common malignant brain tumor in 

children (2).

CGNPs arise during embryogenesis from the rhombic lip and migrate tangentially to form a 

secondary germinal zone called the external granule layer (EGL). In mice, CGNPs 

proliferate in the EGL for the first 15 days after birth, greatly expanding their population. 

During this time, they leave the cell cycle in progressively greater numbers and migrate 

across the adjacent Purkinje cell layer to establish the IGL, where they terminally 

differentiate into neurons (3).

Positive regulation of CGNP proliferation is accomplished through stimulation of the Sonic 

Hedgehog (Shh) signaling pathway (4). Diverse molecular mechanisms have been identified 

that exert an anti-proliferative effect by causing CGNPs to exit the cell cycle. These 

differentiation-inducing mechanisms include Ren (5), Jsap1 (6), Gpr3 (7), and β-Arrestin 

(8), all of which converge on the cyclin-dependent kinase inhibitor p27/Kip1, which has 

been shown to be a potent suppressor of medulloblastoma (9, 10). The observation that p53 

mutation increases the frequency of medulloblastoma in both mice (11) and humans (12), 

suggests that apoptosis may also play a role in suppressing medulloblastoma. Loss of p53, 

however, may affect many processes in addition to apoptosis. Whether apoptotic 

mechanisms operate in parallel with differentiation mechanisms to regulate CGNP 

proliferation remains untested, and the role of Bax in medulloblastoma pathogenesis is 

unknown.

During the development of the central nervous system, Bax-dependent apoptotic processes 

limit neural population size by culling differentiated neurons that have migrated or synapsed 

Garcia et al. Page 2

Oncogene. Author manuscript; available in PMC 2013 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



inappropriately (13), and by winnowing mitotic progenitors of the subventricular zone (14, 

15). The relevance of Bax-dependent apoptosis to cerebellar neurogenesis, however, has not 

been demonstrated; while a previous study of cerebella from Bax−/− mice did not detect any 

effect on CGN number (16), this study did not examine CGNPs directly.

We have directly compared CGNP proliferation in Bax−/− and wild-type cerebella in order 

to determine the impact of Bax-dependent apoptosis on postnatal cerebellar growth. 

Moreover, we have examined the effect of Bax deletion on SmoA1-driven medulloblastoma 

formation to determine whether disruption of Bax-dependent mechanisms changes the 

frequency or latency of cerebellar tumorigenesis. Here we show that inactivation of Bax 

prolongs the period of CGNP proliferation, permanently altering the distribution of CGNs in 

the resulting cerebella. Additionally, we show that loss of Bax synergizes with Smoothened 

activation to accelerate medulloblastoma formation.

Results

Down-regulation of CGNP proliferation is delayed in Bax−/− mice

To examine the effect of blocking Bax-mediated apoptosis on the negative regulation of 

CGNP proliferation, we compared cerebella of Bax+/+ and Bax−/− littermates at P16, when 

cerebellar neurogenesis has typically waned. As anticipated, immunohistochemistry (IHC) 

for proliferation marker Ki67 demonstrated a sparse layer of proliferating cells in the EGL 

of Bax+/+ mice. In contrast, Ki67 staining revealed a comparatively dense layer of 

proliferation cells in the EGL of Bax−/− mice (Fig. 1a,b). To measure proliferation directly 

in vivo, we counted CGNPs that incorporated EdU 24 hours after a single intraperitoneal 

(IP) injection at P15, using 4 replicate Bax+/+ and Bax−/− mice. Quantification of EdU+ cells 

in a corresponding region of EGL in each of the replicates for each genotype confirmed that 

Bax-deficient CGNPs continued to proliferate in greater numbers between P15-P16 (Fig. 

1c). FACS-based quantification of the proportion of EdU+ cells from dissociated cerebella 3 

pairs of Bax+/+ and Bax−/− littermates injected with EdU at P15 and harvested at P16 

produced similar results, again demonstrating greater proliferation in Bax−/− cerebella at the 

time when neurogenesis typically ends (Fig. 1d).

Using Cyclin D2 as a marker of proliferation detectable by Western blot (17), we compared 

CGNP proliferation in paired Bax-deficient and wild-type littermates at a series of time 

points spanning the period of cerebellar neurogenesis. We found that proliferation during the 

later half of the neurogenesis period was consistently, reproducibly higher in Bax−/− mice 

compared to age-matched Bax+/+ littermates. Cyclin D2 was equally abundant in lysates of 

whole cerebella from Bax−/− and Bax+/+ mice at P7. From P11-P18, however, Cyclin D2 

was consistently more abundant in cerebella from Bax-deficient animals, indicating Bax 

deletion delayed the down-regulation of CGNP proliferation seen in the wild-type 

littermates (Fig 2a). We considered whether this change in CGNP regulation caused by Bax 

deletion might be explained by an increase in either the availability of Shh, or in the 

responsiveness of CGNPs to Shh. Previous investigations found that Purkinje cell number is 

increased in Bax−/− mice (16). Since Shh is secreted by Purkinje cells (18, 19), we compared 

abundance of Shh in cerebella of Bax+/+ and Bax−/− mice. Western blot analysis 

demonstrated that Shh abundance was not increased by Bax deletion and thus could not 
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account for increased CGNP proliferation (Fig. 2a). To determine whether Bax-deficiency 

caused an increase in the proliferative response to Shh, we isolated CGNPs from Bax+/+ and 

Bax−/− littermates, divided CGNPs into replicate wells, and exposed cultured cells to Shh or 

vehicle for 24 hours. We then compared CGNP proliferation in each well by Western blot 

for Cyclin D2. Bax+/+ and Bax−/− CGNPs demonstrated equivalent baseline expression of 

Cyclin D2 and equivalent increase in Cyclin D2 in response to Shh (Fig. 2b).

While Bax deletion did not cause a change in abundance of Shh or in the response of 

CGNPs to Shh, Bax deletion was sufficient to disrupt apoptosis of CGNPs. Dexamethasone 

has previously been demonstrated to induce apoptosis specifically in P7 CGNPs within 4 

hours after a single IP injection (20, 21). We injected Bax−/− and Bax+/+ littermates at P7 

with IP dexamethasone and measured apoptosis in the cerebellum by Western blot for 

cleaved Caspase 3 (cC3). While dexamethasone induced substantial caspase activation in 

cerebellum of wild-type mice, Bax deletion markedly reduced cell death in dexamethasone-

injected mice, reducing cC3 without affecting total Caspase 3 abundance (Fig. 2c). Western 

blot on Bax+/− and Bax−/− littermates demonstrated no change in Bak expression caused by 

Bax deletion (Fig. 2d), indicating that loss of Bax alone was sufficient to prevent 

dexamethasone-induced apoptosis. Importantly, Bax deletion caused a detectable increase in 

expression of Bcl-2 and Mcl-1 (Fig. 2d), which may have contributed to decreasing the 

apoptotic response by interfering with Bak-mediated compensation. These results, along 

with our analyses of CGNP proliferation, reveal a significant, specific role for Bax-

dependent apoptosis in regulating postnatal neurogenesis in the cerebellum.

Abnormal CGNP migration in Bax−/− mice

Along with altering the temporal pattern of CGNP proliferation, Bax deletion caused a 

change in the spatial distribution of CGNP progeny. During postnatal development, 

proliferating CGNPs typically migrate across the Purkinje cell layer to the IGL, where they 

terminally differentiate. Examination of cerebella from Bax-deficient mice at P17, after most 

CGNPs had migrated from the EGL, revealed distinct populations of ectopic cells: focal 

collections of differentiated neurons where the EGL had been, and a streak of proliferating 

progenitors migrating into the adjacent tectum (Fig. 3a, b). IHC for the neuronal marker 

NeuN and the proliferation marker Ki67 demonstrated that most of the ectopic EGL cells 

exhibited neuronal differentiation while few cells continued to proliferate (Fig. 3c,d). In 

contrast, many cells in the ectopic population entering the tectum labelled with Ki67 (Fig. 

3e). EdU incorporation 24 hours after IP injection also marked this tectal ectopic population 

as proliferating progenitors (Fig. 3f). These cells did not express NeuN (data not shown). 

While this tectal population of ectopic cells was contiguous with the IGL of the first 

cerebellar folium, the cells resembled CGNPs in their appearance on H&E stained sections, 

their incorporation of EdU, and their lack of NeuN staining. To confirm that these ectopic 

cells were CGNPs, and that Bax deletion caused a cell-autonomous effect on CGNP 

migration pattern, we analysed mice in which Bax was deleted conditionally within the 

Math1 lineage, which is limited, in the cerebellum, to the CGNPs and their progeny (22). 

Specifically, we bred mice with a floxed allele of Bax (Baxf/f) with transgenic mice 

expressing cre recombinase under the Math1 promoter (Math1-cre). In the resulting Math1-

cre; Baxf/f mice at P17, we noted collections of ectopic cells in the molecular layer and a 
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streak of ectopic cells migrating into the tectum, as we saw in the Bax−/− mice (Fig. 3g,h). 

Thus, Bax deficiency acted on CGNPs to disrupt not only the timing of proliferation but also 

the migration pattern of CGNP-derived cells.

Bax deficiency accelerates ND2:SmoA1 induced tumorigenesis

Mechanisms that down-regulate CGNP proliferation through differentiation have 

consistently been found to exert a tumor-suppressive effect in preventing medulloblastoma. 

To determine whether Bax-dependent apoptosis functioned as an additional barrier to 

tumorigenesis, we measured the effect of Bax deficiency on induction of medulloblastoma 

by SmoA1, a tumorigenic, constitutively active allele of Smoothened (23). We bred 

ND2:SmoA1 that were Bax+/+,+/− and−/−, then compared time to symptomatic tumor 

formation in each group. For both genotypes, tumor symptoms began within 4–5 days of the 

first detection of change in head shape, and mice were euthanized at the onset of symptoms.

Bax deficiency increased the frequency and decreased the latency of tumor formation. 

Overall tumor incidence in ND2:SmoA1 mice was significantly increased by Bax deletion: 

14/15 for Bax−/− vs 7/16 for Bax+/+ (p=0.006; 2-sided Fisher’s exact test). The difference in 

tumor incidence in Bax haploinsufficient and Bax wild-type ND2:SmoA1 mice was not 

statistically significant: 11/18 for Bax+/− vs 7/16 for Bax+/+ (p=0.49; 2-sided Fisher’s exact 

test). Bax−/− mice also developed medulloblastoma significantly faster (p<0.0000001; Log-

Rank test) than mice with 1 or 2 functional copies of Bax (Fig. 4). Haploinsufficiency did 

not cause a discernable change in the rate of tumorigenesis (data not shown). The more 

frequent and rapid onset of medulloblastoma in Bax−/−; ND2:SmoA1 mice reveals the tumor 

suppressive effect exerted by Bax when at least 1 functional allele is present.

Bax-deficient tumors have increased differentiation and reduced apoptosis

In addition to accelerating the frequency and onset of tumorigenesis, Bax deletion also 

exerted a profound effect on tumor pathology (Fig. 5a,b). ND2:SmoA1-induced 

medulloblastomas are typically homogeneous, composed of morphologically monotonous 

cells with molded nuclei and scant cytoplasm (Fig. 5a,c). In contrast, medulloblastomas in 

Bax−/−; ND2:SmoA1 complex transgenic mice were markedly heterogeneous, containing 

rests of monotonous tumor cells interspersed with less densely packed cells with round, 

regular nuclei that resembled neurons in the IGL (Fig. 5b,d). We compared proliferation, 

apoptosis and differentiation in Bax+/+ and Bax−/− tumors, using IHC for mitotic marker 

phosphohistone H3 (PH3), cC3 and NeuN. IHC for PH3 demonstrated markedly lower 

frequency of mitosis in Bax-deficient tumors (Fig. 5e,h). IHC for cC3 consistently 

demonstrated on-going apoptosis in medulloblastomas with intact Bax (Fig. 5f) and absence 

of apoptosis in tumors with Bax deletion (Fig. 5i). Expression of NeuN, a marker of neural 

differentiation was markedly lower in Bax+/+ medulloblastoma compared to Bax-deleted 

tumors (Fig. 5g,j). We replicated these findings in 3 tumors from Bax+/+ and Bax−/− mice, 

performed automated cell counts, and found a statisitically robust correlation between 

reduced PH3+ cells, reduced cC3+ cells and increased NeuN+ cells in medulloblastomas 

with Bax deletion (Fig. 5k). Thus although Bax−/−; ND2:SmoA1 mice developed tumors and 

died more rapidly, the resultant tumors demonstrated reduced proliferation and apoptosis, 

and increased differentiation.
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Altered tumor-cell migration in Bax-deficient medulloblastomas

Invasion of the tectum by tumor cells was noted in all Bax−/− medulloblastomas and was 

never noted in tumors with intact Bax. Invading tumor cells followed the rostral migration 

pattern of ectopic progenitors observed in Bax−/− cerebella at P17 (Fig. 5b, compare to Fig. 

3b). As seen throughout the Bax−/− tumors, the population of invading cells was 

heterogeneous, including differentiated cells that were NeuN+ and undifferentiated 

proliferating cells that were PCNA+ (Fig. 5l,m). Thus, migration abnormalities seen in 

Bax−/− cerebella during postnatal development were recapitulated and amplified in Bax−/− 

medulloblastomas.

Specific tumorigenic adaptations required by presence of Bax

Our survival analysis demonstrated that deletion of Bax reduced the time required for mice 

to develop symptomatic medulloblastoma. Previous investigators have demonstrated in 

diverse mouse models of medulloblastoma that during the latent period that precedes tumor 

detection, hypertrophic CNGPs acquire additional oncogenic changes that mediate that 

progression from precursor lesion to tumor (23, 24). We theorized that if tumorigenesis 

typically requires time for the development of resistance to endogenous Bax, hypertrophic 

Bax−/− CGNPs might progress to medulloblastoma more quickly. To detect tumor-specific 

adaptations that are necessitated by Bax, we compared expression of anti-apoptotic Bcl-2 

family proteins in precursor lesions (Fig. 6a) and tumors from Bax+/+, Bax+/− and Bax−/− 

mice. In these same samples, we also analyzed expression of p27, because of the central role 

of this protein in suppressing medulloblastoma through differentiation (9, 10).

We found Bcl-2 and Mcl-1 to be specifically up-regulated in the course of tumorigenesis in 

the presence of Bax. Premalignant lesions in P22 cerebella of ND2:SmoA1 mice expressed 

relatively low levels of Bcl-2 and Mcl-1 and relatively high levels of Bak, Bcl-XL, and p27 

(Fig. 6b). Importantly, tumors with intact Bax consistently up-regulated Bcl-2 and Mcl-1. In 

contrast Bcl-2 and Mcl-1 were consistently less abundant in Bax−/− tumors. Expression of 

Bak was also mildly but consistently decreased in Bax−/− tumors. In contrast, Bcl-XL was 

abundant in all tumors, and was more highly expressed in the Bax−/− subset. Cellular 

analysis of Bcl-2 expression by IHC in an independent set of 4 Bax+/+ and 4 Bax−/− 

medulloblatomas demonstrated widespread intra-tumoral expression of Bcl-2 in 4/4 Bax+/+ 

cases and consistent absence of Bcl-2 in all tumor cells in 4/4 Bax−/− cases (Fig. 6c,d). Bcl-2 

protein in white matter adjacent to tumors served as an internal control in Bax−/− sections 

and also explains the faint Bcl-2 band observed in Western blot of Bax−/− tumors. Thus up-

regulation of Bcl-2 and Mcl-1 were consistently observed, tumor-specific changes that were 

not required in mice with Bax deletion.

While Bcl-2 expression was reduced in Bax−/− tumors, p27 was markedly more abundant. 

Bax haploinsufficiency increased p27 expression, and homozygous Bax deletion caused a 

further increase (Fig. 6b). IHC confirmed reduced expression of p27 in Bax+/+ 

medulloblastomas and also revealed differential localization of the p27 protein: while 

tumors with intact Bax demonstrated translocation of p27 from nucleus to cytoplasm as 

previously reported (9), Bax-deficient tumors demonstrated robust nuclear p27 (Fig. 6e, f). 

Thus down-regulation p27 and its exclusion from the nucleus, like up-regulation of Bcl-2, 
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were consistently observed steps in the progression from precursor lesion to 

medulloblastoma, and these steps were not required when Bax was deleted.

Bax is an obstacle that is mitigated in human medulloblastoma pathogenesis

Because of the impact of Bax on tumorigenesis in our medulloblastoma model, we sought to 

determine whether Bax exerts an effect on the human disease. In a tissue micro-array (TMA) 

consisting of 3–6 cores from each of 20 human medulloblastomas, IHC detected widespread 

expression of Bax in every core, demonstrating that Bax is not commonly silenced nor 

deleted (Fig. 7a–c). We noted heterogeneous expression of Bcl-2, and p27, heterogeneous 

tendency to localize p27 to the cytoplasm, and variable rates of apoptosis, demonstrated by 

IHC for cC3 (Fig. 7a–d). Importantly, the TMA demonstrated an inverse correlation 

between Bcl-2 and cC3: the mean rate of apoptosis in tumors with <5% of cells Bcl-2+ was 

30%, while the rate of apoptosis was 9% in tumors with >5% of cells Bcl-2+ (p=0.00013). 

This inverse correlation, further demonstrated by linear regression analysis on all samples in 

the TMA (Fig. 7e), suggests that Bcl-2 is functionally active in opposing an inherent 

tendency to undergo PCD. A similar linear regression analysis of cytoplasmic p27 

demonstrated a tendency for decreased cC3 with increased nuclear exclusion of p27 that 

approached but did not reach statistical significance (p=0.0524), suggesting a possible role 

for cytoplasmic p27 in avoidance of PCD that may be more complex than that of Bcl-2. 

Through this analysis, we were able to confirm the impact of Bax in human 

medulloblastoma and the continued engagement of the diverse mechanisms through which it 

is mitigated.

Discussion

The potential for cerebellar neurogenesis to give rise to medulloblastoma underscores the 

importance of regulating CGNP proliferation. While previous investigations have examined 

neuronal PCD in the postnatal cerebellum (25), our study is the first to implicate the intrinsic 

apoptotic pathway in the regulation of CGNPs, the cells of origin for medulloblastoma. We 

found that deletion of Bax was sufficient to block apoptosis of CGNPs, causing CGNP 

proliferation to extend beyond P15. Clearly, multiple mechanisms operate to limit CGNP 

proliferation, as even in Bax−/− mice CGNPs do not proliferate indefinitely. However, these 

additional mechanisms, including p27-mediated differentiation, were strikingly ineffective 

in preventing tumor formation when Bax-dependent apoptosis was blocked.

In ND2:SmoA1 mice, the tumorigenic effect of SmoA1 is balanced by tumor suppressive 

mechanisms, such that while all mice develop CGNP hypertrophy, not all mice develop 

tumors. The importance of differentiation for limiting the growth of hypertrophic CGNPs in 

pre-neoplastic lesions has been demonstrated by lineage tracing experiments (24). However, 

the increased frequency of medulloblastoma in Bax−/−; ND2:SmoA1 mice demonstrates that 

when apoptosis is prevented, developmental differentiation mechanisms are insufficient to 

block progression from hypertrophy to tumor. In fact, Bax−/− medulloblastomas 

demonstrated marked up-regulation of p27, accompanied by increased differentiation and 

nevertheless shorter survival times. Considered against previous studies demonstrating that 

loss of p27 also accelerates medulloblastoma formation (9, 10), our findings reveal that 
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effective tumor suppression depends on both apoptosis and differentiation mechanisms 

acting in concert.

In addition to demonstrating that Bax-dependent apoptosis functions as a brake on 

tumorigenesis, we have identified specific mechanisms through which this brake can be 

overcome. In the progression from hyperplastic precursor lesion to medulloblastoma in 

SmoA1 mice, we observed consistent up-regulation of Bcl-2 and disruption of p27 through 

down-regulation and cytoplasmic localization. Strikingly, these mechanisms were never 

observed and thus clearly not required, in tumors that formed in SmoA1; Bax−/− mice. The 

marked up-regulation of p27 in Bax−/− tumors, moreover, suggests that high levels of 

nuclear p27 may exert a pro-apoptotic effect that is only tolerated when apoptosis is 

blocked. Accordingly, shuttling p27 to the cytoplasm may prevent the ability of nuclear p27 

to drive PCD. Thus, our data link both up-regulation of Bcl-2 and displacement of p27 in 

medulloblastoma to the presence of Bax.

Our analysis of human medulloblastoma confirmed the interrelation of Bax, p27 and Bcl-2 

in the human disease. In the patient-derived tumors, as in the SmoA1-induced mouse model, 

Bax was robustly expressed and consistently accompanied by cytoplasmic p27. Moreover, 

the expression of Bcl-2 correlated inversely with the rate of apoptosis. While previous 

investigators have noted Bcl-2 expression in medulloblastoma, a correlation with prognosis 

has not emerged. Our findings are thus the first to demonstrate that Bcl-2 is functionally 

active in medulloblastoma, and importantly reveal an inherent tendency toward PCD that 

Bcl-2 acts to repress.

The consistent expression of Bax and the correlation between engagement of Bax-resistance 

mechanisms and PCD may be highly relevant to the unique responsiveness of 

medulloblastoma to chemo-radiotherapy. Of all malignant brain tumors, medulloblastoma is 

the most amenable to treatment, with 5 year survival rates markedly higher than high-grade 

glioma or supratentorial PNET (26–28). The underlying mechanism for the increased 

susceptibility of medulloblastoma to cytotoxic therapy may be that apoptosis in 

medulloblastoma is prevented by dynamic, reversible mechanisms of Bax resistance, in 

contrast to more static, less reversible mechanisms for avoiding apoptosis in more refractory 

tumors. Strategies that modulate resistance of medulloblastoma cells to the proapoptotic 

potential of endogenous Bax may be well suited to medulloblastoma. BH3-mimetic agents 

are an example of an intervention that might target this dynamic resistance to PCD.

Previous investigations have demonstrated complementation between Bax and Bak in the 

regulation of neural progenitor proliferation (15, 29), and suggested that Bak may be more 

relevant to undifferentiated progenitors (30). In contrast, apoptosis in differentiated neurons 

depends entirely on Bax (31). Our data demonstrate that apoptosis of CGNPs and 

consequent suppression of medulloblastoma specifically require Bax. Importantly the 

presence of wild-type Bak was insufficient to maintain the apoptotic response to 

dexamethasone or to inhibit medulloblastoma formation in ND2:SmoA1 Bax−/− mice.

An important question that remains is how Bax-dependent mechanisms become activated 

during neurogenesis to limit CGNP proliferation and suppress medulloblastoma. The finding 
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of ectopic CGNP progeny in Bax−/− cerebella suggests that PCD normally acts to remove 

CGNPs that fail to migrate to appropriate locations. Such localization-dependent survival 

could be mediated by dependence receptors. Intriguingly, the rostral migration of Bax-

deficient CGNPs and medulloblastoma cells into the tectum bears striking similarity to the 

phenotype of the rcm mutant mouse (32) in which disruption of Unc5h causes CGNPs to 

migrate into the tectum in the first week of postnatal life. Unc5h has been reported to act as 

a dependence receptor (33–35) and this phenotypic similarity suggests that Unc5h and Bax 

may operate within a single molecular mechanism, in which Unc5h functions as a 

dependence receptor activating Bax-dependent apoptosis in the absence of ligand. In a 

similar manner, multiple dependence receptors may activate Bax when CGNPs fail to 

migrate appropriately, and the loss of Bax-dependent PCD could thus account for the 

diverse abnormal positions of CGNP progeny in cerebella and medulloblastoma in Bax−/− 

mice.

The altered invasion pattern and distinctive pathology of Bax−/− medulloblastoma 

demonstrates that Bax-dependent apoptosis remains active after tumorigenic transformation 

and continues to define tumor phenotype. Medulloblastomas typically express Bax and grow 

as homogeneous tumors composed entirely of undifferentiated progenitors. Moreover, Bax-

mediated PCD continues to cull tumor cells from the population, even in tumors with up-

regulation of Bcl-2. In contrast, Bax-deficient medulloblastomas are devoid of apoptosis and 

harbor substantial populations of tumor cells with greater differentiation potential. The 

homogeneity of medulloblastoma would thus seem to result from selection pressure exerted 

by Bax: undifferentiated proliferating cells that are resistant to Bax-dependent cell death 

persist, while differentiating cells are removed through activation of the intrinsic apoptotic 

pathway. When Bax is deleted, terminal differentiation becomes the alternate fate choice for 

differentiating cells that cannot undergo apoptosis. The shortened survival of mice with 

Bax−/− tumors demonstrates that a more differentiated pathology is not invariably indicative 

of benign prognosis, but may instead be a marker of impaired apoptosis.

We have found that Bax-dependent apoptosis is an essential force in postnatal neurogenesis 

in the cerebellum, and that Bax presents an obstacle that is overcome in medulloblastoma 

pathogenesis. We identified modulation of Bcl-2 and p27 as key mechanisms that mitigate 

the tumor suppressive effects of Bax. Importantly, the active role played by Bax in shaping 

tumor pathology and the inverse relationship between Bcl-2 and apoptosis suggest that Bax 

resistance in medulloblastoma may be dynamic and reversible. Our conclusions underscore 

the therapeutic potential of targeting mechanisms that impair the function of Bax in 

medulloblastoma.

Material and Methods

Generation of mice

The breeding and genotyping of Bax−/− mice have been described previously (36). Math-1 

cre mice were generously shared by David Rowitch, MD, PhD, UCSF and Robert Wechsler-

Reya, PhD, Sanford-Burnham Medical Research Institute, La Jolla, Ca and have been 

previously described (37). Baxfl/fl mice were obtained as Baxfl/fl; Bak−/− mice from Jackson 

Laboratories, Bar Harbor, ME and both mutant alleles of Bak were replaced by wild type 
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alleles thorough selective breeding. Medulloblastoma prone NeuroD2:SmoA1 mice (kindly 

provided by James Olson, MD, PhD, Fred Hutchinson Cancer Research Center, Seattle, 

WA) were crossed with the Bax−/− mouse line. Genotypes were determined by PCR: DNA 

was extracted from toes using Tail Lysis Buffer (Allele, cat#ABP-PP-MT01) and then 

amplified as described previously (23, 31). Tumor-prone mice were monitored daily for 

head shape and movement abnormalities and all mice were euthanized at the onset of 

symptomatic tumors. All animal handling and protocols were carried out in accordance with 

established practices as described in the National Institutes of Health Guide for Care and 

Use of Laboratory Animals and as approved by the Animal Care and Use Committee of the 

University of North Carolina (UNC).

CGNP culture

Primary cultures of CGNPs from Bax wild-type and Bax−/− mice were generated as 

according to published protocols (38). When indicated, CGNPs were maintained 

continuously in Shh (0.5 μg/ml; R&D Systems cat#464SH).

In vivo apoptosis

For these studies, P7 mouse pups were injected IP with 50 μl Hanks buffered saline (HBSS), 

with or without Dexamethasone (250 μM, Sigma cat#D9184). Cerebella were harvested 

after 4 hours and processed for Western blot as described below.

In vivo proliferation studies

Mouse pups at P15 or P16 were injected IP with 50 μl HBSS containing EdU (250 μM, 

Invitrogen cat# A10044) and sacrificed after 24 hours. For in situ detection, brains were 

dissected free and incubated in 4% formaldehyde in PBS for 24 hours at 4°C, then processed 

for histology. For FACS analysis, cerebella were dissected free, and dissociated and 

triturated as per cell culture protocol. After trituration, cells were fixed with 1:5 dilution of 

4% formaldehyde for 15 seconds with vortexing and further incubated for 15 min at room 

temperature. Fixed cells were washed with PBS and processed for EdU following 

manufacturer’s protocol (Invitrogen cat# C35002). EdU incorporation was then detected and 

quantified by flow cytometry using a Cyan Instrument (Beckman-Coulter) and Summit 

software (Dako). EdU+ cells were determined by comparison to an unstained fraction of 

cells and each genotype was repeated in triplicate. To determine the statistical significance 

of differences between Bax+/+ and Bax−/− results, p values were determined using Student’s 

t test.

Histology and IHC

For histological analysis and IHC, mouse brain and tumor tissue were embedded in paraffin 

and sectioned. H&E stained sections were prepared using standard techniques. For human 

tumor studies, cases of newly-diagnosed, untreated classic and nodular/desmoplastic 

medulloblastoma were obtained from the surgical pathology archives at UNC Hospitals 

from 21 patients (18 classic, 3 nodular/desmoplastic) and reviewed by a neuropathologist 

(C.R.M.). Only tumors with >90% viable tumor cell content were included. A TMA was 

constructed on a TMArrayer (Pathology Devices, Westminster, MD) using 3–6 replicate 1 
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mm cores from each case. Human tonsil was used as a control. All human specimens were 

obtained under a protocol approved by the UNC Institutional Review Board and were 

thoroughly de-identified.

IHC was performed on paraffin embedded sections after deparaffinization in Histoclear and 

rehydration in a graded ethanol series, heated to boiling in 10 mM Citrate buffer pH 6.0 in a 

pressure cooker for 15 minutes, then transferred to PBS. After antigen retrieval, IHC was 

performed as previously described (Gershon et al., 2009), using primary antibodies: PH3 

(Cell Signaling cat#9706), cC3 (human: Dako, cat# CP229C; mouse: Cell Signaling, cat# 

9664), Ki-67 (Millipore, cat# AB9260MI), NeuN (Millipore, cat# MAB377), PCNA (Cell 

Signaling, cat# 2586), p27 (human: DAKO, cat# M7203; mouse: Cell Signaling, cat# 3686), 

Bax (Sigma, cat# AF820) and Bcl-2 (human: DAKO, cat# M0887; mouse: Cell Signaling, 

cat#3498). IHC-stained human TMA sections were counterstained with hematoxylin, 

scanned using an Aperio ScanScope XT (Vista, CA), and analyzed using Definiens 

(Parsippany, New Jersey) Developer XD software. For Bcl-2 detection in mouse tumors, 

tissue was not embedded in paraffin, but rather was sectioned by Vibratome to 100 μm 

thickness and stained by IHC without antigen retrieval. For immunofluorescence, nuclei 

were counterstained with 4′6-diamino-2-phenylindole (DAPI) (Sigma, US), 1μg/ml, for 5 

minutes and immunoreactivity was evaluated with a Leica epifluorescence DM5000B 

microscope (Leica Microsystems, US).

Western blot analysis

Cultured cells, whole cerebella, and tumors were lysed by homogenization in lysis buffer 

(Cell Signaling, cat# 9803). Protein concentrations were quantified using the Bicinchoninic 

acid method (Thermo Scientific, cat# 23227) and equal concentrations of protein were 

resolved on SDS-polyacrylamide gels then transferred to PVDF membranes. Immunologic 

analysis was performed on a SNAP ID device (Millipore, US) using manufacturer’s protocol 

with primary antibodies to β-Actin (Cell Signaling, cat# 4970), Bax-N20 (Santa Cruz, 

sc-493), Bak (Cell Signaling, cat# 9521), Bcl-2 (Cell Signaling, #3498), Bcl-XL (Cell 

Signaling, cat# 2764), Mcl-1 (Cell Signaling, cat# 5453), full-length Caspase 3 (Cell 

Signaling, cat# 9662), cC3 (Cell Signaling, cat# 9664), Cyclin D2 (Cell Signaling, #3741), 

p27 (Cell Signaling, cat# 3686), Shh (Cell Signaling, cat# 2207). Secondary antibodies were 

anti-rabbit IgG HRP (Cell Signaling, cat# 7074), and anti-mouse IgG HRP (Cell Signaling, 

cat# 7076). Antibody conjugates were visualized by chemiluminescence (ECL, Amersham 

Life Science, cat# RPN2106).
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Figure 1. The period of CGNP proliferation is extended in Bax−/− mice
A,B) IHC for proliferation marker Ki67 (red) at P16 on representative cerebella of Bax+/+ 

(A) and Bax−/−. (B) littermates demonstrates increased proliferation of Bax-deficient 

CGNPs when neurogenesis typically wanes. Nuclei are counterstained blue with DAPI. 

Scale bars represent 500 μm. C) Representative images demonstrating incorporation of 

thymidine analogue EdU, 24 hours after IP injection at P15 into Bax+/+ and Bax−/− 

littermates. EdU was visualized by Click-It chemistry with Alexa-488 and EdU+ cells were 

counted in equivalent regions of EGL in anatomically matched sections from 4 replicate 

mice of each genotype. Scale bars represent 25 μm D) As an alternative method of 

quantifying proliferation, cerebella from 3 Bax+/+ and 3 Bax−/− mice were dissociated 24 

hours after EdU injection IP at P15 and EdU+ cells counted by FACS. Data presented in the 

graph are mean proportion of EdU+ cells, normalized to the mean for Bax+/+ mice, ± SEM.
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Figure 2. Bax deficient CGNPs have normal response to Shh but altered response to pro-
apoptotic stimulus
A) A representative Western blot demonstrates temporal expression patterns of indicated 

proteins in lysates of whole cerebella harvested from Bax+/+ and Bax−/− littermates at the 

ages indicated, with β-Actin used as a loading control. While Cyclin D2 elevation waned 

more slowly in Bax−/− mice, Shh abundance remained constant over time and did not vary 

with genotype. Differential expression of Cyclin D2 was noted in at least 3 paired Bax+/+ 

and Bax−/− littermates at each time point from P11-P17. B) Comparison of proliferation of 

CGNPs isolated from Bax+/+ and Bax−/− littermates and cultured in the presence or absence 

of exogenous Shh, measured by Western blot for Cyclin D2, demonstrated that proliferative 

response to Shh was not affected by Bax deletion. 3 replicate wells for each condition 

demonstrated equivalent findings. C) Representative Western blot comparing apoptosis 
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induced by dexamethasone in Bax+/+ and Bax−/− littermates, detected by cC3 in whole 

cerebellar lysates 24 hours after IP injection of dexamethasone or saline. D) Examination of 

Bcl-2 family proteins over CGNP development, in Bax+/+ and Bax−/− mice. A SmoA1-

induced medulloblastoma is included for comparison.
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Figure 3. Abnormal migration of CGNPs in Bax−/− mice
A,B) Paraffin sections of cerebellum in sagittal plane from representative P17 Bax+/+ (A) 

and Bax−/− (B) mice, stained by H&E. In (B) black arrowheads and box C,D highlight 

collections of cells remaining in the molecular layer. Yellow arrowhead and boxes E and F 

highlight a separate population migrating rostrally into the tectum. C) IHC for the NeuN 

(red) demonstrates neural differentiation in the ectopic collection highlighted in Box C,D of 

Panel B. D) IHC for Ki67 (red) demonstrates rare proliferative cells in the same collection. 

E) IHC for Ki67 (red) shows proliferating cells migrating into the tectum that were 

highlighted in Box E of Panel B. F) Incorporation of EdU (green) confirms that ectopic cells 

migrating into the tectum, highlighted in Box F of Panel B, continue to proliferate. G) H&E 

stained sagittal section showing normal histology of cerebellum from a P17 Baxf/f mouse 

without cre. H) In a representative, comparable section from a Math1-cre; Baxf/f mouse at 

P17, ectopic cells persist in the molecular layer (black arrowheads) and migrate into the 

tectum (yellow arrowheads). In C–F, nuclei are counterstained blue with DAPI. Scale bars 

represent 500 μm (A,B), 100 μm (C–F), or 250 μm (G,H).
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Figure 4. Deletion of Bax accelerates medulloblastoma tumorigenesis
Event-free survival curves for Bax+/+; SmoA1 mice (n=16), Bax+/−; SmoA1 mice (n=18), 

and Bax−/−; SmoA1 mice (n=15). Deletion of Bax significantly altered the rate of 

symptomatic tumor formation (P<0.0000001; Log-Rank test), increasing tumor frequency 

and reducing tumor latency.
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Figure 5. Tumors in Bax−/− mice displayed markedly different pathology, with increased 
heterogeneity, reduced proliferation, absence of apoptosis and increased differentiation
A,B) Comparison of H&E stained sagittal sections of cerebella from tumor-bearing Bax+/+ 

(A) and Bax−/− (B) mice. Rostral invasion of tectum (arrowhead) was consistently noted in 

Bax−/− mice and never in Bax+/+ or Bax+/− mice. C) Bax+/+ tumor exhibited typical, 

repetitive pathology, with small round cells with little cytoplasm. D) Heterogeneous 

histology in a Bax−/− tumor included both rests of small round blue cells (red arrows) and 

regions of cells resembling granule neurons (blue arrows) as well as abundant neuropil 

(white arrows) E–J) Analysis of Bax+/+ (E–G) and Bax−/− (H–J) medulloblastomas by IHC 

for PH3 (E,H), cC3 (F,I) and NeuN (G,J) demonstrated reduced proliferation, reduced 

apoptosis and increased differentiation in tumors with Bax deletion. K) Quantitative 
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comparison of cells expressing PH3, cC3 and NeuN in a set of 3 Bax+/+ and 3 Bax−/− 

medulloblastomas. L,M) Adjacent paraffin sections of a representative tumor from a Bax−/−; 

ND2:SmoA1 mouse labeled by IHC with hematoxylin counterstain demonstrate Bax−/− 

medulloblastoma cells invading the adjacent tectum include both NeuN+ (L) and PCNA+ 

(M) populations. Scale bars represent 1000 μm (A,B), 100 μm (C–J), or 200 μm (L,M).
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Figure 6. Tumorigenesis in the presence of Bax requires specific adaptations that were not 
observed in Bax-deficient medulloblastomas
A) H&E stained sagittal sections of cerebella from Bax+/+ and Bax−/− ND2:SmoA1 mice at 

P22 show hyperproliferative, preneoplastic lesions in the EGL with adjacent areas of normal 

cerebellum. B) Representative Western blot comparing Bax, Bcl-2, Bcl-XL, Mcl-1, full 

length Caspase 3, cC3, p-27 and Cyclin D2 in whole cerebella from Bax+/+ and Bax−/− 

ND2:SmoA1 mice at P22 and in medulloblastomas from ND2:SmoA1 with Bax genotype 

indicated. β-Actin serves as a loading control and for each protein analyzed, while Cyclin 

D2 serves as a marker of proliferation. C,D) Representative IHC for Bcl-2 (red) on 

medulloblastoma sections demonstrated abundant Bcl-2 protein in tumors with intact Bax 

(C), and absence of Bcl-2 expression throughout Bax−/− tumors (D), with Bcl-2 in white 

matter adjacent to the tumors (white arrows) serving as an internal positive control. E) 
Tumors with intact Bax consistently demonstrated reduced p27, demonstrated by IHC (red), 

with foci in which p27 was localized to the cytoplasm and excluded from the nucleus (white 
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arrows), causing poor correspondence between red p27 staining and blue nuclear stain. F) 
IHC for p27 (red) demonstrates that p27 protein was not excluded from nuclei in Bax-

deficient tumors, causing nuclei to label with both red and blue (DAPI). Scale bars represent 

100 μm (A,B), 200 μm (C,D) or 50μm (E,F). G) Quantification of fraction of p27+ cells 

(left) and p27+ cells with nuclear exclusion of p27 protein (right) in Bax+/+ and Bax−/− 

tumors.
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Figure 7. Consistent Expression of Bax, and variable expression of Bcl-2, p27 and cC3 in human 
medulloblastoma samples
A) low-magnification images of a representative region of a medulloblastoma TMA, 

demonstrating expression of indicated protein by IHC in adjacent samples from 6 different 

patients. Bax, Bcl-2 and cC3 are demonstrated in brown, while p27 is demonstrated in red 

fluorescence, and nuclei are counterstained blue. Scale bars represent 250 μm. B) Range of 

expression of Bax, Bcl-2, p27 and cC3 demonstrated in higher-magnification representative 

images. For Bax, Bcl-2 and cC3, top panel shows a representative sample with relatively 

high expression and bottom panel shows a representative sample with relatively lower 

expression of indicated protein. For p27, top panel demonstrates a core with nuclear 

localization, while the bottom panel shows a sample with cytoplasmic p27 that is excluded 

from the nucleus. Scale bars represent 200 μm. C) Box and whiskers plots demonstrating 
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mean (line), 25th–75th percentiles (box), and range (error bars) of percent positive cells for 

each protein. D) Box and whiskers plot of fraction of p27+ cells with nuclear exclusion of 

p27 protein. E) Expression of Bcl-2 correlated inversely with apoptosis, measured by IHC 

for cC3.
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