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Sampling strategies for rare variant tests in
case–control studies

Sebastian Zöllner*,1,2,3

Advances in sequencing technology allow assessing the impact of rare variation on common disorders. For this purpose,

methods combine rare variants across a gene and compare an aggregate statistic between cases and controls. However,

sequencing many individuals is costly. Hence, it is necessary to identify case samples that are most likely to result in powerful

tests under realistic model assumptions. Power can be increased by selecting cases that are highly likely to carry risk variants.

As rare variants that contribute to the heritability of a disease co-segregate among affected family members, selecting cases

that have affected family members may increase the power of rare variant tests considerably. Here I compare sequencing

random cases to cases ascertained to have affected family members. I quantify the power of the different approaches and

provide criteria for sample selection under different models of inheritance. Under a model of multiplicative gene–gene

interaction, a sample of random cases has to be 2–16-fold larger to achieve the same power as a sample of cases ascertained

to have affected family members. However, in traits with high heritability this power gain can be reduced or even reversed

under models of additive gene–gene interaction. Hence study designs should depend on the studied disease’s heritability and

on the available sample size. I also show that selecting cases that share both chromosomes identical by

descent with an affected sibling at candidate regions can result in a further power gain.
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INTRODUCTION

Genome-wide association studies have successfully identified many
common variants that contribute to the risk of common disorders.
However, identified variants have not explained the estimated heri-
tability of most diseases and rare variants are now explored as likely
contributors to disease risk.1 Recently, functional rare variants have
been identified in multiple genes that had previously been implicated
by GWAS analysis2 and implicated new genes as well.3 Advances in
sequencing technology now allow calling rare variation in large popu-
lation samples of cases and controls on a genome-wide scale. Many
studies use these data to assess the contribution of rare variation
to the heritable risk of common disorders and to identify novel risk
genes. However, single-marker tests of variants with low minor-allele
count typically have insufficient power. To overcome this challenge,
burden methods test genomic regions (typically genes) by combining
putatively functional rare variants (eg missense variants) into aggregate
statistics whose value is then compared between cases and controls.4–7

As sequencing studies are still costly, careful selection of sequenced
samples is necessary to maximize power. Most genes only carry a
small number of missense/nonsense alleles. Thus large sample sizes
are required to achieve adequate power in case-control designs.8

Studies can increase power by increasing the frequency difference of
risk variants between cases and controls. This strategy has been
successfully applied to quantitative traits such as plasma low-density
lipoprotein levels9,10 by selecting individuals from the extremes of the
phenotypic distribution.

The equivalent strategy for binary traits such as disease affection
status is selecting cases with multiple affected relatives.11 Families with
multiple affected relatives are more likely to segregate one or more
risk variants and therefore cases sampled from such families are more
likely to carry risk variants than random cases. This sampling method
has been proposed in the past for common variants,12–14 but the
benefit for common variants with low effect size (odds ratio o1.2) is
limited. As rare variants are expected to have higher effect sizes
than common variants, gains from such strategies may be
substantial.15 However, such gains depend on underlying models of
gene–gene interaction.13,15

Several features affect family-based designs for rare variants. First,
little is known about the effect size distribution of rare variants.
Presently, only a lack of linkage findings for most common complex
diseases provides an upper bound on effect size. Second, each locus
likely only contributes little to the overall heritability of a trait. Hence
it is important to explore several models for interaction between the
locus of interest and a large number of loci in the remaining genome.
Third, when considering rare variants, it is necessary to model allelic
heterogeneity, as each locus will carry multiple risk variants with
differing effect sizes.

Here I explore a strategy of selecting cases conditional on having
one affected relative. I develop closed-form equations that allow
calculating the power of a burden test for a general model of rare risk
variants where the effect sizes of variants at a locus are randomly
distributed. On the basis of these equations, I examine the power of
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burden test approaches under a wide range of scenarios consistent
with an absence of linkage findings. I show that samples of cases
collected conditional on having affected family members substantially
outperform samples of random cases. This power gain depends on the
distribution of effect size across risk variants. For realistic effect sizes
the sample of random cases has to be 2–16-fold larger to achieve the
same power as a sample of cases ascertained to have an affected family
member. However, the gain in power is depended on the underlying
model of gene–gene interaction. For models of additive interaction,
the actual benefit of sampling conditional on affection status depends
on the overall heritability of the trait.

I also consider re-sequencing studies that target candidate regions.
For single regions, selecting cases that share the target segment with
an affected family member further increases power. Selecting cases
conditional on sharing two chromosomes with an affected family
member can result in an increase in power equivalent to sequencing
410 times as many random cases.

MATERIALS AND METHODS
In the following, I calculate the summed frequency of rare risk variants at one

locus of interest in cases sampled to have an affected relative, and from that

frequency, the power of a burden test to identify this locus. To model linkage

disequilibrium, I consider all haplotypes of risk variants at a locus rather than

focusing on individual variants. By modeling the effect size of each haplotype

as a random variable, haplotypes with multiple risk variants can be represented

by having higher than average effect sizes. The overall heritability of the trait is

affected by an unspecified number of unlinked loci. I consider two models for

interaction between the genome and the locus of interest: a multiplicative

interaction model under which each locus contributes independently to the

heritability and an additive model.16

Genetic model
Assume a trait with prevalence K. For a pair of relatives with relationship status

R, the probability of both relatives being affected is KKR. I assume no

inbreeding in either of the affected relatives. At the locus of interest, rare risk

variants segregate in m distinct haplotypes h1, y, hm; each haplotype carries

an unspecified number of risk variants. Let Pr(hihj) indicate the probability of

observing haplotypes hi and hj in an individual.

Sampling conditional on affected relatives
Let A indicate an affected individual and AAR indicate a pair of affected

individuals with relationship R. The probability of genotype hi,hj in a case can

be calculated by Bayes’ Law:

Pr hihj j A
� �

/ Pr A j hihj

� �
Pr hihj

� �
: ð1Þ

When sampling cases conditional on having one affected relative of relation-

ship status R, the probability of observing genotype hihj in the index

individual, is

Pr hi j AARð Þ / Pr AAR j hihj

� �
Pr hihj

� �
ð2Þ

To calculate Pr(AAR|hihj), I sum over all possible genotypes hkhl of the

affected relative:

Pr AAR j hihj

� �
¼
Xm

k;l

Pr AAR j hihj; hkhl;R
� �

Pr hihj

� �
Pr hkhl j hihj;R
� �

:

ð3Þ
Pr(hkhl|hihj,R) is calculated by conditioning on the number of chromosomes

S shared identical by descent (IBD) by the relative pair. Pr(AAR|hihj,hkhl)

depends on the genetic model at the locus and the model of interaction with

unlinked loci in the rest of the genome.

Gene–gene interaction
Consider an arbitrary number of risk loci that segregate independently of our

locus of interest and result in a total of t multilocus genotypes. If multilocus

genotype gx, xA1, y, t has frequency Pr(gx), the probability of an individual

being affected is

Pr A j hihj

� �
¼
Xt

x¼ 1

Pr A j hihj; gx

� �
Pr gxð Þ ð4Þ

and the probability that a pair of relatives both are affected is:

PrðAAR j hihj; hkhl;RÞ¼Xt

x;y¼ 1

PrðA j hihj; gxÞPrðA j hkhl; gyÞPrðgxÞ Prðgy j gx;RÞ
ð5Þ

Assume we can separate the overall penetrance Pr(A|hi,hj,gx) into the

penetrance component o(hihj) of genotype hihj and the penetrance component

O(gx) of gx. Interactions between loci in the remaining genome are then

captured by O. The contribution to prevalence of this locus is then defined16 as

KL¼
X

ij

Pr hihj

� �
o hihj

� �
and the locus’ contribution to the recurrence risk (RR) among a pair of

relatives is

KLKLR¼
Xm

i

Xm

j

Pr hihj

� �
o hihj

� �Xm

k

Xm

l

Pr hkhl j hihj

� �
o hkhlð Þ

" #

The joint contribution of the rest of the genome to the prevalence can then be

defined as KG¼
P

x
Pr gxð ÞO gxð Þ and the contribution to the RR as

KGKGR¼
Xt

x;y¼ 1

p gxð Þp gy j gx

� �
O gxð ÞO gy

� �
:

As shown below, Pr(gx), O(gx) and Pr(gy|gx, R) do not need to be specified

beyond the overall prevalence and relative RR for the models under

consideration.

Multiplicative interaction model. Under multiplicative interaction between the

locus of interest and the remaining genome

Pr A j hihj; gx

� �
¼o hihj

� �
� O gxð Þ: ð6Þ

The overall penetrance of the disease is then16 K¼KLKG and

KKR¼KGKGRKLKLR. By applying the definition (6) and factoring out o(hihj)

in (4),

Pr A j hihj

� �
¼KG � o hihj

� �
:

By solving (5) in a similar manner,

Pr AAR j hihj; hkhl

� �
¼o hihj

� �
o hkhlð Þ � KGKGR: ð7Þ

As KGKGR is present only as a multiplicative constant in this calculation, it will

cancel when normalizing in (2) and thus it does not affect the probability of

observing hi.

Additive interaction model. Under additive interaction between the locus of

interest and the remaining genome,

Pr A j hihj; gk

� �
¼o hihj

� �
þO gkð Þ: ð8Þ

The overall penetrance is K¼KLþKG. The probability of observing an

affected relative pair is16 KKR¼KGKGRþKLKLRþ 2KGKL. Thus, KG¼K�KL

and KGKGR¼KKR�KLKLR�2KL(K�KL).

The probability of being affected conditional on carrying haplotypes hi,hj is

then Pr(A|hihj)¼KGþo(hihj) and the probability of an affected relative pair

conditional on carrying haplotypes hi,hj,hk,hl is

Pr AAR j hihj; hkhl

� �
¼o hihj

� �
o hkhlð Þþ o hkhlð Þþo hihj

� �� �
KGþKGKGR

Effect size model
Let a proportion p of haplotypes carry one or more risk variants. Let

HA{0,1,2} indicate the number of haplotypes with at least one risk variant

in a sampled individual. The power of a burden test depends on the frequency

of rare variant carrying haplotypes in cases, which is calculated from Pr(H|A)

in random cases and Pr(H|AAR) in selected cases. These probabilities can be
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calculated by rewriting (2) and summing over the expected sharing S.

P H j AARð Þ /
X2

S¼ 0

P S j Rð ÞP Hð ÞP AAR j H; Sð Þ: ð9Þ

The calculation depend on the penetrance model for o(hihj) are described below.

Multiplicative effect size model. The relative risk oi of haplotype i carrying a

risk variant is sampled from a distribution f with expectation m and variance

s2. The relative risk of haplotypes not carrying a risk variants is 1. For all

haplotypes i,j, I assume o(hihj)¼oioj. As shown in Supplementary

Information, all penetrances depend only on
R
of oð Þdo and

R
o2f ðoÞdo,

hence only the two moments of o need to be specified. As the effect of all

haplotypes is sampled from a distribution that is only specified by its first two

moments, I assume without loss of generality, that each haplotype occurs only

once in the population and modify the variance accordingly. Assuming Hardy–

Weinberg Equilibrium (HWE) in the underlying population, the expected

contribution to prevalence of the risk locus KL is then

E KLð Þ¼ 1þ p m� 1ð Þð Þ2

The expected contribution to RR KLKLR among a pair with relationship R is

E KLKLRð Þ¼ Pr S¼ 0 j Rð ÞE KLð Þ2þ Pr S¼ 1 j Rð ÞE KLð Þ 1þ p m2þ s2� 1
� �� �

þ Pr S¼ 2 j Rð Þ 1þ p m2þs2� 1
� �� �2

:

Details of calculating Pr(AAR|H,S) and proofs for the above equations are

presented in Supplementary Text S1.

Additive effect size model. A proportion p of haplotypes carry risk variants

and the risk contribution oi of each risk haplotype i is sampled from a

distribution f with expectation m and variance s2. The remaining haplotypes

have risk contribution is 0. For all haplotypes i,j, let o(hihj)¼oiþoj. Again

assuming each risk haplotypes occurs only once and that risk haplotypes are in

HWE in the general population, E(KL)¼ 2pm and

E KLKLRð Þ¼ Pr S¼ 0 j Rð Þ � E KLð Þ2þ Pr S¼ 1 j Rð Þ � 3p2m2þ p m2þs2
� �� �

þ S¼ 2 j Rð Þ � 2pðm2 þs2 þ pm2Þ:

Details for this derivation and for calculations of Pr(AAR|H,S) are presented in

Supplementary Text S2.

Other modeling concerns

Mis-specification. Markers that are included in a burden test without affecting

the trait of interest can be modeled by adjusting the mean and variance of the

effect size of functional variants. Assume a proportion (1�q) of haplotypes

without risk variants is falsely included in the test statistic. The remaining

haplotypes have an effect size sampled from a distribution with mean mF and

variance s2
F . Then, the mean and variance of included haplotypes is m¼ qmF in

the additive model or m¼ 1þ q(mF�1) in the multiplicative model, and the

variance is s2 ¼ qs2
F þ q 1� qð Þm2

F in the additive model and

s2¼ qs2
F þ q 1� qð Þ mF � 1ð Þ2 in the multiplicative model.

Power calculations. The modeled test uses a w2 test of independence in a

sample of NA affected individuals and NU unaffected individuals to compare

the number of haplotypes with at least one rare risk variant in affected

individuals CA and the number of haplotypes with at least one risk variant in

random individuals CU with E(CU)¼ 2pNU. Under the null hypothesis of no

effect, E(CA)¼ 2pNA. Under the alternative, E(CA)¼NAE(H|A) if cases are

sampled at random from the population, or E(CA)¼NAE(H|AAR) if cases are

sampled conditional on having an affected relative. The expectations for H can

be calculated using equation (9) and from these expectations, the noncentrality

parameter under the alternative is obtained. On the basis of the noncentrality

parameter, I calculated the sample size required to achieve 80% power at a false

positive rate of 10�6 for a range of parameters. This false positive rate

maintains an experiment-wide type 1 error of 0.05 after Bonferroni correction

for testing 50 000 regions in the genome and thus indicates genome-wide

significance in a burden test.

Linkage test. To identify parameter settings that are consistent with an

absence of linkage findings, I calculated the power of a genome-wide linkage

scan using N affected sibpairs. On the basis of the model described above, the

probability of sharing 0,1, or 2 alleles IBD in a pair of affected siblings

conditional of the parameters p, m, s2 can be calculated. Using those

probabilities, I calculated the probability of the observed sharing being

significantly higher than 1 at a genome-wide17 significant a¼ 10�5.

Sampling conditioning on sharing
If cases are selected from affects sib-pairs, it is possible to only select cases that

share two chromosomes IBD with the other sibling. Then, the power of a

burden test depends on E(H|AAR,S¼ 2), which can be calculated with the

equations given above. As for rare variants Pr(H¼ i|AAR,S¼ 2)4Pr(H¼
i|AAR) for i¼ 1,2 and po 1

mþ 1 (multiplicative model; m is the mean relative

risk) or po0.5 (additive model). Thus E(H|AAR,S¼ 2)4E(H|AAR), therefore

sampling conditional on sharing two haplotypes IBD has more power than

sampling based on having an affected relative.

RESULTS

In the following, I compare using cases that are randomly selected
(random cases) to cases that are selected based on having an affected
sibling (selected cases) under a model where multiple risk variants
with different effect sizes occur at a locus of interest. The distribution
of effect sizes is specified only by its mean and variance. Moreover, I
consider multiplicative and additive models of gene–gene interaction.
These models are quite general; they are unaffected by the precise
genetic architecture in the remaining genome. Finally I consider a
study design that tests a region of interest by selecting cases from
sibpairs that share two chromosomes IBD.

Multiplicative interaction
Assuming a model of multiplicative interaction (which could also be
considered as a model of no interaction), I calculated the summed
risk allele frequency in cases pA for a random sample of cases and for
a sample of cases selected to have an affected sibling assuming different
summed population allele frequencies p and varying the mean relative
risk m and the variance s2 of the effect size distribution (Figure 1).
Under this model, the power in a design using selected cases is
independent of the remaining genome and the population prevalence
(see Materials and Methods). In samples taken from random cases,
pA increases almost linearly with f and m for small values of p
(Figure 1a). In selected cases, pA increases much faster. For example risk
variants with p¼ 0.01 and m¼ 3 have a frequency of 0.029 in random
cases and 0.057 in selected cases. The variance of risk between variants
has no effect on pA in random cases. In selected cases, pA increases
considerably with increasing variance (Figure 1b). This increase in
frequency is observed for all values of p and m. Especially for low m,
the frequency of haplotypes with risk variants can double in cases when
comparing a model with variance 10 to a model with variance 0.

Using the pA shown in Figure 1, I evaluated the performance of a
simple burden test at a false positive rate of 10�6 (see Materials and
Methods) by calculating the sample size required to achieve 80%
power. I also calculated the power in a linkage study of 1000 affected
sibpairs and indicated the range of parameters that is consistent with
low power (o10%) for positive findings using linkage. For samples of
random individuals, the required sample size decreases with increasing
relative risk m and with increasing summed minor allele frequency
p (Figure 2a). However, high values of p and m are not consistent with
the absence of strong linkage findings. In general, m44 and p40.01
result in linkage power 410%. For parameter settings consistent with
low linkage power, large sample sizes 4400 random cases and
controls are required for adequate power to achieve genomewide
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significance (a¼ 10�6), regardless of p and m. For effect sizes more
comparable with what is seen in common variants (m¼ 1.5), sample
sizes of 8300 random cases are required even for large values of
p¼ 0.02.

Sampling selected cases decreases the required sample sizes
substantially (Figure 2b). For the lowest effect sizes considered
(m¼ 1.25), using selected cases reduces the required sample size to
achieve the same power by a factor of 2.5 regardless of p. With
increasing effect sizes, the benefit of using selected cases increases
further. For m¼ 1.5, p¼ 0.02 the required sample size of selected
cases is 3150; compared with 8100 random cases; for m¼ 2, p¼ 0.02
the required sample size is 840 selected cases compared with 2500
random cases. The relative benefit of using selected samples increases
faster for small values of p. For the maximum effect size parameters
consistent with the absence of linkage, the reduction ranges from
3.2-fold (p¼ 0.05) to 5-fold (p¼ 0.005).

As the variance of effect sizes across risk variants s2 does not affect
pA in random cases, the power of a burden test using random cases is
independent from s2. On the other hand, when sampling selected
cases, pA increases as s2 increases and therefore the required sample
size decreases (Figure 3). As s2 gets large this power is mostly
determined by p and s2, and converges to the same value for all m.
However, as s2 increases, so does linkage power, hence s2420 is
incompatible with an absence of linkage findings for all parameter
setting considered here. But even for smaller s2 the reduction in
required sample size in models with high variance can be

considerable. For a model of moderate effect size and low cumulative
frequency (m¼ 2, p¼ 0.005) the required sample size of random
cases is 9750. If risk variants included in the test have the same effect

Figure 2 Sample size required for 80% power for genome-wide significant burden test assuming different mean genotype effect. Each line represents a

summed population frequency; the X represents the genotype relative risk at which a region would obtain 10% linkage power (a¼10�5). (a) The power

generated by sampling random cases, (b) represents the ratio of sample sizes when sampling random cases to sampling cases conditional on having an

affected sibling.

Figure 1 Summed risk allele frequency in cases. (a) Summed risk allele frequency in cases dependent on average effect sizes and summed population

allele frequencies of risk variants. Samples drawn from random cases are shown as broken lines; samples drawn conditional on having an affected sibling

are shown as solid lines. (b) Summed risk allele frequency in cases dependent on variance of effect sizes between risk variants. Broken lines represent a

summed population frequency of risk variants p¼0.02, double lines show results for p¼0.01 and simple lines show results for p¼0.005. Each color

represents a mean multiplicative risk for each haplotype.

Figure 3 Sample size required to achieve 80% power in a genomewide

significant burden test dependent on the variance of effect size among risk

haplotypes. Broken lines represent results generated for a summed

population allele frequency p¼0.02; solid lines show results for p¼0.005.

The X represent the parameter setting for 10% linkage power.
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size s2¼ 0, the required selected sample size is 3230. For higher
heterogeneity among effect sizes consistent with an absence of linkage
(s2¼ 10), the required sample size of a selected sample is 590, a
16-fold reduction in sample size. Such a s2 could for example be the
result of most (94%) of variants having a relative risk of 1.2, whereas
the remaining 6% of variants have a relative risk of 15.

An important contributor to s2 is the false inclusion of nonfunc-
tional variants in the burden test. In practice, some variants included
in a burden test at a true risk locus will not affect the trait of interest,
thus decreasing the power of burden tests regardless of sampling
strategy. However, including variants with no effect on disease risk
also increases the variance of the effect size, thus increasing the power
of a burden test in a sample of selected cases. Therefore, false
inclusion of nonfunctional variants has a reduced power loss in
designs using selected cases. This results in a higher benefit of using
selected cases when a large proportion of variants are falsely included
(Supplementary Figure 1), especially for variants with high effect size
For m¼ 5 (blue line), the sample size of random cases is 4.4 times the
sample size of selected cases for 0 false inclusion. This ratio increases
to 7.2-fold for 80% false inclusion. For m¼ 2, this ratio increases
from 3-fold to 3.7-fold over the same range. Note that the random/
selected ratio increases, although m decreases when false inclusion
increases (see Materials and Methods). With constant s2 decreasing

m would result in a reduction in random/selected ratio (Figure 2b).
However, as the misspecification increases, the variance of the relative
risk also increases, resulting in the sample size ratio increasing instead.
Hence, the benefit of using selected samples increases with increased
number of falsely included variants.

Effect of relationship
So far I considered only the benefit of sampling affected individuals
conditional on having an affected sibling. For comparison, I
calculated the required sample size for sampling cases based on
having an affected relative separated by up to six meiosises in a
unilineal relationship. Figure 4 shows the sample size required to
achieve 80% power in a genome-wide study for summed risk allele
frequency p¼ 0.01, for other frequencies the results are similar. The
benefit of conditioning on an affected relative is strongly dependent
on the number of meiosises between the relatives. As sharing drops
between distantly related relatives, the expected reduction in sample
size from selected cases converges toward the sample size required
from unconditional samples (black dotted line). For relationship-
pairs split by 44 meioses, the benefit of conditioning on an affected
relative is barely noticeable, resulting in o1.3-fold reduction in
sample size for all m.

For cases sampled from relationships where both affected indivi-
duals share 50% IBD (siblings and parent-offspring pairs), the
reduction in sample size is identical for mo4. Only for 44, the
average IBD sharing of siblings exceeds the IBD sharing between
parents and offspring. Therefore, linkage scans start having power for
these values and conditioning on affected siblings performs better
than conditioning on affected parents.

Additive model
In the additive model of interaction, the probability of observing a
phenotype is the sum of the locus specific contribution and the contri-
bution of the remaining genome. The additive risk contribution at the
locus of interest is distributed with mean m and variance s2. Under this
model, pA will depend on the RR between the relative pair (see Materials
and Methods) in addition to p, m and s2. For diseases with low
RR¼ 2 the frequency of risk variants in selected cases is slightly lower
than in random cases for mo2 but it increases much faster with m
than the frequency in random cases (Figure 5a). For diseases with
higher RR, pA in selected cases is lower than pA in random cases for a
wider range of average effect sizes. This effect of heritability is
reflected in the sample size requirements of burden tests using
selected cases and random cases (Figure 5b). For diseases with

Figure 4 Benefit of conditioning on affected relatives with different

relationships for a range of average genotype relative risk (horizontal axis).

Figure 5 Family-based sampling on an additively interacting locus. I modeled a single locus with summed population frequency p¼0.01 and a prevalence

K¼0.01. The X represent the parameter setting with 10% linkage power. Results are shown for three diseases with overall recurrence risks (RR) 2 (blue

line), 4 (red line) and 8 (yellow line), as well as for random samples (black line). (a) Summed risk allele frequency in cases. (b) Sample size required for

80% power for genome-wide significant burden test.

Sampling strategies for rare variants
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RR¼ 2, the sample size requirements using random samples are
similar or lower. For a disease with RR¼ 4, the power of using
selected cases is smaller than the power of using a random cases for
mo0.045 and larger for bigger additive risk contributions. For highly
heritable diseases (RR¼ 8), using selected cases is only advantageous
for m40.13. Note that the linkage power at a locus also depends on
the overall heritability, hence for large RR, larger values of m are
consistent with the absence of linkage.

Sampling conditional on sharing
When exploring specific regions in the genome, cases can be collected
conditional on their degree of sharing with the affected family
member. Table 1 compares the expected values of pA in a sample of
unrelated cases from affected sibpairs to the expected values of pA in
cases that share 2 chromosomes IBD at the locus of interest. On the
basis of these values of pA, I calculated the power in a sample of 1000
cases and 1000 controls for m between 1.5 and 3. In individuals
sampled to be IBD 2, pA is notably higher than pA in cases sampled
conditional on having an affected sibling only (Table 1). This pA is in
turn higher than pA in random cases (Figure 1). Hence cases sampled
conditional on IBD status have substantially higher power in an
association test. For example, in a model with m¼ 2.5 and p¼ 0.005,
the power of a study of 1000 random cases and 1000 controls is 0.002,
although the power in a study collecting cases conditional on having
affected relatives is 0.345 and the power of a study collecting cases that
share two chromosomes IBD with an affected relative is 0.935.

DISCUSSION

Burden tests are expected to identify new genes for many common
complex diseases. I have shown that for the rare variant allele
frequencies observed in many genes8 such tests likely require large
sample sizes of at least several thousand cases and controls to achieve
genome-wide significance. Further, I have discussed designing more
powerful case–control studies of rare variation by sampling cases with
a family history of being affected. In particular, I showed that samples
with one affected close relative carry substantially more risk alleles
than random samples. This increase in risk allele count increases the
power of burden tests. This benefit is particularly pronounced under a
model of multiple risk variants with varying effect sizes segregating at
the same locus. For plausible models, the required sample of
randomly selected cases is 16 times as large as the sample required
for cases selected conditional on family history and more extreme
models are conceivable. Even for effect size distributions with no
power in large linkage studies, using selected samples results in a
substantial gain in power. This benefit is maximal if cases are sampled

conditional on having affected siblings and becomes progressively
smaller if the second affected individual is more distantly related.
I also considered a scenario where a specific region of interest, eg, a
linkage peak was followed up by sequencing affected individuals
conditional on sharing both chromosomes with an affected sibling.
This strategy is considerably more powerful than just collecting cases
conditional on affected relatives.

Beyond the upper bound on effect sizes provided by the absence of
convincing linkage results, little data exists to support specific
assumptions about the frequency distribution or the effect size
distribution of rare variants affecting common diseases. Therefore, I
developed equations for a general model of risk variants specified only
by the average effect size of risk variants at one locus, the variance of
the effect sizes across risk variants at one locus and the summed
frequency of all risk variants. To calculate power under such a general
model, I used a basic burden test comparable to methods proposed by
Li and Leal5 and Zawistowski et al.4 For more complicated burden
tests, the power gain depends on more specific aspects of the genetic
architecture, such as the allele frequency of individual risk variants.
However, the general conclusions of my results still apply as an
increase of risk allele frequency in case samples will increase the power
of any burden test.

In particular, our results can be extended to models that assume
both protective and causal rare variants at the same locus. Under this
scenario, tests that model both types of variants6,7 may be more
powerful than tests that assume that the effect of all rare variants has
the same direction. Again, calculating the power of such tests requires
a more specific model of rare variant architecture. However, regardless
of the specific architecture, the variance of effect sizes is high if a locus
has both protective and causal variants. Hence, cases sampled
conditional on having affected relatives substantially increase the
number of risk alleles in the case sample under this scenario.

Sampling cases conditional on having affected relatives has been
originally proposed by Risch.11 Li et al13 have shown that this design
can also increase power for single-marker tests of more common risk
variants, however, substantial gains in power are only archived for
relatively high effect sizes (relative risk Z1.4). More recently, Peng
et al14 have shown that for variants with relative risks between 1.2 and
1.4 the benefit of sampling from affected sib-pairs increases with
decreasing allele frequency. Finally Ionita-Laza and Ottman15 studied
the effect of family-based sampling on single-marker tests of rare
variants, alhough focusing on a model of genetic heterogeneity that is
similar to the model of additive penetrance presented here. For
models where all risk variants have the same effect size their
conclusions are similar to my results. Here, I illustrate that the gain

Table 1 Benefit of sampling cases conditional on sharing two chromosomes identical by descent with an affected relative

Summed risk allele frequency in cases Power in 1000 case/1000 controls

Sharing 2 Conditional sample Sharing 2 Conditional sample

m\p 0.005 0.01 0.02 0.005 0.01 0.02 0.005 0.01 0.02 0.005 0.01 0.02

1.5 0.01 0.02 0.04 0.01 0.02 0.04 0.00 0.03 0.27 0.00 0.00 0.04

2 0.02 0.04 0.08 0.02 0.03 0.06 0.21 0.87 1.00 0.02 0.30 0.92

2.5 0.03 0.06 0.11 0.02 0.04 0.08 0.94 1.00 1.00 0.35 0.96 1.00

3 0.04 0.08 0.16 0.03 0.06 0.11 1.00 1.00 1.00 0.90 1.00 1.00

I modeled a disease with prevalence 0.01 and assumed a multiplicative model of interaction with 0 variance of effect size. The first three columns display the cumulative frequency of risk
variants in cases sampled conditional on sharing two chromosomes with an affected sibling for average genotype relative risks varying from 1.5 to 3 and summed allele frequencies in random
individuals of 0.005, 0.01 and 0.02. The second three columns show the same frequency in cases that are sampled conditional on having an affected sibling. The third three columns show the
power in a population study of 1000 cases sharing two chromosomes with an affected sibling and 1000 random controls and the last three columns show the power in a population study of 1000
cases with an affected sibling and 1000 random controls.
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in power from using cases conditional on affected relatives is more
pronounced for rare variants with high effect sizes that for common
variants with low effect sizes. Moreover, I show that the benefit of
family-based sampling is increased substantially under a model where
effect sizes vary between risk variants. This scenario is likely for
burden tests for two reasons: First, burden tests typically aim to
combine the evidence across all missense and nonsense mutations. It
is unlikely that all such variants have the same effect on disease risk.
Second, it is not clear if all variants included in a burden test have any
effect at all; in fact it seems likely that many included variants do not
significantly affect the disease risk. To explain this power gain from
family-based sampling in models with high variance of effect sizes,
consider that in a scenario with intermediate mean effect size and
high variance, some risk variants at the locus of interest will have low
effect size and some variants at the same locus will have high effect
size. A family with multiple affected individuals is substantially more
likely to segregate the variants with high effect size without being less
likely to segregate the variants with low effect size. Thus the overall
number of risk variants observed in samples from high-risk families is
increased.

A common concern when considering family-based sampling is the
possibility of a segregating variant with high effect size that is
oversampled in affected families. Under some models of interaction,
this can in turn result in undersampling of other risk variants.11 This
will result in reduced power to identify other risk loci. As can be seen
in my results, such ‘crowding’ out is not possible under a model of
multiplicative interaction. Under a model of additive interaction such
crowding out only depends on the overall RR among relatives, not on
the effect size of specific variants. Thus, even if no single variant with
high effect size is present, such crowding out is possible in diseases
with high RR between the ascertained relatives. However, it is not
clear how common additive interaction is in rare variants. Presently,
all attempts at replicating findings of non-multiplicative gene–gene
interaction have failed,18 suggesting that between most common
variants multiplicative interaction is often an appropriate model.
Moreover, there are several strategies to avoid crowding out in
diseases with high heritability. First cases can be chosen conditional
on their genotype at known risk variants with high effect size. Second,
selecting more distantly related relatives will reduce the RR.15

Although selecting more distantly related relatives also reduces the
benefit of conditional sampling, it can still result in an increase of
power. A practical concern for family-based sampling designs may be
the ease of ascertaining families. Especially for rare diseases, it may be
very costly to collect families; in such cases the power gain of
sampling families has to be evaluated together with the increased costs
of generating such samples.

In summary, I have demonstrated that under a wide range of
genetic models, sampling cases with affected relatives result in
substantial power gains for rare variant sequencing studies over
designs of sampling random cases and controls. Such power gains
may be necessary to generate genome-wide significant results,
especially if the summed frequency of rare variants is low in many
genes.8 However, in diseases with high sibling relative risk, family-
based sampling may reduce power to detect genomic locations that
interact additively with the remaining genome. Hence for such traits

with high sibling relative risk (Z4), the optimal design depends on
the available sample size. Small random samples (eg, o500 random
cases) likely provide insufficient power to overcome Bonferroni
correction for any locus, regardless of the underlying architecture.
Hence using cases with affected relatives is advantageous as it
increases the power of identifying those loci that interact
multiplicatively. However, when larger case samples are sequenced
for traits with high RR, random samples may be preferable, as power
to map individual loci will be less dependent on the underlying model
of gene–gene interaction. On the other hand, for diseases with low
sibling relative risk (o4), sampling cases conditional on having
affected relatives will almost always result in substantial gains in
power and is thus advantageous over sampling random individuals.
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