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Comprehensive oligonucleotide array-comparative
genomic hybridization analysis: new insights into
the molecular pathology of the DMD gene

Aliya Ishmukhametova*12, Philippe Khau Van Kien3’, Déborah Méchin?, Delphine Thorel3,
Marie-Claire Vincent?, Frangois Rivier®>, Christine Coubes®, Véronique Humbertclaude!-,

Mireille Claustres">? and Sylvie Tuffery-Giraud*2

We report on the effectiveness of a custom-designed oligonucleotide-based comparative genomic hybridization microarray
(array-CGH) to interrogate copy number across the entire 2.2-Mb genomic region of the DMD gene and its applicability in
diagnosis. The high-resolution array-CGH, we developed, successfully detected a series of 42 previously characterized large
rearrangements of various size, localization and type (simple or complex deletions, duplications, triplications) and known
intronic CNVs/Indels. Moreover, the technique succeeded in identifying a small duplication of only 191 bp in one patient
previously negative for DMD mutation. Accurate intronic breakpoints localization by the technique enabled subsequent junction
fragments identification by sequencing in 86% of cases (all deletion cases and 62.5% of duplication cases). Sequence
examination of the junctions supports a role of microhomology-mediated processes in the occurrence of DMD large
rearrangements. In addition, the precise knowledge of the sequence context at the breakpoints and analysis of the resulting
consequences on maturation of pre-mRNA contribute to elucidating the cause of discrepancies in phenotype/genotype
correlations in some patients. Thereby, the array-CGH proved to be a highly efficient and reliable diagnostic tool, and the new
data it provides will have many potential implications in both, clinics and research.
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INTRODUCTION

Mutations in the huge human Duchenne muscular dystrophy gene
(DMD; MIM#300377), which encodes the 427-kDa muscular dystro-
phin protein isoform, result in dystrophinopathies. There is no simple
relationship between the type or the size of the mutations in the
DMD gene and the severity of phenotype, but the reading-frame rule
holds true for 96% of Duchenne Muscular Dystrophy (DMD;
OMIM#310200) and 93% of Becker Muscular Dystrophy (BMD;
OMIM#300376) cases.! As the majority of mutations in DMD are
large deletions and duplications, several dosage-sensitive quantitative
methods mainly focused on discovering mutations in the coding
regions of the gene are commonly used.”? Here we describe the
introduction into the current diagnostic practice and validation
of a high-resolution custom-designed Comparative Genomic
Hybridization array (array-CGH) enabling to interrogate the entire
2.2 Mb genomic region of the DMD gene for copy number variations.
A panel of DMD rearrangements of various type, size and localization
was selected, some of which did not conform to the reading-frame
rule. Eight mutation-negative patients were also analyzed. We
specifically assessed the ability of the custom-designed array-CGH

to detect rearrangements within the DMD gene and the potential
contribution of this method to the identification of breakpoint/
junction sequences.

MATERIALS AND METHODS

Patients

Based on the data available in the clinical and molecular
databases maintained in our laboratory,! we selected 50 patients’ DNA from
previously collected 550 non-related DMD/BMD families (French Ministry of
Health, collection ID: DC-2008-417) dividing them into three groups (Table 1;
Supplementary Table 1). All patients provided an agreement for further
analysis on informed consent form. Eight relatives from four unrelated families
were included to test the reproducibility of the technique. DNA samples of
Marfan patients (two males and one female) with previously identified large
rearrangements in the fibrillin type 1 (FBNI) gene® and no familial history of
neuromuscular disorders, served as gender-matched internal positive controls
for array-CGH.

Array-CGH
The Roche NimbleGen (Roche NimbleGen, Inc., Madison, WI, USA) custom-
designed 12 x 135K format contained 3440 exonic DMD probes, overlapped
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Table 1 Data on the patients included in the study
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Large rearrangements

Complex rearrangements Unknown mutations

Group 12 Group 22 Group 32
n=35 n=7 n=_8
Subgroup 1-1 Subgroup 1-2  Subgroup 1-3 exception
major hot spot minor hot spot to the reading-frame rule Total
Criteria n=16 n=10 n=9 n=>50
Gender
Male 16 8 8 7 5 44
Female 0 2 3 6
Phenotype®
DMD 14 2 5 5 2 28
BMD 0 6 3 2 2 13
IMD 2 0 0 0 1 3
Symptomatic/potential carrier 0 2 1 0 3 6
Patients with rearrangements detected by array-CGH
Deletion/Double deletion* 14 6 1* 0 29
Duplication/Double duplication**/Triplication*** 2 2 3 2F*[A*x* 1 10/4***
Total 16 10 9 7 1 43

2Groups in the study: Group 1, previously identified large rearrangements in DMD: subgroup 1-1, mutations in the major hot spot; subgroup 1-2, mutations in the minor hot spot; subgroup 1-3,
other exceptions to the reading-frame rule. Group 2, previously identified complex rearrangements, more than one alteration found in DMD ("double deletion, “"double duplication, ~*triplication).
Group 3, patients with undetected defect in DMD (by multiplex-PCR, semi-quantitative-PCR, Multiplex ligation-dependent probe amplification, whole-exon sequencing).

bPhenotype: DMD, Duchenne phenotype; BMD, Becker phenotype; IMD, intermediate phenotype; Symptomatic carrier, female with clinical symptoms of any severity; potential carrier, female with

elevated creatine kinase levels.

and shifted on an average of 10 bases, and 19294 intronic DMD probes
interspersed by 100bp on average. Slides were scanned by InnoScan 900 A
(Inopsys, Toulouse, France) and analyzed using the CGH-segMNT algorithm
of NimbleScan version 2.5 software (Roche NimbleGen, Inc.). The predicted
breakpoint location was defined by the positions of the last and first probes
with normal unaveraged value of log,-ratio upstream and downstream from
the corresponding aberration.

PCR/Sequencing across the breakpoints

PCR primers were designed in an average distance of 0.7kb upstream and
downstream of each predicted junction and amplifications were performed
using standard protocols of Promega Master Mix (Promega Corporation,
Madison, WI, USA), Phusion Hot Start High-Fidelity DNA polymerase
(Finnzymes Oy, Espoo, Finland) or LongRange PCR kit (Qiagen, Courtaboeuf,
France). When obtained, amplified junction fragments were sequenced using
the Big Dye terminator version 1.1 Cycle Sequencing Kit (Applied Biosystems,
Courtaboeuf, France).

Bioinformatic analysis

UCSC Genome Browser (http://genome.ucsc.edu) and BLAST program
(http://blast.ncbi.nlm.nih.gov/) were used for the mapping the particular
motifs surrounding the junctions. The Position Converter Interface
in Mutalyzer 2.0 B-8 was applied to convert chromosomal positions
of Mar.2006 NCBI Build 36.1/hgl8 (RefSeq NC_000023.9) to transcript
orientated positions.*

RESULTS

Array-CGH: sensitivity and reproducibility

The array-CGH analysis confirmed all 35 large deletions and
duplications and 7 complex contiguous and non-contiguous rearran-
gements (Figure 1) previously identified in patients from group 1
and 2, giving a 100% detection rate (Table 1, Supplementary Table 2).
The method was also able to detect a hemizygous 191-bp duplication

spanning intron 19-exon 20 junction in one DMD patient (D87,
group 3), which had escaped detection both by MLPA (due to a
probe-target mismatch at the 3’ end of the MLPA probe) and by
genomic sequencing (due to the parameter settings for the sequencing
analysis software used).

Independently derived data from eight tested relatives from four
different families and from duplicate experiments performed for 12
patients showed that the reproducibility of our array-CGH platform
was high, with an average accuracy in the breakpoint localization of
about 700 bp (range 0—4 kb) (Supplementary Table 2). Apart from the
large rearrangements already known and correctly predicted by array-
CGH, we noticed some experimental artefacts (ie data not confirmed
on independent and/or averaged results of array-CGH) in the vicinity
of exons 13, 17, 45, Dp140, Dp71 and intron 67.

Sequence characteristics at the breakpoints

The accuracy of array-CGH breakpoint mapping enabled us to
successfully design primers and obtain the breakpoint sequences in
86% of the patients (37 out of the 42 patients from group 1 and 2,
and 1 patient from group 3) (Table 2). Taking into account that
complex rearrangements would have more than one aberrant junction
in a single patient and excluding familial cases with similar
rearrangements, we expected to find 45 different junction sequences.
In all, 33 of them (73.3%) were correctly identified: all simple
deletions and triplications cases (25/25 and 2/2, respectively), 62.5%
(5/8) of simple duplication but only 20% (2/10) of complex
rearrangement junctions. All breakpoints in unrelated patients were
unique with no clustering, even in the frequently rearranged introns
2, 7 or 44. Microhomology up to 9 bp was evidenced in 60.6% of the
preserved ends of the rearrangement breakpoints (20 cases out of 33).
In nine other cases, insertions up to 25bp represented mostly the
small duplicated parts of sequences surrounding the junctions and
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Figure 1 Array-CGH results in patients with complex rearrangements in the DMD gene. Array-CGH logy-ratio profiles of patients with DMD complex
rearrangements analyzed with segMNT algorithm by NimbleScan ver.2.5 and displayed on SignalMap ver.1.9 software (Roche NimbleGen, Inc.): data for the
signal of each probe were plotted indicating gain or loss of material on the y-axis versus X-chromosomal position of the probes on the x-axis accordingly to
the GenBank NC_000023.9 and the Human Genome reference sequence Mar.2006 NCBI Build 36.1/hgl8 (http://genome.ucsc.edu/). The DMD gene
coordinates on the X-chromosome are indicated at the top (RefSeq NC_000023.9), with exon 1 to 79 from right to left. 5’UTR/3'UTR, DMD 5'/3'
untranslated regions; del, deletion; dup, duplication; tri, triplication; involved exons are indicated.

only four cases did not show any homology. Overall, repetitive
sequences of different classes, such as LINE, LTR, SINE and DNA,
were represented in 32 out of 66 junction ends (48.5%), but there was
a marked difference of their involvement in aberrations of exons 3 to
7 (64.3%; 9/14) compared with mutations in the major hot spot
(39.3%; 11/28). No extensive homology was visible even when
repetitive elements met on the both sides of the junction with one
exception: 90% homology of about 400 bp of two LINE:L1 elements
situated on complementary strands was noted in a distance of 360 bp
and 535bp from the proximal and distal ends of the exons 48-50
deletion junction (D55), respectively (Supplementary Figure 1).

European Journal of Human Genetics

Five out-of-frame deletions of exons 3 to 7 were associated with
BMD phenotype but no specific molecular features were found to
explain the phenotype/genotype discrepancy in these patients. On the
other hand, the two out-of-frame duplications of exons 3 to 7 were
confirmed to be in tandem and corresponded to the severe DMD
phenotype. Among the nine other cases with exception to the
reading-frame rule (5 DMD, 1 symptomatic female and 3 BMD),
our findings brought the explanation of severe DMD phenotype in
one patient (D145) carrying an in-frame deletion of exons 35 to 42.
Sequencing across the junction revealed a complex pattern on genomic
level with putative splice sites in a suitable position to explain the
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167-bp inclusion in the mature transcripts between exons 34 and 43
detected several years ago in the patient, and of unknown origin at that
time (Supplementary Figure 2). Another example of tandem out-of-
frame duplication of exon 44 (D127) also held a compound breakpoint
junction but in this case the 58-bp pseudoexon sequence inserted
between the two duplicated copies of exon 44 on the transcripts,
was originated from a DNA:MERIA element in intron 43 in a distance
of 3kb from the aberrant duplication junction (data not shown).

DISCUSSION

In this study, we present the advent of a high-resolution custom-
designed oligonucleotide array-CGH into clinical practice of a
reference diagnostic laboratory for DMD. This method showed to
be accurate and highly sensitive, cost-effective (price 75-100€ per one
patient per one experiment for reagents and consumables) and able to
detect rearrangements, which are different in type, size and localiza-
tion in a time less than 5 days for one experiment of 12 patients
simultaneously. Based on our practice guidelines for molecular
diagnosis of DMD, we recommend that the results have to be
supported with alternative diagnostic methods.

With our design, we achieved a very high resolution of array-CGH
(<0.2kb) both in males and females and in one case of prenatal
diagnosis. We noticed that rare experimental imperfections around
particular DMD regions (exons 13, 17, 45, Dpl40, Dp71 and
intron 67) might be conditioned by poor hybridization or, in contrast,
partial cross-hybridization of the probes. This fact was conclusive that
the design of the probes is determinant for the reliability of the results
and gives us the clue for the future probe redesigning.

Despite the high incidence of detected alterations in the DMD
gene,5’7 little is known about their causative molecular mechanisms.
In our study, microhomology was present in 60.6% of breakpoints
being comparable to the findings of Mitsui et al (2010)° for the DMD
gene. There were no breakpoint clustering noticed and different
families of known repetitive sequences, whose role has already been
demonstrated®® in other diseases, were found in 48.5% of the
junctions. However, this frequency does not differ significantly from
that of transposable repetitive elements in the human genome (46%)°
and could explain our findings. Finally, no low-copy repeats with
extensive homology that could participate in DNA secondary
structure formation was evidenced except in the 120-kb deletion
junction involving exons 48-50. These observations supports the
microhomology mediated mechanism model, which could be either
non-homologous end-joining (NHEJ) or any alternative replication-
based processes,® in the occurrence of DMD rearrangements.

Although all the deletion breakpoints were obtained, the sequence
of only five duplication and two triplication breakpoints were
acquired, confirming the hypothesis of tandem (‘head-to-tail’) junc-
tion. Six cases including three duplications, two double duplications
and a triplication built in the duplication remained undetected on the
sequence level. Because array-CGH gives only information about size
of copy number gains and losses, but not their exact position and
orientation, we anticipated the difficulties to obtain the duplication/
triplication breakpoints due to their unknown genomic configuration
and possibility of aberrant sequence insertions inside the junctions.
The absence of amplification with different combinations of primers
indirectly tends to confirm this hypothesis.

In conclusion, this large survey of 50 patients confirmed the
previous observations!®~!? that array-CGH is a reliable and effective

tool in detecting simple and complex DMD rearrangements. This
approach offers some advantages over exon-based detection methods
as it can identify pure intronic pathogenic events and it allows precise
delineation of rearrangements, some of which may affect the splicing
process. This is of high importance for the deep family investigation
and a more accurate genotype/phenotype correlations, but also might
be decisive factor for the optimal inclusion of patients in clinical
trials. In general, it could lead to better understanding of the common
fundamental mutational mechanisms, clarifying pathogenesis of
diseases associated with instability in the genome.
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