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Abstract
Context—The unprecedented advances in cancer genetics and genomics are rapidly affecting
clinical management and diagnostics in solid tumor oncology. Molecular diagnostics is now an
integral part of routine clinical management in patients with lung, colon, and breast cancer. In
sharp contrast, molecular biomarkers have been largely excluded from current management
algorithms of urologic malignancies.

Objective—To discuss promising candidate biomarkers that may soon make their transition to
the realm of clinical management of genitourologic malignancies. The need for new treatment
alternatives that can improve upon the modest outcome so far in patients with several types of
urologic cancer is evident. Well-validated prognostic molecular biomarkers that can help
clinicians identify patients in need of early aggressive management are lacking. Identifying robust
predictive biomarkers that will stratify response to emerging targeted therapeutics is another
crucially needed development. A compiled review of salient studies addressing the topic could be
helpful in focusing future efforts.

Data Sources—A PubMed (US National Library of Medicine) search for published studies with
the following search terms was conducted: molecular, prognostic, targeted therapy, genomics,
theranostics and urinary bladder cancer, prostate adenocarcinoma, and renal cell carcinoma.
Articles with large cohorts and multivariate analyses were given preference.

Conclusions—Our recent understanding of the complex molecular alterations involved in the
development and progression of urologic malignancies is yielding novel diagnostic and prognostic
molecular tools and opening the doors for experimental targeted therapies for these prevalent,
frequently lethal solid tumors.

The completion of the cancer genome project has paved the way to great advances in cancer
genetics and genomics that are beginning to affect clinical management and diagnostics in
solid tumor oncology. Molecular diagnostics is now an integral part of routine clinical
management in patients with lung, colon, and breast cancer. In sharp contrast, molecular
biomarkers have been largely excluded from current management algorithms of urologic
malignancies. The need for new treatment alternatives and for prospectively validated
prognostic molecular biomarkers cannot be overestimated. Furthermore, identifying robust
predictive biomarkers that will stratify response to emerging targeted therapeutics is needed.
The following discussion focuses on candidate biomarkers that will soon make their
transition to daily clinical management of patients with urologic tumors.
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UROTHELIAL CARCINOMA OF URINARY BLADDER
Pathogenetic Pathways in Urothelial Carcinoma: Parallels of 2 Distinct Biologic
Phenotypes

Accumulating molecular genetic evidence supports 2 distinct broad pathogenetic pathways
for bladder cancer (BC) development that seem to parallel the contrasting biologic and
clinical phenotypes of superficial (non–muscle invasive) and muscle invasive urothelial
carcinoma. While most invasive urothelial carcinomas are thought to originate through
progression from dysplasia to flat carcinoma in situ (CIS) and high-grade noninvasive
lesions, superficial urothelial lesions are thought to originate from benign urothelium
through a process of urothelial hyperplasia. Progression from superficial to muscle invasive
disease accounts for only a small percentage (10%–15%) of the entire pool of noninvasive
lesions. Genetic instability is the key to the accumulation of genetic alterations required for
progression to muscle invasive bladder cancer (MI-BC).1–4

Clinically, a significant proportion of superficial tumors (pTa and pT1) are deemed to recur
after transurethral resection of the bladder (TURB) with only a minority of cases enduring
progression to high-grade carcinoma that will ultimately progress to MI-BC.

Three primary genetic alterations have consistently been associated with the pathogenesis
pathway of superficial non–muscle invasive bladder cancer (NMI-BC). These include
tyrosine kinase receptor FGFR-3, HRAS,5 and PIK3CA.3,6,7 Alterations in the RAS-MAPK
and PI3K-Akt pathways are in large part responsible for promoting cell growth in urothelial
neoplasia. Activating mutations in RAS lead to activation of mitogen-activated protein
kinase (MAPK) and PI3K pathways. Not surprisingly, activating mutations in upstream
tyrosine kinase receptor (FGFR3) seem to be mutually exclusive with RAS mutations, given
that both signal through a common downstream pathway in urothelial oncogenesis. PIK3CA
and FGFR3 mutations generally co-occur, suggesting a potential synergistic additive
oncogenic effect for PIK3CA mutations.

The pathogenic pathway for MI-BC primarily involves alterations in tumor suppressor genes
involved in cell cycle control, including p53, p16, and Rb.1,4,8 As illustrated in Figure 1,
progression of the subset of superficial BC into higher-grade muscle invasive disease is
similarly based on alterations in p53 and Rb tumor suppressor genes (see Figures 1 and 2).

Prognostic Biomarkers in Superficial Non–Muscle Invasive and Muscle Invasive Urothelial
Carcinoma

Established clinicopathologic prognostic parameters for NMI-BC include pTNM stage,
World Health Organization (WHO)/International Society of Urological Pathology grade,
tumor size, tumor multifocality, presence of CIS, and frequency and rate of prior
recurrences.9 Prognostic parameters that can accurately predict progression in patients with
superficial tumors are actively sought to further facilitate identification of those in need of
vigilant surveillance and an aggressive treatment plan. The latter is especially pertinent in a
disease for which the financial burden and quality of life for patients under surveillance is
significant. Per patient, bladder cancer is the most expensive single solid tumor in the United
States, with a staggering $3 billion dollars estimated annual cost to our health care system.10

Furthermore, given the current poor outcome of muscle invasive disease (60% or less
overall survival rate), markers that can improve prognostication in this group of patients are
equally needed.11–13

As our understanding of molecular pathways involved in urothelial oncogenesis increasingly
comes into focus, the translational field of molecular prognostication, theranostics, and
targeted therapy in BC has sharply gained momentum.14–32 Evidently, a rigorous validation
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process ought to precede the incorporation of such molecular biomarkers in clinical
management. Initial retrospective discovery studies need to be confirmed and validated in
large independent cohorts. The subsequent crucial step is validating the robustness of the
proposed biomarker in a well-controlled, multi-institutional, randomized prospective study.
Such a prospective study should support an additive role for the inclusion of the new
biomarkers over existing management algorithm(s).33,34 It is the lack of the latter crucial
steps in biomarker development that has hindered the streamlining of clinical utilization of
several promising markers in patient management of BC.35,36

Chromosomal Numerical Alteration—Chromosome 9 alterations are the earliest
genetic alterations in both of the above-described divergent pathways of BC development.
They are responsible for providing the necessary milieu of genetic instability that in turn
allows for the accumulation of subsequent genetic defects. Several additional structural/
numerical somatic chromosomal alterations are also a common occurrence in BC. Among
these, gains of chromosome arms 3q, 7p, and 17q and deletions in 9p21 (p16 locus) are of
special interest given their potential diagnostic and prognostic value.37,38 A multitarget
interphase fluorescence in situ hybridization (FISH)–based urine cytogenetic assay was
developed39 on the basis of the above numerical chromosomal alterations and is now
commercially available and commonly used in clinical management. Initially approved by
the US Food and Drug Administration (FDA) for surveillance of recurrence in previously
diagnosed patients with BC, the test subsequently gained approval for screening in high-risk
(smoking exposure) patients with hematuria. The multicolor FISH assay appears to enhance
the sensitivity of routine urine cytology analysis and can be used in combination with
routine cytology as a reflex test in cases with atypical cytology. A sensitivity range of 69%
to 87% and a specificity range of 89% to 96% have been reported with the multitarget
interphase FISH assay.40 With the exception of 1 study,41 the multitarget FISH urine assay
has been shown to be more sensitive than routine cytology. An additional advantage of
urine-based FISH testing could be the anticipatory positive category of patients identified by
such assay. This refers to patients for whom the FISH assay detects molecular alteration of
BC in urine cells several months before cancer detection by cystoscopy or routine cytology.
In the study by Yoder et al,42 two-thirds of the 27% of patients categorized as “anticipatory
positive” developed BC that was detected by cystoscopy up to 29 months later. Such
encouraging results point to the great potential of molecular testing in early detection and
allocation of vigorous frequent follow-up cystoscopy in at-risk patients.43–46

Finally, several recent studies37,38,47–49 have pointed to the potential prognostic role for
multitarget FISH analysis. Maffezzini et al48 were able to demonstrate that low-risk patients
with FISH-positive results, defined as 9p21 loss/chromosome 3 abnormalities, had a higher
rate of recurrence as compared to FISH-negative patients. The recurrence rate was even
greater for patients with a high-risk positive FISH result (chromosome 7/chromosome 17
abnormality). Both Kawauchi et al,37 using bladder washings, and Kruger et al,38 using
formalin-fixed, paraffin-embedded transurethral biopsy samples, independently found that
loss of 9p21 predicts recurrence but not progression in superficial BC. Furthermore, both
Savic et al47 and Whitson et al49 found that urine cytology and FISH in post-BCG (Bacillus
Calmette-Guerin) bladder washings were predictive of failure of BCG therapy in patients
with non–muscle invasive disease. Such a promising prognostic role for multitarget FISH
awaits prospective randomized trial before clinical integration into a practice algorithm.
Clear guidelines for interpretation and test performance parameters in terms of interobserver
reproducibility are also needed.50

Receptor Tyrosine Kinases—Recent studies have pointed to the potential prognostic
value of evaluating the expression of receptor tyrosine kinases such as FGFR3, epidermal
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growth factor receptor (EGFR), and other ERB family members (HER2/neu and
ERBB3)4,21,51–61 in superficial and muscle invasive bladder cancer disease.

FGFR3 mutations are a common occurrence in NMI-BC and can theoretically be used alone
or combined with RAS and PIK3CA oncogenes as markers of early recurrence during
surveillance. Both Zuiverloon et al62 and Miyake et al63 independently developed sensitive
polymerase chain reaction (PCR) assays for detecting FGFR3 mutations in voided urine. A
positive urine sample finding by the assay developed by Zuiverloon’s group was associated
with concomitant or future recurrence in 81% of NMI-BC cases. An even higher positive
predictive value of 90% was achieved in patients with consecutive FGFR3-positive urine
samples. Similarly, Miyake et al63 were able to detect FGFR3 mutations in 53% of their 45
patients and found their assay to be superior to cytology (78% versus 0%) in detecting post-
TURB recurrence in NMI-BC harboring FGFR3 mutations in primary tumors.

Kompier et al7 were recently able to develop a multiplex PCR assay for mutational analysis
detecting the most frequent mutation hot spots of HRAS, KRAS, NRAS, FGFR3, and
PIK3CA in formalin-fixed, paraffin-embedded TURB samples. They demonstrated evidence
of at least 1 mutation in up to 88% of low-grade NMI-BC samples. Hernandez et al64

revealed that FGFR3 mutations were more common among low malignant potential
neoplasms (77%) and TaG1/TaG2 tumors (61%/58%) than among TaG3 tumors (34%) and
T1G3 tumors (17%). On multivariable analysis, mutations were associated with increased
risk of recurrence in NMI-BC.

Van Rhijn et al65 previously proposed a molecular-grade parameter (mG), based on a
combination of FGFR3 gene mutation status and MIB-1 index, as an alternative to
pathologic grade in NMI-BC. Recently, the same group51 elegantly validated their
previously proposed mG parameter and compared it to the European Organization for
Research and Treatment of Cancer (EORTC) NMI-BC risk calculator66 (weighted score of 6
variables including WHO 1973 grade, stage, presence of CIS, multiplicity, size, and prior
recurrence rate). The mG was more reproducible than the pathologic grade (89% versus
41%–74%). FGFR3 mutations significantly correlated with favorable disease parameters,
whereas increased MIB-1 was frequently seen with pT1, high grade, and high EORTC risk
scores. EORTC risk score remained significant in multivariable analyses for recurrence and
progression. Importantly, mG also maintained independent significance for progression and
disease-specific survival (DSS), and the addition of mG to the multivariable model for
progression increased the predictive accuracy from 74.9% to 81.7%.

Several studies have suggested a negative prognostic role forHER2/neu amplification/
overexpression in MI-BC.33,67–69 Most recently, Bolenz et al59 found that HER2-positive
patients with MI-BC were at twice increased risk for recurrence and cancer-specific
mortality on multivariable analyses adjusted for pathologic stage, grade, lymphovascular
invasion, lymph node metastasis, and adjuvant chemotherapy.

p53, Cell Cycle Regulators, and Proliferation Index Markers—Early studies by
Sarkis et al70–72 revealed p53 alterations to be a strong independent predictor of disease
progression in BC (superficial, muscle invasive, as well as CIS). p53 has also been shown to
be predictive of increased sensitivity to chemotherapeutic agents that lead to DNA
damage.73–75 Recent studies have further supported the prognostic role of p5376 in pT1–pT2
tumors of patients after cystectomy, showing an independent role for p53 alteration in
predicting disease-free survival and DSS.

Among other G1-S phase cell cycle regulators, cyclins D3 and D1, p16, p21, and p27 have
also been evaluated as prognosticators in NMI-BC.32,75,77–81 Lopez-Beltran et al77
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confirmed their initial finding75 of the independent prognostic role of cyclin D3 and cyclin
D1 overexpression in predicting progression in pTa and pT1 tumors. Their findings,
however, are in contrast to subsequent findings by Shariat et al,32 emphasizing the need for
further validation in multi-institutional large cohorts of patients.

A synergistic prognostic role for combining p53 evaluation with other cell cycle control
elements such as pRb, cyclin E1, p21, and p27 is emerging in both NMI-BC and MI-
BC.24,26,73,82,83 In a study by Shariat et al,26 patients who have NMI-BC, with TURB
demonstrating synchronous immunohistochemical alterations in all 4 tested markers (p53,
p21, pRb, and p27), were at significantly lower likelihood of sustaining disease-free survival
than patients with only 3 markers. The negative predictive effect was decreased with
decreasing number of altered markers (3 versus 2 versus 1). Similarly, the same group83

later found that combining p53, p27, and Ki-67 assessment in pT1 radical cystectomy
specimens improved the prediction of disease-free survival and DSS.

A similar synergistic prognostic role for the assessment of immunoexpression of multiple
molecular markers (p53, pRb, and p21) was demonstrated by Chatterjee et al24 in patients
undergoing cystectomy for MI-BC. The superiority of multimarker approach compared to
prior single-marker approach certainly merits further assessment.70–72,84 Such multimarker
approach of prognostication could soon be integrated in the standard of care in BC
management once additional multi-institutional prospective trials confirm the above-
mentioned promising findings.

Tumor proliferation index measured immunohistochemically by either Ki-67 or MIB-1 has
been consistently shown to be a prognosticator in bladder cancer.51,65,75,80,85–88 As
mentioned above, tumor proliferation index (MIB-1) in NMI-BC plays a prognostic role as
one of the elements of the mG parameter forwarded by Van Rihjn et al.65 The independent
prognostic role of proliferation index measured by Ki-67 has also been shown. In the study
by Quintero et al,85 Ki-67 index in NMI-BC TURB biopsy samples was predictive of
progression free survival and DSS.

A similar role for proliferation index assessment as prognosticator is established in MI-BC.
Building on initial findings of significance in an organ-confined subset of MI-BC by
Margulis et al,86 a recent report of the bladder consortium multi-institutional trial (7
institutions; 713 patients) again confirmed the role of proliferation index, measured in
cystectomy specimens.87 In the later study, Ki-67 improved prediction of both progression
free survival and DSS when added to standard prediction models, supporting a role for
proliferation index assessment in stratifying patients for perioperative systemic
chemotherapy. This has certainly taken Ki-67 assessment a step closer to clinical
applicability in MI-BC.

Gene Expression and Genomic Analysis—Several recent gene expression studies
have highlighted sets of differentially expressed genes that may play a role in diagnosis and
in predicting recurrence and progression in BC.1,15–17,29,31,89–97 In a landmark study by
Sanchez-Carbayo et al,15 oligonucleotide arrays were used to analyze transcript profiles of
105 cases of NMI-BC and MI-BC. Hierarchical clustering and supervised algorithms were
used to stratify bladder tumors by stage, nodal metastases, and overall survival. Predictive
algorithms were 89% accurate for tumor staging using genes differentially expressed in
superficial versus muscle invasive tumors. Accuracies of 82% (entire cohort) and 90% (MI-
BC) were also obtained for predicting overall survival. A genetic profile consisting of 174
probes was able to identify patients with positive lymph nodes and poor survival.
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Recently, Birkhahn et al29 attempted to identify genes predictive for recurrence and
progression in Ta category by using a quantitative pathway-specific approach in a set of 24
key genes by real-time PCR in tumor biopsy specimens at initial presentation. They found
CCND3 expression to be highly sensitive and specific for recurrence (97% and 63%,
respectively). While HRAS, E2F1, BIRC5/survivin, and VEGFR2 were predictive for
progression by univariate analysis, on multivariable analysis the combination of HRAS,
VEGFR2, and VEGF expression status predicted progression with an impressive 81%
sensitivity and 94% specificity.

In a recent study, Lindgren et al95 suggested that a combined molecular and histopathologic
classification of BC may prove more powerful in predicting outcome and stratifying
treatment. The authors combined gene expression analysis, whole-genome array
comparative genomic hybridization analysis, and mutational analysis of FGFR3, PIK3CA,
KRAS, HRAS, NRAS, TP53, CDKN2A, and TSC1 to identify 2 intrinsic molecular
signatures (MS1 and MS2). Genomic instability was the most distinguishing genomic
feature of MS2 signature, independent of TP53/MDM2 alterations. Their genetic signatures
were validated in 2 independent data sets that successfully classified urothelial carcinomas
into low-grade and high-grade tumors, as well as NMI-BC and MI-BC, with high precision
and sensitivity. Furthermore, a gene expression signature that independently predicts
metastasis and disease free survival was also defined. This clearly supports the role of
molecular grading as a complement to standard pathologic grading.

Mengual et al31 performed gene expression analysis in 341 urine samples from patients with
NMI-BC and MI-BC and 235 controls by TaqMan Arrays (Applied Biosystems, Carlsbad,
CA). A 12+2 gene expression signature demonstrated a staggering 98% sensitivity and 99%
specificity in discriminating between BC and control and 79% sensitivity and 92%
specificity in predicting tumor aggressiveness (NMI-BC versus MI-BC). The signature was
then validated in voided urine samples and maintained accuracy. In an integrated genetic/
epigenetic approach, Serizawa et al94 prospectively performed mutational screening of a set
of 6 genes (FGFR3, PIK3CA, TP53, HRAS, NRAS, and KRAS) and quantitatively assessed
promoter methylation status of 11 additional genes (APC, ARF, DBC1, INK4A, RARB,
RASSF1A, SFRP1, SFRP2, SFRP4, SFRP5, and WIF1) in NMI-BC tumor biopsy
specimens and corresponding urine samples from 118 patients and 33 controls. A total of 95
oncogenic mutations and 189 hypermethylation events were detected. The total panel of
markers provided a sensitivity of 93% and 70% in biopsy specimens and urine samples,
respectively. FGFR3 mutations in combination with 3 methylation markers (APC,
RASSF1A, and SFRP2) provided a sensitivity of 90% in tumors and 62% in urine, with
100% specificity.

With the impending cost and turnaround time advantages of next-generation sequencing
technology, the power of genomic approach in providing a noninvasive diagnostic and
predictive tool should be actively pursued in a prospective large cohort.

Epigenetic Alterations—Epigenetic analysis is also gaining momentum in BC as a
noninvasive diagnostic tool for screening and surveillance. As a prognostic tool, epigenetic
analysis has similarly shown promising potential for patients with BC.94,98–110

In an early study by Catto et al,105 hypermethylation analysis at 11 CpG promoter islands
was performed by methylation-specific PCR (MSP) in 116 bladder and 164 upper urinary
tract tumors. Promoter methylation was found in 86% of all tumors and the incidence was
relatively higher in upper tract tumors than BC. Methylation was associated with advanced
tumor stage and higher tumor progression and mortality rates. Most importantly, on

Netto and Cheng Page 6

Arch Pathol Lab Med. Author manuscript; available in PMC 2012 September 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



multivariate analysis, methylation at the RASSF1A and DAPK gene promoters was
associated with disease progression independent of tumor stage and grade.

The same group,110 using quantitative MSP at 17 candidate gene promoters, found 5 loci
that were associated with progression (RASSF1A, E-cadherin, TNFSR25, EDNRB, and
APC). Multivariate analysis revealed that the overall degree of methylation was more
significantly associated with subsequent progression and death than tumor stage. An
epigenetic predictive model developed with artificial intelligence techniques identified the
likelihood and the timing of progression with 97% specificity and 75% sensitivity.

Among the studies evaluating the diagnostic role of promoter hypermethylation, the study
by Lin et al99 used MSP assay for 4 genes (E-cadherin, p16, p14, and RASSF1A) in primary
tumor DNA and urine sediment DNA obtained from 57 patients with bladder cancer; MSP
detected hypermethylation in the urine of 80% of tested patients. Hypermethylation analysis
of E-cadherin, p14, or RASSF1A in urine sediment DNA detected 85% of superficial and
low-grade bladder cancers, 79% of high-grade bladder cancers, and 75% of invasive bladder
cancers. The study highlighted the great potential of such tests in detecting NMI-BC. A
similar diagnostic role was also found by Cabello et al101 using a novel technology,
methylation-specific multiplex ligation-dependent probe amplification assay, to analyze 25
tumor suppressor genes that have been thought to play a role in BC oncogenesis. The tumor
suppressor genes included PTEN, CD44, WT1, GSTP1, BRCA2, RB1, TP53, BRCA1,
TP73, RARB, VHL, ESR1, PAX5A, CDKN2A, and PAX6. The authors found BRCA1,
WT1, and RARB to be the most frequently methylated tumor suppressor genes, with
receiver operating characteristic curve analyses revealing significant diagnostic accuracies in
2 additional validation sets.

Finally, assessment of promoter hypermethylation is giving additional insights on BC
oncogenesis. Promoter hypermethylation of CpG islands and “shores” controlling
microRNA expression is one such example.103

Ploidy and Morphometric Analysis—Several studies have pointed to the independent
prognostic role of ploidy and S phase analysis in NMI-BC.88,111–117 Ploidy analysis can be
performed by flow cytometry or automated image cytometry and is applicable to urine
cytology specimens as well as biopsy supernatant112 and disaggregated TURB formalin-
fixed, paraffin-embedded specimens.113

In one of the largest studies assessing DNA ploidy in NMI-BC (377 [test set]; 156
[validation set]), Ali-El-Dein et al111 found that stage, DNA ploidy, tumor multiplicity,
history of recurrence, tumor configuration, and type of adjuvant therapy independently
predict recurrence. Recurrence at 3 months, grade, and DNA ploidy were the only predictors
of progression to muscle invasion. The constructed “Predictive Index” model successfully
stratified patients in a second validation set into 3 risk groups. Likewise, Baak et al113 were
able to show ploidy status and S phase, measured by image cytometry, to be strong
independent predictors of recurrence and progression in patients with pTa and pT1 tumors.

Despite all the above-mentioned encouraging data, ploidy analysis still awaits prospective
randomized trials to bring image cytometry or flow cytometry technique into current
standard management algorithms for NMI-BC.

Emerging Biomarkers—Other biomarkers with encouraging but less robust data on their
potential prognostic role in BC include tumor microenvironment markers, such as cell
adhesion markers E cadherin and N cadherin,20,118 and angiogenesis modulators such as
HIF-1a, HIF-2, vascular endothelial growth factor (VEGF), CAIX, and
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thrombospondin-1.18,19,119–123 In addition, our group and others have demonstrated a
potential prognostic role for mammalian target of rapamycin (mTOR) pathway
markers.20,118,124–126 Other markers such as Aurora-A have also been investigated in this
setting.127,128 Finally, microRNA profile alterations will certainly be a new area of heavy
investigation as a noninvasive diagnostic tool and as a prognostic tool in patients with
BC.104,129–131

Targeted Therapy and Predictive Markers in Bladder Cancer—As illustrated in
Figure 1, RTK-HRAS-MAPK, mTOR, as well as angiogenesis pathway of the tumor
microenvironment, offer promising opportunities for new targeted treatments of bladder
cancer.7,25,124,126,132–145 Among receptor tyrosine kinases, HER2/neu has been targeted in a
multicenter phase II trial reported in 2007 by Hussain et al.146 Forty-four patients with
advanced BC who had metastatic disease and evidence of tumor HER2 positivity by either
immunohistochemistry (IHC), FISH, or elevated serum extracellular HER2/neu domain
levels were treated with a combination of carboplatin, paclitaxel, and gemcitabine with the
humanized monoclonal anti-HER2 antibody trastuzumab. Approximately 70% of treated
patients demonstrated partial (59%) or complete (11%) response with a median overall
survival of 14.1 months. A higher response rate was associated with patients with 3+ HER2/
neu expression by IHC or HER2/neu gene amplification by FISH than with those with 2+
HER2/neu expression and FISH-negative tumors. Interestingly, in contrast to the strongly
correlated HER2/neu gene amplification and 3+ IHC HER2/neu overexpression usually seen
in breast cancer, most HER2/neu overexpression in bladder urothelial carcinoma is not
associated with HER2/neu gene amplification.147

A second ongoing randomized phase II trial is evaluating the role of the anti–EGFR
recombinant humanized murine monoclonal antibody cetuximab. Patients with metastatic,
locally recurrent, or nonresectable disease are treated with standard gemcitabine and
carboplatin (GC) chemotherapy with or without cetuximab. By blocking epidermal growth
factor binding to the extracellular EGFR domain, cetuximab inhibits downstream signal
transduction pathway, accounting for its antiproliferative activity in solid tumors. In BC, a
potential added synergistic antiangiogenic effect could be also at play.148,149 A separate
phase II Cancer and Leukemia Group B trial investigated the role of a small molecule
inhibitor of EGFR (gefitinb) in patients with advanced bladder cancer. Gefitinib in
combination with GC had no survival or time to progression advantage over GC
alone.150,151

Based on the results of a phase II single-arm trial152 suggesting a therapeutic advantage for
lapatininb (a tyrosine kinase inhibitor targeting both EGFR and HER2) in EGFR- or HER2-
positive BC tumors, a phase II randomized trial is underway that is looking at the role of
maintenance with lapatininb (versus placebo) for patients with objective response to first-
line chemotherapy who test positive for either marker by IHC or FISH studies.

In an attempt to target BC dependence on angiogenesis, monoclonal antibodies and small
molecule inhibitors of angiogenesis are under investigation in advanced disease. An initial
phase II trial evaluating the role of bevacizumab—a recombinant humanized monoclonal
anti-VEGF antibody—in combination with GC as a first-line therapy in metastatic BC
revealed objective response in two-thirds of patients, with 6 of 43 patients showing complete
response albeit with significant treatment-related toxicity.153 A CALBG (Cancer and
Leukemia Group B) phase III randomized trial for GC, with and without bevacizumab, for
metastatic urothelial carcinoma is now underway, as well as other phase II trials for
bevacizumab in combination with other chemotherapeutic agents such as M-VAC
(methotrexate, vinblastine, adriamycin, and cisplatin).154
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The role of multitarget tyrosine kinase inhibitors in BC has also been investigated with
mixed results. While sorafenib (inhibits Raf kinase, PDGFR-B, VEGFR-2, and VEGFR-3)
phase II trials have failed to show significant objective response, sunitinib (inhibits
VEGFR-2 and PDGFR-B) has shown a more promising effect in a recent phase II trial
involving 77 patients at Memorial Sloan-Kettering Cancer Center (New York, New York) in
which clinical benefits were observed in almost one-third of the patients. A subsequent
randomized double-blind phase II trial is underway, investigating the efficacy of sunitinib in
delaying progression as a maintenance agent in patients with initial response to standard
chemotherapy.155 Finally, given the recent evidence suggesting the presence of mTOR
pathway alterations in BC, a phase II trial evaluating the potential role of everolimus, an
inhibitor of mTOR pathway, in advanced BC is underway.124–126

In summary, as our understanding of the complex molecular mechanisms involved in BC
development has come into a sharper focus, our approaches to diagnosis and management of
bladder cancer continue to evolve. In the not-so-distant future, the current paradigm of
clinicopathologic-based prognostic approach to predicting progression in superficial
BC90,156–158 is to be supplemented by a molecular-guided approach based on some of the
markers listed in Table 1.* Several new targeted therapy agents are under investigation in
randomized trials in combination with standard chemotherapy agents, either as first-line
treatment or on a maintenance basis to prolong response in patients with advanced bladder
cancer.

PROSTATE ADENOCARCINOMA
The continuous debate on whether current serum prostate-specific antigen (PSA)–based
screening strategies are potentially leading to “overtreatment” of a subset of patients with
prostate cancer (PCa) has further fueled the interest in pursuing clinicopathologic and
molecular parameters that may help identify patients with biologically “significant” prostate
cancers.162,163 A parallel pursuit of clinicopathologic algorithms and criteria that can
accurately predict “insignificant” PCa tumors is also gaining momentum. The latter are
generally defined as tumors that lack the biologic potential to affect disease-specific
mortality and morbidity within a given patient life expectancy. As alternative PCa
management approaches, such as “proactive surveillance,” are increasingly offered, accurate
identification of insignificant PCa becomes more pressing.

Meanwhile, prostate needle biopsy continues to be the gold standard for establishing the
diagnosis of PCa in patients with elevated serum PSA levels and/or positive digital rectal
examination results. Established clinicopathologic parameters including clinical stage,
pathologic stage, histologic Gleason grade, and serum PSA levels are the sole guiding tools
of prognostication and disease management in PCa.164–166

Given the existing need to improve upon the prognostic and predictive power of the above-
established parameters, an extensive list of molecular biomarkers have been evaluated in the
last decade for their potential role in enhancing our ability to predict disease progression,
response to therapy, and survival.167–171 These research efforts have been greatly facilitated
by the wealth of information garnered from gene expression array studies and by
sophisticated bioinformatics tools evaluating the overwhelming data sets generated from
genomic, transcriptomic, and proteomic studies. These genomic technologies continue to
yield new markers that can in turn be evaluated for clinical utility in a high-throughput
manner with IHC and FISH-labeled tissue microarrays and state-of-the art image analysis
systems.172–174

*References 9, 11, 24, 35, 36, 83, 105, 110, 121, 123, 124, 126, 159–161.

Netto and Cheng Page 9

Arch Pathol Lab Med. Author manuscript; available in PMC 2012 September 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In the last decade, steps detailing the many genetic alterations involved in the progression of
PCa have been unveiled (Figure 3). The discovery by Tomlins et al175,176 of a recurrent
chromosomal rearrangement in more than one-half of their analyzed PCa cases is ranked as
one of the most notable in solid tumor biology, given the shear prevalence of PCa. The
recurrent chromosomal rearrangements lead to a fusion of the androgen-responsive promoter
elements of the TMPRSS2 gene (21q22) to 1 of 3 members of the ETS transcription factor
family members–ERG, ETV1, and ETV4–located at chromosome bands 21q22, 7p21, and
17q21, respectively. Although the prognostic role of assessing TMPRSS2-ETS
rearrangements in PCa tissue samples has been called into question by recent, well-designed
large cohort studies,177,178 the discovery will no doubt have great implications in terms of
furthering our understanding of the steps involved in the development and pathogenesis of
PCa and will provide a new marker for molecular diagnosis and potential target(s) of
therapy in PCa.179–188 The potential diagnostic and prognostic role of detecting TMPRSS2-
ERG in post–prostate massage urine samples requires further investigation.189–191 Figure 4
(A and B) depicts a commonly used FISH split apart–based approach for the evaluation of
ERG gene fusion.

Recently, commercial anti-ERG monoclonal antibodies became available that make it
possible to use IHC for evaluating ERG protein expression as a surrogate approach to
detecting TMPRSS2-ERG fusion by FISH. We, and others, have demonstrated a strong
correlation between ERG overexpression by IHC and ERG fusion status with rates greater
than 86% for sensitivity and specificity (see Table 2 and Figure 5 [A through F]).
Immunohistochemistry may offer an accurate, simpler, and less costly alternative for
evaluation of ERG fusion status in PCa on needle biopsy and radical prostatectomy
samples.192,193

The perceived need to identify “objective” markers to supplement, or conceivably supplant,
the more “subjective” established histologic parameters has been a major driving force
behind biomarker discovery efforts. It is crucial to recognize and account for the potential
variability that can exist even with the new molecular parameters. Sources of variability
include differences in molecular technique methodologies, tissue fixation and processing,
interobserver and intraobserver variability (in IHC-based biomarkers), and differences in
cutoff points.194 Furthermore, illustration of statistical significance for a particular
biomarker does not alone assure its utility for a given patient. Therefore, a promising
prognostic or therapeutic target biomarker should endure a rigorous “evidence-based”
analysis and be validated in large, prospective clinical trials before transition into standard
practice.195

Emerging Prognostic Factors
Currently pursued prognostic molecular biologic markers in PCa are categorized as College
of American Pathologists Consensus Category III Prognostic Factors.196 Category III
prognostic factors are those still needing additional studies to assure their prognostic utility
before undergoing further clinical trials. In contrast, Category I factors are considered as
proven to be useful in clinical practice and include preoperative PSA, TNM stage, Gleason
grade, and surgical margins. Category II factors are factors that have been extensively
studied but await statistically robust trials and include parameters such as tumor volume,
histologic type, and DNA ploidy analysis.

The wide array of molecular–based PCa markers include proliferation index (Ki-67),
microvessel density, nuclear morphometry, tumor suppression genes (eg, p53, p21, p27,
NKX3.1, phosphatase and tensin homolog [PTEN], and retinoblastoma gene [Rb]),
oncogenes (eg, Bcl2, c-myc, EZH2, and HER2), adhesion molecules (CD44, E-cadherin),
PI3K/akt/mTOR pathway,197,198 apoptosis regulators (eg, survivin and transforming growth
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factor β 1), androgen receptor status, neuroendocrine differentiation markers, and prostate
tissue lineage-specific marker expression (PSA, prostate-specific alkaline phosphatase, and
prostate-specific membrane antigen).199–201

Proliferation Index—A single study202 has so far found proliferation index, as measured
by Ki-67 and percentage of cells in S phase and G2M, to be superior to Gleason score in
predicting biochemical recurrence after radical prostatectomy. Two additional studies203,204

have shown a similar role for Ki-67 index measurement as an independent prognosticator in
prostatectomy specimens. Conflicting reports have been furthered by others.205–208

Angiogenesis—The mean number of microscopic blood vessels in tissue is higher in PCa
and prostatic intraepithelial neoplasia than normal prostate tissue. In a study evaluating
microvessel density (MVD) on needle biopsy, the authors209 found that MVD, when
combined with Gleason score and preoperative PSA, provided improved ability to predict
extraprostatic extension at radical prostatectomy. Although MVD was significant in the
multivariate analysis, Gleason score and serum PSA levels were much more powerful
predictors of extraprostatic disease. Three additional studies210–212 revealed a prognostic
role for MVD in prostatectomy specimens. Others,213–215 however, failed to confirm such a
role. Differences in vascular antibodies used and topography of vessel measurements could
account for the variable results. It appears that MVD will have a marginal adjunctive role, if
any, to established current parameters.

Tumor Suppressor Genes and Oncogenes—Among tumor suppressor genes, there is
mounting evidence to support a role for p53 expression in predicting prognosis in PCa.
Brewster et al found216 p53 expression and Gleason score in needle biopsy to be
independent predictors of biochemical relapse after radical prostatectomy. Another study217

found p53 status on prostatectomy but not needle biopsies to be predictive, raising the issue
of sampling. Many studies evaluating prostatectomy specimens found p53 to be of
prognostic significance, independent of grade, stage, and margin status.207,215,218–223 The
results of these studies suggest that p53 evaluation could become a clinically used
parameter, at least in prostatectomy specimens, once standardization of cutoffs and
immunostaining methodologies are achieved in large prospective studies. Most studies of
another tumor suppressor gene, p27, a cell cycle inhibitor, have also supported a correlation
with progression after prostatectomy.208,224

Several recent studies have demonstrated that the PTEN/PI3K/mTOR pathway plays an
important role in cell growth, proliferation, and oncogenesis in prostate cancer.225–231

Phosphatase and tensin homolog is a negative regulator of this pathway. Loss of PTEN
tumor suppressor gene activity and the ensuing mTOR pathway activation appear to be
associated with poor prognosis in prostate cancer. The mTOR pathway is also a potential
target for prostate cancer treatment, and several rapamycin analogs are currently being tested
as potential therapeutic agents for PCa.197,230 We recently reported the results of a pilot
study evaluating the pharmacodynamic efficacy of neoadjuvant rapamycin therapy in
PCa.197 Using IHC analysis, we found a significant decrease in Phos-S6 protein, the main
downstream effector of mTOR pathway, in patients receiving neoadjuvant therapy.197

While less robust evidence exists for the prognostic role of p21,232 a downstream mediator
of p53, and transcription factors such as NKX3.1,172,233 preponderance of evidence supports
a prognostic role for Bcl2203,216,218,220,222 and myc oncogenes234,235 as potential adjuncts
to histologic prognostic parameters.

Despite great interest in HER2 and its potential use as a target of therapy, the data on its
relation to prognosis in PCa are conflicting, with 1 study by Veltri et al236 showing HER2 to
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be an independent prognosticator and more recent studies using both IHC and FISH
assessment showing lack of its utility in predicting progression.237

Genomic Data—In an elegant gene expression profiling study using cDNA microarrays
containing 26 000 genes, Lapointe et al238 identified 3 subclasses of prostate tumors by
distinct patterns of gene expression. High-grade and advanced-stage tumors, as well as
tumors associated with recurrence, were disproportionately represented among 2 of the 3
subtypes, one of which also included mostly lymph node metastases. Furthermore, 2
surrogate genes were differentially expressed among tumor subgroups by IHC. These
included MUC1, a gene highly expressed in the subgroups with “aggressive”
clinicopathologic features, and AZGP1, a gene highly expressed in the favorable subgroup.
The 2 surrogate markers were strong predictors of tumor recurrence, independent of tumor
grade, stage, and preoperative PSA levels. Such study suggests that prostate tumors can be
classified according to their gene expression patterns; these tumor subtypes may provide a
basis for improved prognostication and treatment stratification.

In another study, Tomlins et al239 used laser-capture microdissection to isolate 101 cell
populations to illustrate gene expression profiles of PCa progression from benign epithelium
to metastatic disease. By analyzing expression signatures in the context of more than 14 000
“molecular concepts,” or sets of biologically connected genes, the authors generated an
integrative model of progression. Molecular critical transitions in progression included
protein biosynthesis, E26 transformation-specific (ETS) family transcriptional targets,
androgen signaling, and cell proliferation. Known prognostic markers, such as grade, could
be ascribed to noted attenuated androgen-signaling signature seen in high-grade cancer
(Gleason pattern 4), similar to metastatic prostate cancer, which may reflect
dedifferentiation and explain the clinical association of grade and prognosis. Taken together,
these data show that analyzing gene expression signatures in the context of a compendium
of molecular concepts is useful in understanding cancer biology.

Lapointe et al240 complemented their above-mentioned gene expression findings by looking
for associated copy number alterations with array-based comparative genomic hybridization.
They were able to identify recurrent copy number genetic aberrations240 corresponding to 3
prognostically distinct groups of PCa: (1) deletions at 5q21 and 6q15 deletion group,
associated with favorable outcome; (2) a 8p21 (NKX3-1) and 21q22 (resulting in
TMPRSS2-ERG fusion) deletion group, and (3) gains in 8q24 (MYC) and 16p13, and loss at
10q23 (PTEN) and 16q23 groups, correlating with metastatic disease and aggressive
outcome.

Finally, in a recent genome-wide analysis of PCa, Taylor et al241 elegantly illustrated how
detailed annotation of PCa genomes can affect our understanding of the disease and its
treatment strategy. Assessing DNA copy number, messenger RNA expression, and focused
exon resequencing in 218 prostate cancer tumors, the authors identified the role of nuclear
receptor coactivator NCOA2 as a novel oncogene in 11% of PCa cases. TMPRSS2-ERG
fusion was associated with novel prostate-specific deletion at chromosome band 3p14,
which may implicate FOXP1, RYBP, and SHQ1 as potential cooperative tumor suppressors.
Most intriguing was their ability to define clusters of lowrisk and high-risk disease beyond
that achieved by Gleason score by using DNA copy number data. As shown in Figure 6 (A
and B), six clusters of PCa tumors are identified by unsupervised hierarchical clustering
with distinct risk for biochemical recurrence.

Genomic studies suggest that prostate cancers develop via a limited number of alternative
preferred genetic pathways. The resultant molecular genetic subtypes provide a new
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framework for investigating PCa biology and explain, in part, the clinical heterogeneity of
the disease.

Emerging Early Detection Markers and Targets of Therapy—Markers of PCa
detection that can be applied to blood, urine, or prostatic secretion fluid (ejaculate or
prostate massage fluids) are of great interest and have been the focus of active research.
Markers that have been investigated in the urine or prostatic secretions include gene
promoter hypermethylation profile assays242–245 and differential display code 3 (DD3), also
known as PCA3 (Figure 7). DD3 is a gene that expresses a noncoding RNA and was initially
identified by Bussemakers et al246 as one of the most specific markers of PCa. Quantitative
real-time reverse transcriptase PCR assay detecting PCA3 can be applied to blood, urine, or
prostatic fluid.247

Evaluation of PCA3 in postattentive prostate massage urine samples with transcription-
mediated amplification technology has shown to be superior to serum PSA determination in
predicting biopsy outcome, with sensitivity and specificity approximating 70% and 80%,
respectively, and a negative predictive value of 90%248–251; it is currently under evaluation
for FDA approval in the United States. Encouraging data from the REDUCE trial support a
role for evaluation of PCA3 in postattentive prostate massage urine sample in predicting
positive prostate needle biopsy findings in immediately subsequent, as well as future,
biopsies after an initial negative biopsy result. PCA3 may also have a role in predicting the
risk for higher Gleason score and larger tumor volume on radical retropubic prostatectomy.
If confirmed, the latter could be of great value in treatment option algorithms and in
delineation of candidates for active surveillance.252–255 Multiplex urine assays to include
PCA3, TMPRSS-ERG, SPINK1, and GOLPH2 are also under evaluation, with recent data
suggesting an improved performance of such assays compared to PCA3 alone.256

Finally, several markers are being investigated as potential targets of therapy for prostate
cancer. The list includes tyrosine kinase receptors (eg, EGFR), angiogenesis targets (eg,
VEGF),257 fatty acid synthase,258 PI3K/akt/mTOR,197,230,259 endothelin receptors,260,261

and prostate-specific membrane antigen,262–265 to name a few.

RENAL CELL CARCINOMA
Current established prognostic parameters in renal cell carcinoma (RCC) include pTNM
stage, Fuhrman grade, histologic subtype, and clinical parameters such as the Eastern
Cooperative Oncology Group (ECOG) performance status, hemoglobin level, and lactate
dehydrogenase levels, among others.266–268 Continuous refinements of staging criteria and
development of nomograms to integrate the factors listed above promise to yield better
prognostic and management discriminators.269

A large number of biomarkers are under current intense investigation for their potential
utility as prognosticators and/or therapy predictors in RCC.269–276 Table 3 lists some of
these markers. Kim et al271 evaluated a set of immunohistochemical markers including
Ki-67, CAIX, CAXII, p53, PTEN, gelsolin, EpCAM, and vimentin in combination with
established parameters. Their study suggested that a new combined molecular and
clinicopathologic prognostic model (CAIX, vimentin, p53, pTNM, ECOG performance
status) is superior to prior models of clinicopathologic parameters alone, including the
commonly used University of California Los Angeles integrated staging system model.

Pantuck et al277,278 recently highlighted a promising prognostic role for mTOR pathway
members. Their study revealed an independent negative prognostic role for PTEN loss and
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phos-S6k overexpression. The same study showed that an increase in phos-Akt cytoplasmic
expression and loss of phos-Akt nuclear expression were negative predictors of survival.

Bui et al279 demonstrated that both low expression of CAIX and high Ki-67 proliferation
index were independent negative predictors of survival in clear cell renal cell carcinoma
(ccRCC). Interestingly, CAIX overexpression predicted response to interleukin 2 immune
therapy in metastatic RCC, a finding also documented in the study by Atkins et al280 and
Stillebroer et al.281 A prognostic role for angiogenesis pathway has been revealed in RCC.
In a study by Jacobsen et al,282 VEGF expression appeared to correlate with tumor size and
pTNM stage in RCC. The authors found high VEGF expression to be a negative
prognosticator for survival on univariate but not multivariate analysis. Separately, Kluger et
al272 analyzed tissue microarrays containing 330 ccRCCs and papillary renal cell carcinoma
(PRCC), using a novel method of automated quantitative analysis of VEGF and VEGF
receptor expression by fluorescent IHC. Unsupervised hierarchical clustering classified
tumors by coordinated expression of VEGF and VEGF receptors. The authors found that
high expression of VEGF and VEGF receptors was associated with poor survival. Finally, a
study by Lidgren et al283 revealed that high expression of hypoxia-inducible factor 1 α
(HIF1A) was an independent negative prognosticator in ccRCC.

Among cell cycle control molecules, p27 (Kip1) and cyclin D1 appear to have a promising
prognostic role in ccRCC. Migita et al284 found loss of p27 expression to be an independent
predictor of poor DSS. Similar p27 findings were also documented by Hedberg et al.285,286

Genomic and Theranostic Applications
A tight correlation is maintained between morphologic phenotype and underlying genetic
alterations in renal tumors. Lessons learned from the relatively rare familial renal cancer
syndromes have helped unlock the complex molecular mechanisms involved in sporadic
RCC tumorigenesis. As a result, many potential new targets of therapy are now under
investigation in the heretofore unsuccessful endeavor of treating advanced RCC. The
achieved understanding of the molecular basis of von Hippel-Lindau disease (VHL) best
illustrates the great therapeutic and theranostic potentials of uncovering molecular
mechanisms of oncogenesis.287 von Hippel-Lindau syndrome is a rare autosomal dominant
familial cancer syndrome (retinal angiomas, hemangioblastomas, pheochromocytomas,
ccRCC). Patients with VHL are born with a germline (constitutive) VHL gene mutation
affecting all their cellular elements. Inactivation or silencing of the remaining wild-type
allele in renal tissues facilitates the formation of ccRCC. The fact that similar defects in the
VHL gene are found to be responsible for approximately 60% of sporadic ccRCCs288,289

has greatly widened the implications in understanding the molecular mechanisms of VHL
inactivation.

HIF1A is a transcription factor that can be thought of as a cellular oxygen sensor. Under
normoxic conditions, HIF1A interacts with normal VHL protein that, in turn, facilitates its
elimination through ubiquitinization.290 Under hypoxic conditions, HIF1A escapes
destruction by VHL and is allowed to exert its crucial role in triggering the transcription of
angiogenesis factor (VEGF); cell growth factors (transforming growth factor α [TGFα] and
transforming growth factor β [TGFβ]); and factors involved in glucose uptake and acid-base
balance (GLUT-1 and CAIX, respectively). A defective VHL function in ccRCC leads to
abnormal accumulation of HIF1A even under normal conditions, in turn resulting in the
overexpression of the above-mentioned proteins that are normally inducible only during
hypoxia. The overexpressed VEGF, platelet-derived growth factor β, and TGFβ act on
neighboring vascular structures to promote tumor angiogenesis. The augmented tumor
vasculature provides additional nutrients and oxygen to promote the growth of tumor cells.
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Furthermore, TGFα acts in an autocrine manner on tumor cells by signaling through EGFR,
which promotes tumor cell proliferation and survival.

Several of the above-mentioned proteins are currently being investigated as targets of
therapy for advanced ccRCC.291–298 A randomized phase II trial involving patients with
metastatic ccRCC investigated the efficacy of bevacizumab, a humanized anti-VEGF
antibody.299 Although the treatment resulted in only a few months extension of time to
tumor progression, it provided a key “proof of principle” of the efficacy of antiangiogenic
therapy. Inhibitors of VEGF receptor tyrosine kinase activity alone, and in combination with
other tyrosine kinases, are also under study. The multitargeted kinase inhibitors sunitinib
and sorafenib have shown great promise in phase II and phase III trials, with at least
stabilization of disease in as many as 70% of patients with cytokine refractory
disease.287,298

Another growth factor target is TGFα, which promotes ccRCC growth through its
interaction with EGFR. A human monoclonal antibody against human EGFR (panitumumab
[ABX-EGF]), as well as small molecule inhibitors of the EGFR tyrosine kinase activity
(gefitinib and erlotinib), are 2 strategies being tested to target the TGFα/EGFR
axis.292,294–296

Other options being pursued include the use of temsirolimus (CCI-779), a selective inhibitor
of mTOR. Partial responses were noted in 7% of patients and minor responses in 26%. The
median survival rate was 15 months. The notable activity of the drug for patients with poor
prognostic features prompted a phase III trial.280,293 Finally, agents targeting HIF1A and
CAIX, including anti-CAIX radiolabeled monoclonal antibody, are also under
development.289,300

CONCLUSIONS
A wide array of molecular markers may be used in the near future as adjuncts to currently
established prognostic parameters in urologic malignancies. For bladder cancer, molecular
grade as a combination of proliferation index and FGFR3 mutation; multitarget FISH
analysis for chromosomes 3,7,17, and chromosome band 9p21; and cell cycle and apoptosis
control markers (p52, Rb, p21, p27, and p16) are among the leading markers that will soon
enter routine use. In prostate adenocarcinoma, biologic markers that can refine early
detection (eg, PCA3 and ERG) and serve as prognostic markers and potential targets of
therapy (mTOR pathway) are expected to be among the first to enter the clinical arena.
Finally, our detailed understanding of the complex molecular alterations involved in the
development of renal cell carcinomas is yielding novel diagnostic and prognostic molecular
tools and yielding many new targets of therapies including mTOR, VEGF, EGFR, HIF1A,
and CAIX.
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Figure 1.
Divergent molecular pathways of oncogenesis in superficial and muscle invasive urothelial
carcinoma of urinary bladder. Genetic alterations are depicted in key stages of disease
progression. Abbreviations: CIS, carcinoma in situ; EGFR, epidermal growth factor
receptor; HG URCa, high-grade urothelial carcinoma; LG URCa, low-grade urothelial
carcinoma; mTOR, mammalian target of rapamycin; URCa, urothelial carcinoma; VEGF,
vascular endothelial growth factor.
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Figure 2.
Receptor tyrosine kinase (EGFR/Ras/Mek/ERK) and cell cycle regulator (p14, p16, p53,
p21, cyclin D1, cyclin E, and Rb) pathways in urothelial carcinoma. Abbreviations: EGF,
epidermal growth factor; EGFR, epidermal growth factor receptor.

Netto and Cheng Page 33

Arch Pathol Lab Med. Author manuscript; available in PMC 2012 September 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Molecular alterations involved in oncogenesis and progression of prostate cancer.
Abbreviations: PCa, prostate adenocarcinoma; PIN, prostatic intraepithelial neoplasia;
PTEN, phosphatase and tensin homolog.
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Figure 4.
Fluorescence in situ hybridization–based evaluation of ERG gene fusion in prostate
carcinoma. A, A normal ERG allele will hybridize with the ERG 3′ and the ERG 5′ probes,
leading to the formation of juxtaposed green-red signals or a yellow overlap signal. The 2
ERG rearrangements associated with TMPRSS2-ERG fusion lead to either a loss of 5′
(green) signal or to a split of the ERG 5′ (green) and ERG 3′ (red) signals. B, Example of
prostate adenocarcinoma showing ERG fusion by deletion.
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Figure 5.
Overexpression of ERG, as demonstrated by immunohistochemistry, is a simple surrogate
method for evaluating TMPRSS2-ERG fusion in prostate adenocarcinoma. Positive
expression of ERG in Gleason grades 6 and 8 cases that were also positive for TMPRSS2-
ERG fusion by fluorescence in situ hybridization (FISH) are shown in A and B and in C and
D, respectively. Lack of ERG expression in a Gleason grade 6 tumor that lacked TMPRSS2-
ERG fusion by FISH is shown in E and F (ERG immunostain, original magnifications ×100
[A, C, and E] and ×200 [B, D, and F]).
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Figure 6.
Clinically distinct groups of prostate cancer are identified by genomic alterations. A,
Unsupervised hierarchical clustering of copy number alterations identified 6 groups
(clusters) of prostate cancers. B, Statistically significant differences in freedom from
biochemical recurrence are found among the 6 groups. Adapted from Taylor et al241 with
permission from Elsevier.
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Figure 7.
Structure of the PCA3/DD3 gene. The gene, which expresses a noncoding RNA, was
mapped to chromosome 9q21–22 and consists of 4 exons. Alternative polyadenylation at 3
different positions in exon 4 (indicated as 4a, 4b, and 4c) gives rise to 3 different-sized
transcripts. The most frequently found transcript contains exons 1, 3, 4a, and 4b.
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Table 1

Established Clinicopathologic and Potential Molecular Prognostic Parameters in Superficial and Muscle
Invasive Urothelial Carcinoma of Bladder

Clinicopathologic Prognostic Parameters in Urothelial Carcinoma

Superficial Urothelial Carcinoma Muscle Invasive Urothelial Carcinoma

WHO/ISUP grade pTNM

pT stage LVI

Presence of associated CIS/dysplasia Resistance to neoadjuvant chemotherapy

Disease duration

Time to and frequency of recurrences Divergent histology

Multifocality    Micropapillary

Tumor size (>3 cm)    Osteoclast rich

Failure of prior BCG therapy    Undifferentiated/giant cell

Presence of LVI    Plasmacytoid

Depth of lamina propria invasion

Emerging Molecular Prognostic Markers

Superficial Non–Muscle Invasive Urothelial Carcinoma (NMI-BC) Muscle Invasive Urothelial Carcinoma (MI-BC)

Proliferation index (Ki-67, MIB-1, S phase) p53 inactivation/accumulation

FGFR3 mutation/overexpression (protective) Alterations of Rb expression

mG (FGFR#/MIB-1) Loss of p21 expression

p53 inactivation/accumulation Alteration of p16 expression

DNA ploidy status Loss of E-cadherin

Multitarget FISH RTK

HRAS    EGFR overexpression

ERBB3, ERBB4 overexpression (protective)    HER2/neu overexpression/amplification

Loss of E-cadherin

Angiogenesis markers

Cell cycle control    VEGF overexpression

   Down-regulation of Rb expression    HIF1A overexpression

   Down-regulation of p21 expression    TSP1 overexpression

   Down-regulation of p27 expression

   Cyclin D3 overexpression mTOR-Akt pathway

   Cyclin D1 overexpression    mTOR

   Phos-S6 expression (protective)

Multimarker immunoexpression analysis

   p53, p27, Ki-67, Rb, p21 Genomic and gene expression array panels

Angiogenesis markers    Epigenetic alterations

   VEGF overexpression       RASSF1 promoter hypermethylation

   HIF1A overexpression       E-cadherin promoter hypermethylation

   TSP1 overexpression       EDNRB promoter hypermethylation
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Clinicopathologic Prognostic Parameters in Urothelial Carcinoma

Superficial Urothelial Carcinoma Muscle Invasive Urothelial Carcinoma

Genomic and gene expression array panels

   Epigenetic alterations

      RASSF1 promoter hypermethylation

      DAPK promoter hypermethylation

      APC promoter hypermethylation

      E-cadherin promoter hypermethylation

      EDNRB promoter hypermethylation

Abbreviations: BC, bladder cancer; BCG, Bacillus Calmette-Guerin; CIS, carcinoma in situ; EGFR, epidermal growth factor receptor; FISH,
fluorescence in situ hybridization; ISUP, International Society of Urological Pathology; LVI, lymphovascular invasion; mG, molecular grade
parameter; mTOR, mammalian target of rapamycin; RTK, receptor tyrosine kinase; VEGF, vascular endothelial growth factor; WHO, World
Health Organization.
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Table 2

Immunohistochemistry Expression of ERG Protein Strongly Correlates With TMRSS2-ERG Fusion
Regardless of Mechanism of Fusiona

FISH No. Cases No ERG Expression, No. (%) ERG Expression, No. (%) P

Esplit <.001

108 17 (15.7) 91 (84.3)

319 218 (68.3) 101 (31.7)

Edel <.001

158 21 (13.3) 137 (86.7)

269 214 (79.6) 55 (2.4)

2Esplit .008

6 0 (0) 6 (100)

421 235 (55.8) 186 (44.2)

2Edel <.001

24 1 (4.2) 23 (95.8)

403 234 (58.1) 169 (41.9)

Any fusion <.001

195 28 (14.4) 167 (85.6)

232 207 (89.2) 25 (10.8)

Abbreviations: Edel, deletion; Esplit, insertion leading to FISH signal split; FISH, fluorescence in situ hybridization.

a
Reprinted from Chaux et al193 with permission from Lippincott Williams & Wilkins.
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Table 3

Current and Emerging Prognostic Parameters in Clear Cell Renal Cell Carcinoma (ccRCC)

Current Prognostic Parameters in ccRCC

Patient factors

   Age

   Sex

Pathologic factors

   pTNM

   Histologic type

   Fuhrman grade

   LVI

   Tumor necrosis

Clinical factors

   ECOG performance status

   Hgb level

   Serum LDH

Emerging Potential Molecular Prognostic and Predictive Parameters in ccRCC

Hypoxia inducible

   HIF-1

   CAIX

   CAXII

   CXCR4

   VEGF/VEGF-R

   ILGF1

Cell adhesion markers

   EpCAM

   E-cadherin

   α-Catenin

   Catenin-6

Proliferation markers

   Ki-67

   MCM2

Cell cycle regulators

   Cyclin

   p27

Apoptosis regulators

   p53

   Bcl2

   Smac/DIABLO

mTOR pathway

   PTEN
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Current Prognostic Parameters in ccRCC

   akt

   Phos-S6k an

Abbreviations: ccRCC, clear cell renal cell carcinoma; ECOG, Eastern Cooperative Oncology Group; LDH, lactate dehydrogenase; Hgb,
hemoglobin; LVI, lymphovascular invasion; PTEN, phosphatase and tensin homolog; VEGF, vascular endothelial growth factor.
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