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Summary
DNA methylation has emerged as an important hallmark of epigenetics. Numerous platforms
including tiling arrays and next generation sequencing, and experimental protocols are available
for profiling DNA methylation. Similar to other tiling array data, DNA methylation data shares the
characteristics of inherent correlation structure among nearby probes. However, unlike gene
expression or protein DNA binding data, the varying CpG density which gives rise to CpG island,
shore and shelf definition provides exogenous information in detecting differential methylation.
This paper aims to introduce a robust testing and probe ranking procedure based on a non-
homogeneous hidden Markov model that incorporates the above-mentioned features for detecting
differential methylation. We revisit the seminal work of Sun and Cai (2009, J. R. Stat. Soc. B. 71,
393-424) and propose modeling the non-null using a non-parametric symmetric distribution in
two-sided hypothesis testing. We show that this model improves probe ranking and is robust to
model misspecification based on extensive simulation studies. We further illustrate that our
proposed framework achieves good operating characteristics as compared to commonly used
methods in real DNA methylation data that aims to detect differential methylation sites.
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1. Introduction
The field of epigenetics is an emerging area of research and has reshaped a new genetics
paradigm. One of the best known epigenetic marks is DNA methylation which plays a
critical role in regulating gene expression in various cellular processes, including embryonic
development, genomic imprinting, X-chromosome inactivation, and chromosome stability
(Esteller, 2008; Robertson, 2005). DNA methylation occurs at the cytosine bases and
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involves the addition of a methyl group by DNA methyltransferase (DNMT) enzymes. The
modified cytosine bases are usually immediately adjacent to a guanine base (i.e. the CpG
dinucleotides) and results in the inaccessibility of transcription factors to these regions. An
increasing number of diseases has been shown to be associated with aberrant DNA
methylation (Robertson, 2005). The CpG island hypermethylation of tumor suppressor
genes has been established as a common mechanism of gene inactivation in cancer. In
contrast, global hypomethylation which leads to genomic instability has also been
recognized as an important contributor to tumorigenesis (Esteller, 2008).

In the last few years, there is a great interest in genome-wide DNA methylation profiling.
Several platforms are available for DNA methylation profiling, including the high-
throughput arrays and more recently, the next generation sequencing instruments. Prior to
hybridization or sequencing, a variety of experimental techniques are available for treating
methylated DNA. The three main categories are bisulfite conversion-based methods,
restriction enzyme-based methods and immunoprecipitation-based methods (see Laird
(2010) for complete review). As the technology improves, a common characteristic shared
by these platforms is the high resolution genome-wide coverage of the CpG loci. For
example, the new Illumina Infinium HumanMethylation450 BeadChip for typing the
bisulfite converted DNA interrogates more than 450,000 CpG loci which encompasses >
96% of RefSeq genes (Sandoval et al., 2011). On the other hand, the CHARM array (Irizarry
et al., 2008) based on restriction enzyme digestion covers approximately 2.1 M probes
genome-wide.

DNA methylation analysis is usually carried out to identify differential methylated probes or
regions. As thousands to millions of probes are involved, this falls within the context of
large-scale multiple testing. In this article, we introduce an inference framework that
incorporates exogenous information including array design and genomic annotation for
improving detection of differential methylation sites. Our work can be viewed as a more
flexible version of the seminal work by Sun and Cai (2009). We extend the modeling
framework of Sun and Cai (2009) to allow for exogenous information to be incorporated
systematically and address several practical issues such as the choice of non-null
distribution. We begin by describing several distinct features of DNA methylation data
which motivates the choice of our modeling framework in Section 2. Section 3 describes our
proposed framework. We show that the proposed framework improves the detection and
outperforms other existing methods in extensive simulations (Section 4) and case studies
(Section 5) which include two different platforms (the CHARM array (Irizarry et al., 2008)
based on restriction enzyme digestion and Infinium HumanMethylation450 Array based on
bisulfite conversion). Although our model is developed using DNA methylation as our
motivating dataset, the proposed framework is general and readily applicable to other
datasets involving large-scale testing under dependence. We conclude with a discussion in
Section 6.

2. Motivation
The study of DNA methylation has previously been focused and restricted to CpG islands,
i.e, genomic regions that contain high frequency of CG dinucleotides. However, recent work
has demonstrated that most tissue and cancer specific methylation alterations occur in
sequences up to 2 kb distant from CpG islands known as the CpG island shores (Irizarry et
al., 2009; Doi et al., 2009). Several array platforms have been designed to provide unbiased
whole genome coverage of DNA methylation profiles. For instance, both the CHARM array
(Irizarry et al., 2008) and Infinium HumanMethylation450 BeadChip interrogate not only
CpG islands but also CpG island shores (within 2 kb from CpG islands), shelves (>2 kb
from CpG islands) and flanking regions, thus offering a comprehensive view of methylation
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on all designable RefSeq genes. An additional feature of the Infinium
HumanMethylation450 BeadChip is the utilization of two different assay chemistry
technology, namely Infinium I and Infinium II primer extension assays (Sandoval et al.,
2011). A major difference between these two assays is in the number of bead types used to
probe each CpG locus. In Infinium I assays, two separate bead types are used to measure
methylated and unmethylated states whereas Infinium II assays rely on one bead type and
distinguish methylated from unmethylated states based on single base extension. Infinium I
assays cover one third of the total number of CpG loci and is designed for regions with more
CG dinucleotides. More than 70 % of Infinium I probes lie in CpG islands. On the other
hand, approximately 35 %, 45% and 20 % of Infinium II probes belong to CpG islands,
shores and shelves, respectively. This suggests inherent difference in the quality of DNA
methylation measured by these two assays.

A common goal of DNA methylation profiling is in identifying differential methylated sites
(Irizarry et al., 2009; Doi et al., 2009). Without loss of generality, suppose that we are in the
setting of testing for differential methylation between conditions 1 and 2. Similar to gene
expression analysis, popular test statistics for summarizing the methylation difference
between the two conditions at each CpG locus/probe include the t-statistic or the non-
parametric Mann-Whitney U statistic. The most commonly used method usually proceeds to
identify significantly differential methylated loci by controlling for the Benjamini Hochberg
False Discovery Rate (BH-FDR) (Benjamini and Hochberg, 1995) under the assumption that
the CpG loci are independent. However, in array based methylation platforms, the location
of the CpG loci along the genome induce a natural dependence structure. The spacing
between two consecutive CpG loci in Infinium HumanMethylation450 BeadChip varies
with median distance of approximately 300 bps. As a comparison, the CHARM array
(Irizarry et al., 2008) covers 2.1 M probes genome-wide with median distance of 37 bps
between two probes. Figure 1 show the autocorrelation plot of the probe-wise t-statistic on
Chromosome 1 for both the CHARM and Infinium platform, which demonstrate the
presence of substantial spatial correlations among nearby CpG loci. In addition, the
correlation is stronger in the CHARM array consistent with the smaller probe spacing in this
platform. It is therefore imperative to incorporate the observed correlation structure in the
hypothesis testing framework for declaring significantly differential methylated CpG loci. In
the next section, we described our proposed framework that accounts for probe dependence.

3. A non-homogeneous HMM based FDR control
We briefly review some definitions in multiple testing framework. We follow the notations
of Genovese and Wasserman (2002). Suppose that we have m tests (here each test
corresponds to a CpG locus), where m0 of them are are null (not differential methylated) and
m1 are non-null (differential methylated). The possible outcomes of a multiple-testing
framework is summarized in Web Table 1. The FDR is defined as E(N1|0/R|R > 0)P (R > 0),
whereas the false non-discovery rate FNR is defined as E(N0|1/S|S > 0)P (S > 0) (Genovese
and Wasserman, 2002; Sun and Cai, 2009), where R (S) is the number of rejected (not
rejected) tests and N1|0 (N0|1) is the number of false rejection (non-rejection). A multiple
hypothesis procedure is said to be valid if it controls the FDR at the pre-specified nominal α
level, and optimal if it has the smallest FNR among all FDR procedures at level α. Although
BH-FDR procedure controls the FDR at the nominal level under various dependence
structure, it has been shown to be suboptimal and inefficient (Sun and Cai, 2009). Recently,
Sun and Cai (2009) introduced a Hidden Markov Model (HMM) based approach that
incorporates the dependence structure in the multiple testing framework. They showed that
the HMM based method is optimal when the HMM parameters are known. In the case where
the parameters are unknown, this procedure is asymptotically optimal by plugging in the
consistent estimates. We extend the work of Sun and Cai (2009) to allow for a more flexible
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model structure and introduce an inference procedure for DNA methylation data based on a
non-homogeneous HMM (NHMM) framework, which utilizes informative features observed
in the methylation array platforms.

3.1 Incorporating informative features in transition probabilities
Without loss of generality, we consider a z-score transformation to the differential
methylation test statistics. Let Zj = Φ−1(Ffdj(tj)),, where Fdfj is the cumulative distribution
function (cdf) of a standard t variable with dfj degrees of freedom, and Φ is the standard
Gaussian cdf. Following the notation of Sun and Cai (2009), let θj be the unobserved state of
CpG locus j, where θj = 1 if CpG locus j is non-null, i.e., differential methylation between
conditions 1 and 2 and θj = 0 otherwise. The testing framework of Sun and Cai (2009) was
based on a homogeneous HMM with stationary transition probabilities. However, in DNA
methylation arrays, there are several factors that could potentially give rise to non-stationary
transition probabilities. For example, given the varying spacing between two adjacent loci,
we expect the dependence to decrease with larger distances. In addition, as mentioned in
Section 2, Infinium HumanMethylation450 BeadChip utilizes two different primer extension
assays (Infinium I and II) for probing methylation levels. The inherent difference in the
chemistry of Infinium I and II assays and the genomic regions covered by these assays, i.e.,
Infinium I mostly in CpG islands, could play a role in the hidden state transition. Irizarry et
al. (2009) showed that stronger pattern of methylation perturbation in colon cancer occur in
CpG island shores compared to CpG islands. Taken together, all these observations implies
that we might benefit from considering possible factors arising from array design and
genomic annotations that affect the transition probabilities to improve the multiple testing
framework.

To address the potential non-stationary transition probabilities, we model the hidden state
transition via a logistic regression:

where λs, σrs ∈ ℝ and ρs ∈ ℝD. Here Xj denotes a matrix of D columns with candidate
covariates including probe spacing, assay type and genomic annotations. When Xj includes
probe spacing, certain restriction is imposed on the coefficient ρs to ensure that probabilities
of self transition decrease with probe spacing. Details are given in Web Appendix A.2.

We assume that Zj’s are conditionally independent given θj, where Zj|θj = s ~ fs(Zj). Since
Zj’s are z-score transformed test statistics, f0(Zj) ~ N (0, 1). We defer the discussion on the
choice of non-null distribution f1 to Section 3.2. This gives rise to a non-homogeneous
HMM (NHMM). NHMM with the logistic regression transition has been shown to be a
useful framework in climate research (Robertson et al., 2004).

Inference for significantly differential methylated CpG loci is based on the local index of
significance, LIS introduced in Sun and Cai (2009),

where Z is the vector of Zj’s. Let LIS(1), …, LIS(J) be the ranked LIS values and H(1), …,
H(J) be the corresponding hypotheses. We reject all H(i), i = 1, …, k, where
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. Sun and Cai (2009) showed that the testing procedure
based on LIS produces more efficient rankings of the hypotheses than the traditional p-
values and results in optimal testing procedure.

For computational efficiency, the model is trained on individual chromosomes in estimating
the unknown parameters and computing the LIS statistics. One possible approach to
combine the analyses from different chromosomes is to apply LIS procedure to each
chromosome at a pre-specified FDR level, followed by aggregating the list of significant
LIS from each chromosome. This is also known as the separate analysis proposed by Efron
(2008). However, Wei et al. (2009) showed that the separate analysis is sub-optimal, i.e.,
this procedure does not yield the smallest FNR. Instead of first declaring significant tests at
chromosomal level, they suggested pooling the LIS statistics across all chromosomes and
apply the FDR control to these pooled LIS statistics. Therefore, in our proposed NHMM-
FDR approach, we aggregate the LIS statistics from all chromosomes and rank them
genome-wide in declaring statistically significant CpG loci. The estimation of the unknown
parameters in the NHMM-FDR procedure is given in Web Appendix A.1.

3.2 Choice of non-null model f1
The HMM framework of Sun and Cai (2009) and our proposed NHMM model require the
specification of the non-null distribution f1. Sun and Cai (2009) modeled f1 using Gaussian

mixtures, i.e., . Although Gaussian mixtures is fiexible for various
functions approximation, the number of mixture components L is unknown. Sun and Cai
(2009) suggested choosing appropriate L based on Bayesian Information Criterion (BIC).
This requires one to run the HMM for each possible L which can be computationally
intensive. We propose approximating the non-null f1 using non-parametric Gaussian kernel

density estimation, i.e.,  where Kh(.) is the kernel and h is the
bandwidth. One could argue that kernel density estimation also requires the tuning of the
bandwidth h, analog to L in Gaussian mixtures. However, as we illustrate in simulation
studies in Section 4, the rule-of-thumb method of Silverman (1986) for setting the
bandwidth as h = 0.9 min(σ, IQR/1.34)n−1/5 is generally sufficient and works well in
practice. Here n is the total number of loci, σ is the sample standard deviation and IQR is the
interquartile range.

A subtle issue that we would like to raise here is in the context of two-sided hypothesis
testing. For instance, suppose that H0: μ = 0 and H1: μ ≠ 0, and our test statistics is the z-
score Zj. Common methods based on p-values ranking such as BH-FDR control provide
equal statistical significance to both Zj = z and Zj = −z. However, in the HMM framework of
Sun and Cai (2009), the LIS values P(θj = 0|Z = z, X) is not necessary equal to P(θj = 0|Z =
−z, X) depending on f1. In the ideal scenario where the underlying data is generated from a
Markov model, approximating f1 as Gaussian mixtures or Gaussian kernel density estimates
performs well. However, when the correlation structure among the tests is non-Markovian,
we show that restricting the non-null f1 to be a symmetric distribution is more robust and
improves the probe ranking in both simulations and case studies. In some extreme cases
where we have skewed non-null f1 with fewer negative valued test statistics, the unrestricted
estimated non-null f1 from Gaussian mixtures may only be capturing positive mean values.
In such cases, probes with large negative test statistics could be ranked lower among the list
of probes. Therefore, using a symmetric non-null may be preferred as it yields a more
straightforward interpretation by allowing for positive or negative deviation from H0 to
carry comparable statistical significance.
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In the next section, we first evaluate the performance of our proposed NHMM-FDR control
as compared to HMM and other commonly procedures in a simulation study. We then assess
the performance of HMM based methods for the different choices of non-null f1 under both
the Markov data generator as well as under model misspecification. Subsequently, we revisit
these issues and implement our proposed method in real DNA methylation data in Section 5.

4. Simulation studies
4.1 HMM with non-stationary transition probabilities

In this section, we carry out simulation studies to investigate the numerical performance of
our proposed NHMM-FDR procedure in DNA methylation data. In Infinium Human-
Methylation450 BeadChip, the median number of probes per chromosome is approximately
21,000. To mimic the real data, we use CpG annotation (Island, Shore, Shelf, None) and
inter-probe distance information from 20,000 consecutive probes in our simulation. We vary
the parameters λs, σrs ∈ ℝ and ρs ∈ ℝD in the non-homogeneous transition probabilities to
obtain overall non-null proportions of 0.05, 0.10 and 0.2. The observations Zj’s are
generated from Gaussian distribution, i.e., Zj|θj ~ (1 − θj)N (0, 1) + θjN (μk, 1). Similar to
Sun and Cai (2009); Wei et al. (2009), we vary μk from 1 to 4 in increments of 0.5. We
compare the performance of Benjamini Hochberg FDR (BH) (Benjamini and Hochberg,
1995) and Efron’s local FDR (locfdr) (Efron, 2004) to our proposed NHMM-FDR. “locfdr”
is a special case of LIS when all the tests are independent. However, “locfdr” estimates the
mixture emission distribution using either a natural spline or a polynomial and the
proportion of null is then estimated from the central histogram counts of the empirical
mixture density under the assumption that the central peak of the empirical density consists
mainly of null cases. Therefore, we also include the results where the parameters in the
emission distribution are estimated from the EM algorithm as a comparison to the spline/
polynomial version of “locfdr”. We denote this procedure as “Indep”. To assess the extent of
non-stationarity in the transition probabilities in affecting the multiple testing procedure, we
also compare the performance of the original LIS procedure of Sun and Cai (2009). We
denote this procedure as “HMM”. Each simulation scenario is repeated 100 times and we
consider nominal FDR level of 0.10.

Figure 2 compare the average empirical FDR, FNR and average number of true positives
ATP for the different methods at nominal FDR of 0.10, respectively. The “BH”, “Indep” and
“locfdr” procedures are controlled at the nominal FDR (top row of Figure 2). Our proposed
method “NHMM” attains the nominal FDR except for the case where μk = 1 and the non-
null proportion p1 is 0.05, i.e., low signal to noise ratio. In this particular case, we see
inflated empirical FDR because in some iterations, “NHMM” only declared 1 CpG to be
significant which happens to be false positive and resulting in empirical FDR of 1.00. On the
other hand, “HMM” procedure generally yield inflated empirical FDR in most scenarios
because the non-stationarity results in inaccurate estimation of the transition probabilities.

Column 2 of Figure 2 also shows that “NHMM” procedure results smallest FNR among all
methods. In addition, “NHMM” also yields the largest ATP compared to other methods as
given in Column 3 of Figure 2. Finally, we also compare the sensitivity and specificity of
the different procedures. In Column 4 of Figure 2, we compare the average area under
Receiver Operating Characteristics curves (AUROC). As evident from this figure,
“NHMM” outperforms all other methods especially in cases when the signals μk is small
with more efficient probe ranking.
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4.2 Gaussian mixtures versus kernel density estimates
4.2.1 HMM with Gaussian mixture f1—Sun and Cai (2009) showed that if LIS
procedure is robust against misspecified number of mixture components. In this simulation,
we follow the simulation setting in Section 4.3.1 of Sun and Cai (2009) for 20,000 probes to
evaluate the performance of approximating f1 with a kernel density estimate (with rule-of-
thumb bandwidth described in Section 3.2) which is computationally more efficient than
fitting f1 with a Gaussian mixtures that requires one to run the algorithm multiple times with
varying L.

Following Sun and Cai (2009), we simulate from a two-state HMM with null N(0, 1) and
non-null from a three-component normal mixture 0.4N(μ, 1) + 0.3N(1, 1) + 0.3N(3, 1) but
misspecify f1 with a two-component model. The transition probability matrix is taken to be
a00 = 0.95 and a11, where we vary a11 between 0.2 and 0.8. In addition, we also vary μk
from −4 to −1 in increments of 0.5. We also fit a HMM model with f1 approximated using
Gaussian kernel density estimate described above. In top (middle) row of Web Figure 2, we
choose μ = −2 (a11 = 0.8) and compare the empirical FDR, FNR, ATP and AUROC as a
function of a11 (μ). We report the average run time in Web Table 2, which demonstrates the
computational savings of using kernel density estimate. The performance of HMM using
either misspecified Gaussian mixtures or kernel density estimate with rule-of-thumb
bandwidth is comparable and outperforms “BH” and “locfdr”.

4.2.2 HMM with non-parametric empirical f1—Next, we consider simulating the data
using a non-parametric f1 estimated from the CHARM colon tumor versus normal of Irizarry
et al. (2009). Specifically, we utilize the locfdr package of Efron (2004) to obtain the
estimated f1 as shown in Web Figure 3. Similar to above, we compare the empirical FDR,
FNR, ATP and AUROC as a function of a11 in the bottom row of Web Figure 2 at nominal
FDR of 0.10. For the HMM method where we assume f1 is a Gaussian mixture, we vary L
from 1 to 5 and use BIC to select the best L. The empirical FDR levels for all methods are
still acceptable, although they appear to be more variable. It is interesting to note that at
small a11 values, the HMM method with f1 estimated from kernel density estimate
outperforms the HMM method with Gaussian mixture f1 in terms of AUROC, i.e., more
efficient probe ranking in this particular simulation setup.

4.2.3 Autoregressive model—In this section, we consider an autoregressive (AR) model
instead of a HMM to induce dependence among the probes. We first simulate an AR process
of order 3, Zj = 0.3Zj−1 −0.1Zj−2 +0.1Zj−3 +εj. Since nearby or consecutive probes generally
exhibit similar differential methylation patterns, we mimic this observation by randomly
choosing segments of probes with size generated from Poisson(5)+1 to be non-null. For each
segment of non-null (differential methylated probes), we consider a loaded coin toss with
probability 0.6 of getting a head. If the toss shows a head (tail), we add μ (−μ) to all the Zj’s
within this segment. We vary the proportion of non-null p1 from 0.05 to 0.2, and μk from 1
to 4. We evaluate the performance of HMM method under this misspecified correlation
structure. In addition, we also fit HMM with symmetric kernel density f1 to the simulated
data. Similar to Section 4.2.2, we vary L from 1 to 5 for the HMM method where we assume
f1 is a Gaussian mixture and select the best L using BIC. We compare the empirical FDR,
FNR, ATP and AUROC as a function of μk in Figure 3.

For small μk values, i.e., low signal, the FDR control for the HMM methods is inflated
under the underlying true AR model. However, the degree of inflation is reduced when we
model the non-null f1 using a symmetric kernel density estimate, despite simulating from an
asymmetric true non-null as described above. It is also interesting to note that for this
simulation setup, the HMM model with symmetric kernel density estimate results in the
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most efficient probe ranking as given by the highest AUROC across the range of μk and p1.
This illustrates that in cases where the underlying dependence structure is non-Markovian,
the FDR control using HMM models can be inaccurate when the signal is weak. However,
the HMM models still result in more efficient probe ranking compared to the model under
independence assumption, as the Markovian structure attempts to account for the observed
correlation among the probes.

5. Case studies
We apply our proposed NHMM based FDR procedure to two DNA methylation datasets.
The first dataset is the methylation data of Irizarry et al. (2009) performed on the CHARM
array (Irizarry et al., 2008) which is publicly available from the Gene Expression Omnibus
under accession number GSE23841. This dataset consists of quantile normalized normal
brain, liver and spleen tissues, as well as colon tumor and normal tissues in 5 replicates.
Following Irizarry et al. (2009), we consider these pairwise comparisons to detect
differential methylated CpG loci, i.e., colon tumor versus normal, brain versus liver, brain
versus spleen and liver versus spleen. For expository purposes, we analyze the subset of
colon tumor versus normal. The second dataset is the methylation dataset (unpublished)
generated by the Chiang Lab at University of North Carolina-Chapel Hill which
encompasses 10 mutant and 20 wildtype tumor samples performed on Infinium
HumanMethylation450 BeadChip. The objective is to identify differential methylated CpG
loci between mutant and wildtype samples. For both datasets, we compute probe specific t-
statistics on logit transformed percent methylation values, followed by z-score
transformation.

We consider both the Gaussian mixtures and non-parametric kernel density estimates for the
non-null. Since the hypothesis of interest is two-sided in these case studies, i.e., detecting
both hyper- and hypo-methylated sites, we also consider fitting a symmetric kernel density
non-null as described in Section 3.2. For Gaussian mixtures non-null, we choose appropriate
L based on BIC. We consider L = 1, 2 and 3. For computational efficiency, we estimate the
model parameters for “HMM” and “NHMM” by chromosomes, and allow for L to vary
within each chromosome. We then combine the estimated LIS and apply FDR thresholding
to the pooled LIS to obtain optimal genome-wide FDR control. Similar to Section 4, we
compare the performance of NHMM, HMM, Indep, BH and locfdr.

5.1 Tissue differential methylation in CHARM array
We annotate each probe according to the CpG islands track information downloaded from
UCSC (Gardenia-Garden and Frommer, 1987). We define “Shore” as regions within 2 kb of
CpG islands and “Shelf” as flanking regions within 2kb of “Shore” (i.e, between 2 to 4 bp of
CpG islands). In addition, we also compute the percentage of CpG dinucleotides and GC
content within a window of 200 bps at each probe. For the NHMM model, we model the
transition probabilities using inter-probe distance (Dist), CpG annotation (Annot), GC
content (GC) and CpG content (CpG) as covariates and compare the goodness of fit for each
model using BIC. The inter-probe distance is log transformed for numerical stability (Web
Appendix A.2). Since our aim is to assess if the inclusion of additional covariates in the
NHMM transition probabilities improves the model fit, and there is no straightforward way
to define the effective number of parameters in kernel density estimation, we only penalize
for the number of parameters in the transition probabilities in BIC calculation.

Table 1(A) compares the model fit via BIC scores for the different non-null for the
comparison between colon tumor and normal samples. “NHMM: X” and “NHMM: X+Y”
refer to NHMM models with Xj = (Xj) and Xj = (Xj, Yj) in the transition probabilities,
respectively, where X, Y=(Annot, Dist, CpG, GC). Since Annot, CpG and GC are
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correlated, we do not include these covariates simultaneously in the model to avoid
multicollinearity. Within each non-null type, both HMM and NHMM improve the model fit
compared to the model by assuming probe independence. In addition, there is also gain in
the model for “NHMM: GC” compared to regular HMM, suggesting that GC content is
informative in parametrizing the transition probabilities. However, inter-probe distance does
not appear to provide much improvement to the model fit, since the vast majority of the
probes (> 90%) have almost constant spacing, i.e., between 30 and 40 bps.

Irizarry et al. (2009) reported a list of significantly differential methylated regions at FDR of
0.05 as follows. First, they computed the z-scores as ΔM/s.e.m(ΔM) and the corresponding
p-values, where ΔM is the difference of averaged methylation values and s.e.m. is the probe
specific standard errors for ΔM. Next, contiguous regions of probes with p-values <0.001
were grouped into regions. Significance tests were performed on areas of each region
(Bullmore et al., 1999) and statistically significant areas were identified via permutation test
and empirical Bayes approach (Efron et al., 2001). Their strategy in identifying differential
methylated regions is another way to account for the correlation structure among nearby
probes. Using this list of differential methylated regions as gold standard, we compare the
sensitivities and specificities of the competing methods, i.e., NHMM, HMM, Indep, BH and
locfdr, and summarize the results in terms of AUROC in Table 1(A). The models with
Gaussian mixtures and kernel density non-null result in poor AUROC. On the other hand,
when we restrict the non-null f1 to be a symmetric kernel density, the AUROC increases
drastically for HMM and NHMM methods, and outperforms Indep, BH and locfdr. The
possible explanation for this observation is that the underlying correlation structure may not
be Markovian based from our simulation in Section 4.2.3. However, using the LIS obtained
from HMM or NHMM framework improves the probe rankings compared to the usual p-
values ranking given by the BH method which ignores the correlation structure.

To further validate the results obtained from the different methods, we download an
independent whole genome bisulfite Methyl-Seq data from the Gene Expression Omnibus
under accession number GSE32399 which consists of a Stage 3, CIMP-H colon tumor and
an adjacent normal colonic mucosa. We compute the average Methyl-Seq differential
methylation between tumor and normal for the subset of CpG’s that maps to each probe in
the CHARM array. For each of the NHMM (we use NHMM: Annot for expository
purposes), HMM, Indep, BH and locfdr method under symmetric kernel density above, we
obtain the top X CHARM probes ranked by each method and compute the mean absolute
Methyl-Seq difference, where X varies from 1000 to 50000. A more reliable method will
yield larger mean absolute Methyl-Seq difference, i.e., larger difference in magnitude
between colon tumor and normal. Top panel of Figure 4 plots the mean absolute Methyl-Seq
difference for the top X probes ranked ordered within each method. Both the NHMM and
HMM method result in more superior probe ranking as the mean absolute difference
between colon tumor and normal on this independent Methyl-Seq data is uniformly larger
than the other methods, followed by locfdr, Indep and BH. We also provide the mean
absolute difference for a randomly chosen subset of X probes (given by the inverted
triangles), which is much lower than all the methods. This indicates that the Methyl-Seq data
is comparable to the CHARM array data (which supports its usage as a validation data) and
all the methods are identifying meaningful set of differential methylated probes in the
CHARM array.

Based on the validation results above, both the HMM and NHMM methods result in more
efficient probe ranking compared to the models under independence assumption. To
elucidate the subtle difference between NHMM and HMM, we compare the annotation of
the top 5% probes ranked by each method. Middle left panel of Figure 4 displays the
distribution of probes in CpG annotation (Island, Shelf, Shore, None) identified by HMM
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and NHMM, as well as the subset of probes unique to each method (labeled “HMM only”
and “NHMM only”). Most of the probes unique to NHMM map to CpG Shore. Middle right
panel of Figure 4 compares the distribution of the gene annotation of these probes, where
“TSS1500” and “Body” refer to upstream 1.5 kb of transcription start site and transcription
start to end, respectively. A higher proportion of the probes unique to NHMM map to
TSS1500 compared to HMM.

5.2 Mutant vs wildtype in Infinium HumanMethylation450 BeadChip
We described and motivated the idea of modeling the transition probabilities using potential
informative features such as CpG annotation, inter-probe distance, assay type, GC and CpG
content in Section 3.1. Similar to Section 5.1, we evaluate the model fit of incorporating
these features in our Infinium HumanMethylation450 BeadChip dataset from an experiment
comparing 10 mutant and 20 wildtype tumor samples. In Table 1(B), we report the BIC
scores for Indep, HMM and NHMM (with different combination of covariates in transition
probabilities).

Within each non-null distribution, the first observation is that accounting for the dependence
structure in HMM and NHMM improves the model fit significantly compared to treating
each CpG as independent cases. Second, the NHMM fit is improved when probe spacing
(Dist) is included in the model. In addition, incorporating CpG annotation, GC content or
CpG content improves the model fit over HMM. The NHMM fit by incorporating the probe
spacing and CpG annotation (“NHMM: Dist+Annot”) yield smaller BIC scores overall.
Although assay type, CpG content, GC content and CpG annotation are associated, CpG
annotation appears to be more informative in this data set. We further compare the
annotation of the top 5% probes ranked by “HMM” and “NHMM: Dist+Annot”. Similar to
Section 5.1, a higher proportion of probes unique to “NHMM” map to CpG Shore and
TSS1500 regions.

6. Discussion
This paper presents a flexible framework for large-scale multiple testing under dependence.
We extend the HMM framework of Sun and Cai (2009) to allow for incorporation of
exogenous information which can improve the model fit based on a non-homogeneous
hidden state transition. Although we use DNA methylation as our motivating dataset, our
proposed framework is directly applicable to other types of genomic datasets including tiling
array gene expression and SNP data. In the DNA methylation data, we study the inclusion of
inter-probe distance, assay type and CpG information in the transition probabilities as a
proof of principle to demonstrate the flexibility of a NHMM framework. We choose to
model the hidden state transition using a logistic regression because it allows for other
factors that could give rise to non-stationary transition probabilities to be included easily in
the model. Our case studies suggest that CpG annotation and inter-probe distance are
informative in modeling the transition probabilities.

In both the HMM and NHMM framework, we proposed modeling the non-null f1 using a
non-parametric kernel density estimate with rule-of-thumb bandwidth which is at least as
flexible as Gaussian mixtures of Sun and Cai (2009) as shown in our simulation and case
studies. Using a kernel density estimate with pre-specified bandwidth is computationally
more efficient compared to Gaussian mixtures which requires one to run the algorithm
multiple times with different candidate number of mixture components. We also discuss
several reasons why we may want to restrict the non-null to be a symmetric distribution in
two-sided hypothesis tests. Although HMM and NHMM are versatile framework for
capturing correlation structure, the Markovian structure may not be valid in practice. We
demonstrate that our proposed data driven NHMM procedure controls FDR and is superior
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when the underlying data generating mechanism is Markovian with non-stationary transition
probabilities. However, when the underlying dependence structure is non-Markovian (e.g.,
an AR process), we show that using a Markov model with symmetric non-null is still robust
and yields more efficient probe ranking in both the simulations and case studies. We
acknowledge that the FDR control may be inaccurate if the underlying correlation structure
deviates significantly from a Markov model. Other models that control for FDR under
dependence (Leek and Storey, 2008; Friguet et al., 2009; Efron, 2010) could be explored
and extended to incorporate exogenous information identified in this paper to improve
detection of differential methylation.

In DNA methylation data and other types of genomic data, interesting events such as
differential methylation usually involve contiguous probes which define a region. Our
proposed NHMM model arise as a natural framework for capturing this regional effect. By
integrating the genomic structure and array design in the model, this could lead to a better
understanding of the DNA methylation patterns. Software implementing our proposed
framework is available as an R package NHMMfdr at http://www.unc.edu/~pfkuan/
softwares.htm

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Autocorrelation plot on CHARM array and Infinium HumanMethylation450 BeadChip in
Chromosome 1. The t-statistics for the CHARM array correspond to the comparison
between normal brain versus liver, normal liver versus spleen and colon tumor versus
normal, respectively. The plot for normal brain versus spleen exhibits similar patterns and is
not shown. The t-statistics for the Infinium array correspond to the comparison between
mutant versus wildtype tumors.
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Figure 2.
Average empirical FDR, FNR, ATP and AUROC for various signal levels μk at nominal
FDR of 0.10. Column 1 compares the empirical FDR versus μk. Column 2 compares the
empirical FNR versus μk. Column 3 compares the ATP versus μk. Column 4 compares the
AUROC versus μk. Rows 1, 2 and 3 correspond to non-null proportion of 0.05, 0.1 and 0.2,
respectively. NHMM (○), HMM (△), Indep (+), BH (×) and locfdr (◇).
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Figure 3.
Average empirical FDR, FNR, ATP and AUROC for various signal levels μk at nominal
FDR of 0.10. Column 1 compares the empirical FDR versus μk. Column 2 compares the
empirical FNR versus μk. Column 3 compares the ATP versus μk. Column 4 compares the
AUROC versus μk. Rows 1, 2 and 3 correspond to non-null proportion of 0.05, 0.1 and 0.2,
respectively. HMM-kernel density estimate (○), HMM-Gaussian mixtures (△), HMM-
symmetric kernel density estimate (+), BH (×) and locfdr (◇).
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Figure 4.
Top panel compares the mean absolute differential methylation between tumor and normal
in an independent Methyl-Seq data. Probes are ranked ordered within each method. Middle
left (right) panel compares the CpG annotation (gene annotation) of the top 5% probes
ranked by “HMM” and “NHMM: Annot” on the CHARM array. “HMM only” and “NHMM
only” refer to the probes unique to “HMM” and “NHMM: Annot”, respectively. Bottom
panels are similar to middle panels, which compares the results of the top 5% probes ranked
by “HMM” and “NHMM: Dist+Annot” on the Infinium HumanMethylation450 BeadChip.
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