
Regulation of TCR signalling by tyrosine phosphatases: from
immune homeostasis to autoimmunity

Tyrosine phosphorylation in T-cell activation: the
balance between tyrosine kinases and tyrosine
phosphatases

Activation of T cells is largely mediated through signal

transduction downstream from the T-cell receptor (TCR)

expressed on the cell surface. The TCR is a transmem-

brane receptor complex comprised of a and b chains,

which bind ligands, and CD3 (e, c and d) and f chains

containing motifs that are phosphorylated on tyrosine,

called immunoreceptor tyrosine-based activation motifs.

Signal transduction through the TCR is initiated when

the receptor binds to a peptide–MHC complex presented

by an antigen-presenting cell. This interaction initiates a

cascade of signalling events, which induces the prolifera-

tion, mobilization and differentiation of T cells. For an

updated and comprehensive review of signalling through

the TCR the reader is referred to recent authoritative

publications.1–4

A dynamic wave of tyrosine phosphorylation phenom-

ena is critical for ignition of intracellular signalling in T

cells. Engagement of the TCR leads to the activation of

the Src family protein tyrosine kinases (PTKs) LCK and

FYN, which phosphorylate the immunoreceptor tyrosine-

based activation motifs of the TCR. This provides dock-

ing sites for the SH2 domains of ZAP-70, a Syk family

PTK, allowing ZAP-70 to be phosphorylated and acti-

vated by LCK. Once activated, ZAP-70 phosphorylates the

adaptor proteins SLP-76 and LAT, which nucleate signal-

ling complexes, leading to the phosphorylation and acti-

vation of multiple downstream effectors. This results in

calcium mobilization, activation of mitogen-activated

protein kinases (MAPKs), transcriptional regulation and

cytoskeletal rearrangements.

Protein tyrosine phosphatases (PTPs) are the natural

counterpart of PTKs. Much like PTKs, depending upon

the phosphorylation site and the signalling context, they

can enhance or reduce the function of their protein tar-

get(s). The modern view of phosphorylation networks is

one of dynamic ‘always-on’ grids where the stoichiometry

of each phosphorylation site is continuously controlled by

the changing balance between the activities of kinases and

phosphatases. For example, the activation state of the Src

family kinases (SFKs) is balanced between the activities of

CSK and CD45, which respectively phosphorylate and

dephosphorylate the inhibitory C-terminal site (Y505 of

LCK), and the negative regulators LYP and SHP-1, which

dephosphorylate an activating tyrosine in the catalytic

domain (Y394 of LCK). Acute changes in PTP activity/

expression are in principle sufficient to alter the network

status and even trigger true signalling waves. The recent

‘kinetic-segregation’ model postulates that PTPs are

responsible for the very initiation of signalling after

engagement of the TCR.5 In this model, acute removal of
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Summary

More than half of the known protein tyrosine phosphatases (PTPs) in the

human genome are expressed in T cells, and significant progress has been

made in elucidating the biology of these enzymes in T-cell development

and function. Here we provide a systematic review of the current under-

standing of the roles of PTPs in T-cell activation, providing insight into

their mechanisms of action and regulation in T-cell receptor signalling,

the phenotypes of their genetically modified mice, and their possible

involvement in T-cell-mediated autoimmune disease. Our projection is

that the interest in PTPs as mediators of T-cell homeostasis will continue

to rise with further functional analysis of these proteins, and PTPs will be

increasingly considered as targets of immunomodulatory therapies.

Keywords: protein tyrosine phosphatase; T-cell activation; T-cell receptor

signalling; autoimmunity; tyrosine phosphorylation
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PTPs from membrane areas where the interactions

between the T cells and antigen-presenting cells occur

results in an imbalance in the phosphatase–kinase equilib-

rium, which is sufficient to trigger a self-amplifying wave

of activation of the SFKs.

The human genome encodes more than 100 PTPs clas-

sified into four classes (see refs. 6 and 7 for reviews of

PTP classifications). T cells are known to express at least

60 of these enzymes, many of which have known roles as

positive or negative regulators of TCR signalling.8,9 The

study of these PTPs in autoimmunity has obvious signifi-

cance because TCR signalling impinges upon the patho-

genesis of autoimmunity at multiple levels. For example,

increased/decreased TCR signalling can alter selection at

the thymic level, activation and differentiation of effector

T cells, suppressive activity of regulatory T cells, and

triggering and maintenance of peripheral anergy.10–12

Here, after briefly reviewing the role of each PTP in

TCR signalling (summarized in Fig. 1 and Table 1), we

will also summarize whether there is any evidence avail-

able of an involvement of the enzyme in autoimmunity

(summarized in Table 2). The classification system

adopted in this review (Fig. 2) is the one described in

Alonso et al.6

Class I enzymes

Receptor PTPs

CD45

CD45, encoded by the PTPRC gene, is a type 1 leucocyte-

specific glycoprotein and a transmembrane PTP. CD45 is

highly expressed in all nucleated haematopoietic cells and

comprises about 10% of lymphocyte surface proteins.13

The protein structure consists of a large extracellular

domain, a short transmembrane segment and a cytoplas-

mic portion containing two PTP domains called D1 and

D2; only the membrane-proximal domain D1 has tyrosine

phosphatase activity, and it is necessary for TCR-medi-

ated signal transduction.14

The role of CD45 in T-cell activation has been intensely

studied and excellent focused reviews are available.15–17

The best-characterized substrates of CD45 in T cells are

the SFKs LCK and, to a lesser extent, FYN.18–21 The nega-

tive regulatory site on SFKs (Y505 of LCK) is a bona fide

substrate of CD45 in T cells, and there is substantial evi-

dence of CD45 being a positive regulator of TCR signal-

ling through dephosphorylation of this site.22,23 CD45-

deficient T-cell lines and thymocytes from CD45)/) mice

exhibit increased phosphorylation of the inhibitory sites

of LCK and FYN, and the thymic phenotype of CD45)/)

mice (see below) is completely rescued by the expression

of the constitutively active LCK Y505F mutant.18,19,21,24–26

However, there is in vitro and in vivo evidence that CD45

is also able to dephosphorylate the positive regulatory site

of LCK (Y394), and data in CD45-deficient cell lines sug-

gest that CD45 may also behave as a negative regulator of

T-cell activation.27–30

Deficiency of CD45 in both humans and mice leads to

a severe-combined immunodeficiency, supporting a major

positive regulatory role for CD45 in T-cell activation.31–35

CD45-deficient mice, obtained by targeting exon 6,33 exon

935 or exon 12,34 exhibit a block in the double-positive to

single-positive transition due to reduced signalling

through the TCR. In CD45 knockout (KO) mice reconsti-

tuted with a titration of the CD45RO transgene, rescuing

just 3% of the physiological CD45 expression was able

to restore T-cell development.36 When CD45 expression

was increased to 30% of wild-type levels, increased CD4

and CD8 single-positive expansion was observed, suggest-

ing a key positive role for CD45 in positive selection.

However, in this system, increased levels of CD45 expres-

sion led to reduced phosphorylation of both LCK Y505

and Y394 sites, supporting the idea that CD45 can regu-

late both of the LCK tyrosine phosphorylation sites. A

model has been postulated where high CD45 expression

in T cells may be necessary to maintain the LCK Y394 site

in a dephophorylated state to terminate TCR signalling.36

Recently, a mouse with a CD45 ‘lightning’ mutation was

generated, in which the surface expression of CD45 is

low, but the expression of all the isoforms (see below) is

maintained. The authors showed that CD45 is differently

required during basal and inducible TCR signalling. Once

again, CD45 was found to have dual negative and positive

roles in the regulation of thymic selection.37

A well-known observation is that multiple, highly con-

served isoforms of CD45 are expressed on T cells at dif-

ferent developmental and activation stages, as the result

of differential splicing of exons 4, 5 and 6.13,38 Inclusion

of exons 4, 5 or 6 is indicated by the presence of the let-

ters A, B or C, respectively, in the isoform name. The

most commonly observed are the larger isoform RB

(which includes only exon 5), expressed on primary naive

T cells, and the shortest isoform RO (which lacks all three

exons), expressed in activated and memory T cells.39 The

molecular basis of this complex isoform regulation is

becoming clear and the heterogeneous nuclear ribonu-

cleoprotein L-like protein (hnRNPLL) has been recently

identified as a key modulator of the expression pattern of

CD45 isoforms.40–42 On the other hand, the functional

significance of the changes in CD45 isoform expression

during T-cell differentiation/activation remains unex-

plained and several apparently contrasting observations

have been reported. Early biochemical experiments

showed that different isoforms of CD45 have similar PTP

activity in vitro.18 Studies carried out in CD45)/) mice

made transgenic for various isoforms of CD45 showed

that rescue of thymic development and peripheral T-cell

numbers/functions was dependent on expression levels of
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the transgene, but was generally isoform-independent.43–45

In contrast, CD45-deficient cell lines expressing the RO

isoform were found to produce more interleukin-2 (IL-2)

than cells expressing the RABC isoform after TCR engage-

ment with MHC–peptide.46 Additional studies in trans-

genic CD45)/) mice also found differences in phenotypic

rescue between high- and low-molecular-weight iso-

forms.47,48 Finally, in in vitro studies using mouse T cells,

Seki et al.49 showed that CD45 expressed on CD8+ T cells

was less active than CD45 expressed on CD4+ T cells and

correlated this difference to the distinctive expression

pattern of CD45 isoforms between CD8+ (primarily
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Figure 1. Schematic representation of the diverse functions of the protein tyrosine phosphatases (PTPs) regulating T-cell activation. The activa-

tion of a T cell involves tyrosine phosphorylation at multiple levels, and PTPs play diverse roles that work in concert together to cause the

response of the T cell to the extracellular environment, to cause T-cell mobilization and to cause the production and response to cytokines such

as interleukin-2 (IL-2). PTPs involved in these processes include transmembrane PTPs and intracellular membrane-proximal, cytosolic and

nuclear PTPs. The initial response of a T cell to the external environment is finely tuned by PTPs regulating the early wave of phosphorylation

events immediately proximal to the T-cell receptor (TCR), and many of the PTPs are found near the plasma membrane. These PTPs control the

phosphorylation status of the Src family kinases (SFKs), the immunoreceptor tyrosine-based activation motifs (ITAMS) of the f chains and

ZAP-70. Further downstream, PTPs control both membrane-proximal and cytosolic signalling effectors. Activation of mitogen-activated protein

kinases (MAPKs) is spatially regulated by classical and dual-specific PTPs localized to the cytosol and/or nucleus. T-cell mobility is controlled by

cytoskeletal rearrangements, involving multiple PTPs with protein–protein interaction domains and FERM (band 4.1–ezrin–radixin–moesin)

domains that allow their association with complexes regulating the cytoskeleton and/or the plasma membrane. Post-transcriptionally, secretion of

cytokines such as IL-2 requires phosphotyrosine-mediated vesicle formation. The autocrine response of T cells to extracellular IL-2 is mediated

through tyrosine phosphorylation of signalling molecules downstream from the IL-2 receptor. An additional layer of modulation of the T-cell

response is added through triggering of inhibitory receptors, whose function is mediated by cytosolic PTPs that can bind to the inhibitory motifs

on these receptors.
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expressing CD45RBC) and CD4+ (primarily expressing

the RO and RB isoforms) T cells.

The phosphatase activity of CD45 is believed to be

physiologically inhibited by dimerization in trans involv-

ing a specific juxtamembrane ‘wedge’ motif. Strong evi-

dence in favour of a role for CD45 in autoimmunity was

provided by the Weiss group who described the pheno-

type of mice carrying an inactivating point mutation

(CD45E613R) in the inhibitory wedge motif. These mice

express a constitutively active form of CD45 and display

an autoimmune syndrome resembling human systemic

lupus erythematosus (SLE).50 Although thymic develop-

ment was normal in these mice, double-positive thymo-

cytes showed enhanced TCR signalling,51 confirming a

positive role for CD45 in T-cell development. In contrast,

TCR activation was down-regulated in peripheral T cells.

T cells from patients with SLE show decreased CD45

expression or phosphatase activity compared with healthy

controls, and show abnormal patterns of CD45 phosphor-

ylation and isoform expression.52–54 Altered CD45 iso-

form expression has been also associated with infantile

cholestasis.55

A C77G polymorphism of CD45 abolishes the silencing

of exon 4, causing an enhanced expression of the high-

molecular-weight form of CD45 in all T-cell subpopula-

tions.56,57 This single nucleotide polymorphism (SNP)

was first associated with multiple sclerosis by Jacobsen

et al.,58 but the association was not confirmed in subse-

quent studies.59–62 The SNP is not associated with type 1

diabetes (T1D),63,64 Graves’ disease,63 SLE,65 Hashimoto’s

thyroiditis66 or myasthenia gravis.67 An association was

found with autoimmune hepatitis,68 and another study

reported an increased frequency of the SNP in systemic

sclerosis.69 Another very rare polymorphism, C59A,

causes aberrant splicing of PTPRC and was found in sev-

eral members of a family with multiple sclerosis.58

Table 1. Protein tyrosine phosphatases (PTPs) in T-cell activation

PTP Gene name Role in T-cell activation

CD45 PTPRC Positively regulates TCR signalling by dephosphorylation of inhibitory site of LCK and FYN

CD148 PTPRJ Positively regulates TCR signalling by dephosphorylation of inhibitory site of LCK; may also

negatively regulate TCR signalling by dephosphorylation of LAT and PLCc1

RPTPa PTPRA Positively regulates TCR signalling by dephosphorylation of inhibitory site of LCK and FYN

RPTPj PTPRK Needed for development of CD4+ T cells; mechanism unclear

LAR PTPRF Negatively regulates TCR signalling in thymocytes by dephosphorylation of LCK and FYN

LYP/Pep PTPN22 Negatively regulates TCR signalling by dephosphorylation of inhibitory site of LCK, FYN, ZAP-70

and others; binds CSK

PTP-PEST PTPN12 Negatively regulates TCR signalling by dephosphorylation of Cas, Pyk2, FAK, paxilin; binds CSK

SHP-1 PTPN6 Negatively regulates T-cell activation through ITIM/ITSM receptors, cytokine receptors, dephosphorylates

LCK, ZAP-70 and others

SHP-2 PTPN11 Positively regulates T-cell activation by increasing ERK activation; binds Gab2; may also inhibit T-cell activation

through ITIM/ITSM receptors

TCPTP PTPN2 Negatively regulates T-cell activation by inhibiting IL-2 production

PTPH1 PTPN3 Inhibits TCR signalling when over-expressed by dephosphorylating immunoreceptor tyrosine-based activation

motifs; dephosphorylates valosin-containing protein and interacts with TACE

PTP-MEG1 PTPN4 Inhibits T-cell activation when over-expressed

PTP-BAS PTPN13 Inhibits apoptosis by binding CD95/FAS; regulates cytokine secretion by inhibiting STAT proteins

PTP-MEG2 PTPN9 Promotes secretion – necessary for secretory vesicle formation

HePTP PTPN7 Negatively regulates TCR signalling by dephosphorylation of ERK and p38

MKP-1 DUSP1 Negatively regulates T-cell activation by dephosphorylation of MAPKs in nucleus

PAC-1 DUSP2 Negatively regulates T-cell activation by dephosphorylation of p38 and ERK in nucleus

MKP-2 DUSP4 Negatively regulates IL-2 signalling and proliferation of CD4+ T cells through regulation of STAT5 phosphorylation

MKP-3 DUSP6 Negatively regulates T-cell activation by dephosphorylation of ERK in cytosol; may mediate TLR4-induced

inhibition of TCR signalling

MKP-5 DUSP10 Negatively regulates T-cell activation by dephosphorylation of JNK in cytosol and nucleus

MKP-7 DUSP16 Regulates the balance between Th1/Th2 cells through dephosphorylation of JNK in cytosol

VHR DUSP3 Dephosphorylates p38, ERK and STAT5; promotes cell-cycle progression

PTEN PTEN Opposes PI3K activity by dephosphorylating PIP3; functions as tumour suppressor

LMPTP ACP1 Positively regulates signalling by dephosphorylation of inhibitory site of ZAP-70; may prevent TCR clustering by

inhibiting cytoskeletal rearrangement through FAK

ERK, extracellular signal-regulated kinase; IL-2, interleukin-2; ITIM/ITSM, immunoreceptor tyrosine-based inhibitory motifs/immunoreceptor

tyrosine-based switch motifs; JNK, Jun N-terminal kinase; MAPK, mitogen-activated protein kinase; STAT5, signal transducer and activator of

transcription; TCR, T-cell receptor; Th1, T helper type 1; TLR4, Toll-like receptor 4.
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CD148

CD148, encoded by the PTPRJ gene, is a ubiquitous

transmembrane PTP. It is structurally characterized by an

extracellular domain consisting of eight fibronectin type

III domains with multiple glycosylation sites, a cytoplas-

mic domain with a juxtamembrane wedge motif, and a

single PTP domain.70,71 Naive T cells exhibit low expres-

sion of CD148 and inducibly express the phosphatase

after TCR stimulation.72 Some differences in expression

patterns of CD148 between human and mouse T cells

have been reported.73,74 A recent expression study con-

firmed that in mice, the expression of CD148 is high in

double-negative thymocytes, drops significantly in single-

positive thymocytes, and is nearly absent in peripheral

blood T cells. In contrast, human thymocytes show an

opposite pattern, with high expression in single-positive

thymocytes and peripheral blood T cells.75 Over-expres-

sion studies in Jurkat cells indicate that CD148 inhibits

phosphorylation of phospholipase Cc1 and LAT, causing

down-regulation of TCR signalling.76 In over-expression

studies in CD45-negative JS-7 T cells, CD148 was also

able to dephosphorylate the negative regulatory tyrosine

residue of SFKs, suggesting that in certain circumstances,

CD148 might be able to promote TCR signalling.75 Inter-

estingly, the extracellular domain of CD148 mediates the

exclusion of the phosphatase from the immunological

synapse. After T-cell–antigen-presenting cell disengage-

ment, the access of CD148 to its substrates is reconsti-

tuted, causing down-regulation of TCR signalling,

suggesting a role for CD148 in tempering long-term sig-

nalling in T cells.77

RPTPa

RPTPa, encoded by the PTPRA gene, is a ubiquitous

transmembrane PTP expressed at low levels in

lymphoid tissues.78 Like CD45, RPTPa functions to

Table 2. T cell protein tyrosine phosphatases (PTPs) and autoimmunity

PTP Gene name Autoimmune phenotype in mice Autoimmune phenotype in humans

CD45 PTPRC SLE-like disease in mice with constitutively

active CD45

Genetic association with autoimmune hepatitis, myasthenia

gravis and multiple sclerosis

LYP/Pep PTPN22 Genetic association with multiple autoimmune diseases, including

T1D, rheumatoid arthritis, SLE, Graves’ disease, Hashimoto’s

thyroiditis, myasthenia gravis, generalized vitiligo, Wegener’s

granulomatosis

PTP-PEST PTPN12 T-cell deletion reduces susceptibility to EAE

SHP-1 PTPN6 me/me mice show systemic autoimmunity

SHP-2 PTPN11 Located within linkage disequilibrium block that associates with

coeliac disease, rheumatoid arthritis, T1D and Crohn’s disease

TCPTP PTPN2 T-cell deletion leads to spontaneous

autoimmunity

Genetic association with T1D, rheumatoid arthritis and coeliac disease

MKP-1 DUSP1 KO mice show delayed EAE development

MKP-5 DUSP10 KO mice protected from EAE

PTEN PTEN Autoimmunity in KO heterozygous mice

LMPTP ACP1 Genetic association with T1D, Crohn’s disease and ulcerative colitis

EAE, experimental autoimmune encephalitis; KO, knockout; SLE, systemic lupus erythematosus; T1D, type 1 diabetes.

Class I PTPs

Class II PTPs

LMPTP

1. Receptor PTPs (RPTPs)
1.1. CD45
1.2. CD148
1.3. RPTPα
1.4. RPTPκ
1.5. LAR

2. Non-receptor PTPs
2.1. LYP
2.2. PTP-PEST
2.3. SHP-1 and SHP-2
2.4. TCPTP
2.5. Cytoskeletal PTPs
2.6. PTP-MEG2
2.7. PTPs involved in MAPK regulation

2.7.1 HePTP
2.7.2 Dual specificity phosphatases (DSPs)

2.7.2.1 MKP-1
2.7.2.2 PAC-1
2.7.2.3 MKP-2
2.7.2.4 MKP-3
2.7.2.5 MKP-5
2.7.2.6 MKP-7
2.7.2.7 VHR
2.7.2.8 Other DSPs

2.8. PTEN: lipid phosphatase

Figure 2. Classification scheme of the protein tyrosine phosphatases

(PTPs) described in this review.
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dephosphorylate SFKs on their inhibitory tyrosine resi-

due.79 However, studies have shown that CD45 and

RPTPa are not redundant PTPs.80,81 RPTPa could not

compensate for loss of CD45 in dephosphorylation and

activation of LCK or FYN in a CD45-deficient T-cell

line, and showed lower in vitro activity than CD45 on

Src-derived phosphopeptides and on recombinant

LCK.80 Unlike CD45, RPTPa KO mice show a benign

immune phenotype.81 Resting thymocytes from RPTPa-

deficient mice showed enhanced phosphorylation of FYN

on both tyrosines 417 and 528, and increased FYN

activity, indicating that RPTPa may act as a negative

regulator of FYN in unstimulated thymocytes. After TCR

stimulation, the same thymocytes showed no differences

in tyrosine phosphorylation, but had impaired prolifera-

tion and IL-2 response. A recent study suggested that

RPTPa is itself regulated by CD45 through dephosphor-

ylation at Tyr789.

RPTPj

RPTPj, encoded by the PTPRK gene, is a ubiquitous

transmembrane PTP whose expression is induced by

transforming growth factor-b.82,83 An important role

for RPTPj in T-cell development was hypothesized fol-

lowing the discovery that Ptprk is deleted in the LEC

rat, a model that displays a monogenic recessive

immunodeficiency (called T helper immunodeficiency

or Thid).84,85 The Thid phenotype is characterized by

hypoplasia of the thymus and spleen, reduced levels of

IgG, selective deficiency in CD4 single-positive T cells,

and strongly reduced T helper function.86 The CD4

single-positive T-cell deficiency is attributed to anoma-

lous development of T cells in the thymus, and was

replicated in the mouse by bone marrow reconstitution

of irradiated animals with double-negative cells trans-

duced with dominant-negative RPTPj.84 However the

role of Ptprk in the Thid phenotype has been partially

called into question after the discovery that the geno-

mic deletion of the LEC rat also inactivates a neigh-

bouring gene encoding Themis, a recently identified

key regulator of thymic development.87 In vitro, a

reduction of extracellular signal-regulated kinase (ERK)

phosphorylation has been described in LEC thymocytes

and in T cells after knock-down of Ptprk; however,

the biochemical basis of this phenomenon and the

substrate of RPTPj in T cells are unclear at the

moment.88

LAR

LAR, a transmembrane PTP encoded by the PTPRF gene,

is expressed in thymocytes and has been suggested to neg-

atively regulate TCR signalling in thymocytes through

dephosphorylation of LCK and FYN.89,90

Non-receptor PTPs

LYP

The lymphoid phosphatase (LYP) is a cytosolic PTP

encoded by the PTPN22 gene.91 The structure of LYP

includes an N-terminal PTP domain, an interdomain

region, and a C-terminal domain that contains four pro-

line-rich motifs, termed P1–P4.91,92 The P4 motif is

located within a C-terminal homology domain (CTH)

that is also present in the phosphatases PTP-PEST and

BDP1.93 LYP and its mouse orthologue Pep are expressed

only in haematopoietic cells.91,92

In T cells, LYP/Pep function as potent negative regula-

tors of T-cell activation through inhibition of early signal-

ling downstream of the TCR. Initial over-expression

studies in cell lines revealed that Pep had an inhibitory

role in TCR signalling by dephosphorylation of positive

regulatory tyrosines on LCK, FYN and ZAP-70.94–96

Substrate trapping experiments later identified LCK

(Y394), ZAP-70 (Y493), the CD3f chain, VAV, CD3e,

and valosin-containing protein as substrates of LYP in T

cells.97 LYP/Pep are powerful inhibitors of TCR signalling

in ex vivo over-expression and inhibition systems.98–103

The phenotype of the Ptpn22 knockout mouse further

supports the view of Pep as a negative regulator of TCR

signalling.104 These mice display increased positive

selection, an expanded CD4+ and CD8+ effector/memory

T-cell compartment, and hyper-responsiveness of effector/

memory T cells to TCR engagement. Interestingly, a

similar enhanced response to TCR engagement was not

observed in naive T cells.

In T cells, numerous studies have shown that a high

stoichiometry complex is formed between the P1 motif of

LYP/Pep and the SH3 domain of CSK.94,95,99,103,105–107

Due to the known inhibitory role of CSK in regulating

the SFKs, it has been proposed that the constitutive Pep–

CSK complex functions to synergistically repress LCK and

FYN activity through combined phosphorylation of the

inhibitory tyrosine by CSK and concurrent dephosphory-

lation of the activating phosphotyrosine by LYP.95,96

However, recent studies from our group focused on the

W620 variant of the human phosphatase, which lacks

association with CSK (see below), suggest that CSK might

behave as an inhibitor of the phosphatase activity as well.

In the proposed model, CSK recruits LCK to LYP, which

leads to phosphorylation of LYP on an inhibitory tyrosine

residue Y536, and consequent reduction of the phospha-

tase activity. Hence the CSK–LYP complex is part of a

positive LCK–LYP feedback loop, which might function

to maintain LCK in an activated state after TCR stimula-

tion and so sustain signalling through the TCR.103

Recent molecular and structural analyses have provided

insight into additional modes of regulation of LYP.

Crystal structure analysis revealed that the catalytic

6 � 2012 The Authors. Immunology � 2012 Blackwell Publishing Ltd, Immunology, 137, 1–19
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domain contains a LYP-specific loop.101,102,108 In this

region a serine (S35) was identified that is phosphorylated

by PKC, resulting in a decrease of catalytic activity.101

Another structure solved by our group showed that the

catalytic cysteine (C227) forms a disulphide bond with an

additional cysteine residue (C129), which can also regu-

late the activity through a reversible oxidation mecha-

nism.108 LYP also seems to be regulated by intramolecular

interactions between the catalytic domain and the proxi-

mal interdomain region, suggesting a possible mechanism

of action of post-translational modifications outside the

catalytic domain.109

The critical role of PTPs in immune homeostasis is

exemplified in the discovery of the association of PTPN22

with multiple human autoimmune diseases. This was first

documented in 2004 when an SNP (C1858T) in the

PTPN22 gene was reported to increase the risk of T1D,105

rheumatoid arthritis99 and SLE.110 The association with

T1D, rheumatoid arthritis and SLE has been confirmed in

multiple populations (reviewed in ref. 111). The T1858

allele was also found to increase the risk of juvenile idio-

pathic arthritis,112,113 Graves’ disease,114–117 Hashimoto’s

thyroiditis,118 Addison’s disease,115,119 myasthenia gra-

vis,120–122 generalized vitiligo,123,124 systemic sclerosis,125

alopecia areata,126 psoriatic arthritis127,128 and Wegener’s

granulomatosis.129 Interestingly, the PTPN22 C1858T

allele is not associated with multiple sclerosis, coeliac

disease, psoriasis and ulcerative colitis,130,131 and has a

protective effect against Crohn’s disease and Behçet’s

disease.132–134

The presence of the C1858T SNP causes a substitution

from arginine to tryptophan at amino acid 620

(R620W), which impairs the binding of LYP to CSK.

The functional effect of the substitution is still somehow

controversial. Some observations from our group and

others suggest that LYP-W620 is a gain-of-function form

of the phosphatase.100 T cells from patients with T1D

carrying the T1858 allele showed decreased T-cell activa-

tion as evidenced by reduced TCR-induced IL-2 secre-

tion100,135 and decreased calcium mobilization after TCR

engagement.136 Reduced TCR-mediated calcium mobili-

zation and IL-10 secretion was also seen in memory T

cells from healthy C/T carriers compared with homozy-

gous C/C healthy subjects. However, this pattern was

only seen in memory and not naive T cells. Consistent

with the data from primary T cells, over-expression stud-

ies comparing the LYP-R620 and LYP-W620 variants

showed that LYP-W620 is indeed a more potent inhibi-

tor of TCR signalling and T-cell activation.100,103 These

findings are in contrast to two recent reports claiming

that the W620 variant is a hypomorphic allele.137,138 In

one study also based on over-expression of the two

phosphatase variants, Jurkat cells co-transfected with

LYP-W620 and CSK were less responsive to TCR stimu-

lation than cells co-transfected with CSK and LYP-

R620.137 In another study, a mouse carrying the W619

knock-in mutation of Pep (the homologous site to LYP-

W620) was characterized. T cells from these mice showed

increased proliferation and phosphorylation of ERK in

response to TCR engagement compared with WT

mice.138 The authors found reduced expression of Pep as

a result of increased calpain and proteasome-mediated

cleavage in mice carrying the W619 allele. They also

show reduced expression of LYP in homozygous carriers

of the T1858 allele, and increased proliferation and phos-

phorylation of ERK in T cells of these individuals in

response to TCR stimulation.

PTP-PEST

PTP-PEST, encoded by the PTPN12 gene, is a ubiqui-

tous cytosolic PTP expressed in most non-haematopoiet-

ic and haematopoietic cell types.139–141 The structure of

PTP-PEST is characterized by an N-terminal PTP

domain, a central protein–protein interaction domain

containing proline-rich motifs, and a conserved C-termi-

nal tail.

Studies in non-immune cells have shown that PTP-

PEST is involved in the regulation of cell migration and

cytoskeletal reorganization by dephosphorylation of focal

adhesion proteins, such as Cas142 and paxillin.143 In

human and mouse naive CD4+ and CD8+ T cells, PTP-

PEST expression is down-regulated after TCR activa-

tion.144 In T cells early studies showed that PTP-PEST

regulates signalling proteins involved in TCR activation,

such as Cas, Pyk2 and FAK and behaves as a negative reg-

ulator of TCR signalling.145 Studies in CD4+ T cells from

TCR transgenic mice showed that over-expressed PTP-

PEST inhibited immunological synapse formation, corre-

lating with an impaired phosphorylation of WASP.146

Over-expression studies in Jurkat T cells and primary

human T cells also pointed to a possible role of PTP-

PEST as a negative regulator of TCR activation.144 How-

ever, the physiological role of PTP-PEST in T-cell func-

tion in mice could not be confirmed until recently

because global KO of PTP-PEST in mice causes early

embryonic lethality.147

The Veillette group recently generated a conditionally

deleted allele of Ptpn12 in T cells and showed that PTP-

PEST plays a critical role in secondary T-cell activation

without altering T-cell development and primary T-cell

response.148 The phenotype was attributed to increased

phosphorylation of Pyk2 and correlated with a decrease

in T-cell aggregation during secondary T-cell activation.

Importantly, mice deficient in PTP-PEST in T cells were

less susceptible to development of experimental autoim-

mune encephalitis (EAE) compared with wild-type mice,

providing evidence that PTP-PEST may contribute to the

development of autoimmune diseases through action at

the T-cell level.
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SHP-1 and SHP-2

Although structurally similar, the cytoplasmic SH2-

domains containing phosphatases SHP-1 and SHP-2 are

distinct PTPs, both in their expression profiles and in

their function. SHP-1 is encoded by the PTPN6 gene. It

is expressed in all haematopoietic lineages at all stages,

and at lower levels in epithelial cells and in the olfactory

neuroepithelium.92,149–151 Several isoforms have been

reported and two distinct transcription initiation sites

regulate PTPN6 expression in haematopoietic or non-hae-

matopoietic tissues.152,153 SHP-2, on the other hand, is

ubiquitously expressed.154,155

Both SHP-1 and SHP-2 are cytosolic PTPs comprised

of two tandem N-terminal SH2 domains, a central cata-

lytic PTP domain, and a C-terminal tail. They are about

60% homologous. Both are regulated by intramolecular

folding, in which the N-terminal SH2 domain binds to

the catalytic pocket of the PTP domain, preventing sub-

strate binding and reducing the phosphatase activity.156–

160 Engagement of this SH2 domain by substrate binding

releases this inhibition and activates the phosphatases.

The C-terminal region may also be involved in intramo-

lecular regulation of SHP-1, as truncation of the C-termi-

nus leads to increased in vitro activity.159,161 Both SHP-1

and SHP-2 are regulated by phosphorylation in the C-ter-

minal region. Phosphorylation on Tyr536 and Tyr564 of

SHP-1 and Tyr542 and Tyr580 of SHP-2 functions to reg-

ulate the activity of the phosphatase or provide docking

sites for interactors containing SH2 domains, including

Grb2.162–166

SHP-1 contains a C-terminal motif (SKHKED, amino

acids 557–562) that mediates a constitutive localization of

about 20–30% of SHP-1 to lipid rafts.167 The localization

to lipid rafts appears to be essential for SHP-1-mediated

inhibition of TCR signalling. Extensive literature is

already available regarding the role of SHP-1 in the

immune system, and the reader is referred to several

excellent reviews.168–171 In T cells, SHP-1 acts as an inhib-

itor of TCR signal transduction and a regulator of the T-

cell activation threshold.172,173 Thymocytes and mature

peripheral T cells deficient in SHP-1 show increased

responses to TCR stimulation, demonstrating increased

activation of SFKs and other signalling intermediates,

increased IL-2 production and increased prolifera-

tion.172,174,175 After TCR engagement, SHP-1 is activated

by LCK-mediated phosphorylation and is recruited to the

TCR complex, where it can dephosphorylate signalling

molecules such as LCK, ZAP-70, PI3K, VAV, SLP-76 and

CD3f.170,176,177 The inhibitory role of SHP-1 is dependent

upon the strength of the TCR signal.177 Weaker, antago-

nistic signals cause rapid recruitment of SHP-1 to the

TCR. There, in a negative feedback regulation loop, SHP-

1 is phosphorylated on Tyr564 by LCK. This in turn pro-

motes interaction between SHP-1 and the SH2 domain of

LCK, and subsequent dephosphorylation and inactivation

of LCK by SHP-1. On the other hand, stronger, agonistic

TCR signals lead to ERK activation, followed by phos-

phorylation of LCK on Ser. This induces a conforma-

tional change in LCK, inhibiting binding of LCK to

SHP-1 and the subsequent inactivation of LCK, leading

to more sustained signalling through the TCR.177 In

T-cell development, SHP-1 participates in setting the

thresholds for both positive and negative selection of

thymocytes.172,173,178,179 SHP-1 deficiency causes hyper-

responsiveness of thymocytes to TCR stimulation, and

leads to increased positive and negative selection. A more

recent study shows that conditional knockout of SHP-1

in mature single-positive T cells limits the production of

CD8+ effector T cells, but does not affect the formation

of long-lived central memory cells.180

SHP-1 inhibits T-cell activation through additional

mechanisms as well. SHP-1 is a downstream mediator of

signalling through inhibitory receptors in immune cells.

These receptors are characterized by motifs called immu-

noreceptor tyrosine-based inhibitory motifs (ITIMs) or

immunoreceptor tyrosine-based switch motifs (ITSMs) in

their intracellular region, which become phosphorylated

on tyrosine and recruit SHP-1 through its SH2 domains.

Examples of such receptors expressed in T cells are CEA-

CAM1, CD5, PD-1, BTLA and CD22.181–187 SHP-1 also

regulates signalling through cytokine receptors, for exam-

ple, inhibiting the IL-2 receptor (IL-2R) signalling path-

way by binding to the IL-2Rb chain and reducing

phosphorylation of the IL-2Rb and the downstream Janus

PTKs JAK1 and JAK3.188

The well-described phenotype of the motheaten mouse

(me/me) has demonstrated the critical role of SHP-1 as a

regulator of haemopoietic cell function.169,174,175,189 A

splicing mutation at the SHP-1 locus leads to a frameshift

in the coding sequence of the transcript, resulting in no

expressed protein. me/me mice are characterized by

systemic inflammation and autoimmunity, with develop-

mental abnormalities in macrophages, granulocytes,

T cells, B cells, natural killer cells, erythrocytes and mast

cells.174 The phenotype of the motheaten mouse and sev-

eral other studies have suggested that SHP-1 expression

levels or activity can affect autoimmunity in humans and

mice, however the mechanism of action of SHP-1 in au-

toimmunity is probably only partially mediated by an

action on TCR signalling. A subset of patients with SLE

exhibit lower expression levels of SHP-1 and CD45 in B

cells.39 Another study showed that T cells from psoriatic

skin lesions have lower expression of SHP-1, which corre-

lates with increased sensitivity to interferon-a through

increased activation of JAK and signal transducer and

activator of transcription (STAT).190 Mice with partial

inhibition of SHP-1 (mev+/)) show worsened MOG-pep-

tide-induced EAE, which includes an increased T-cell

response.191
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SHP-2, encoded by the PTPN11 gene, is considered a

key regulator of receptor-mediated signalling in many cell

types. Indeed, the importance of SHP-2 is demonstrated

by the embryonic lethality of mice with homozygous dele-

tion of the PTP192 and the requirement of SHP-2 for

lymphocyte development.193 In T cells, SHP-2 has gener-

ally been regarded as a positive regulator of signalling

through the TCR. Conditional deletion of SHP-2 in

T cells impairs thymocyte differentiation and prolifera-

tion, reduces the expansion of CD4+ T cells, and inhibits

T-cell activation as evidenced by impaired TCR-induced

ERK activation, proliferation, production of activation

markers and production of IL-2.194 SHP-2 has also been

suggested to inhibit T-cell adhesion by dephosphorylating

ADAP and VAV1 proteins through association with the

LAT-Gads-SLP-76 signalling complex.195 Aside from the

TCR, SHP-2 also mediates cytokine receptor signalling.

Upon interleukin receptor engagement, SHP-2 binds to

the adaptor protein Gab2, an association that promotes

the activation of ERK.196–198 In contrast to its generally

regarded role as a potentiator of T-cell activation, SHP-2,

like SHP-1, is also involved in inhibitory receptor signal-

ling in T cells and other immune cells. In T cells, for

example, SHP-2 has been found to interact with and

mediate the inhibitory effect of ITIM-containing and

ITSM-containing receptors such as PECAM-1,199 PD-1183

and BTLA.186,187 A genome-wide association meta-analy-

sis showed the PTPN11 gene was included within a link-

age disequilibrium block with shared association for

coeliac disease and rheumatoid arthritis,131 and a

genome-wide association analysis showed that PTPN11

was included in a linkage disequilibrium block with T1D

association and with weak Crohn’s disease association;200

however, fine mapping and characterization of the

responsible variants is still under investigation.

TCPTP

T-cell protein tyrosine phosphatase (TCPTP) is encoded

by PTPN2, which recently emerged as a major autoimmu-

nity gene. This PTP is ubiquitously expressed, with the

highest expression found in haematopoietic and placental

tissues.201 Two different TCPTP splice variants have been

identified: a 45 000 molecular weight form, which is

mostly localized in the nucleus201,202 and a 48 000 molec-

ular weight form localized in the endoplasmic

reticulum.201,203

The major TCPTP substrates in T cells have been iden-

tified as JAK1 and JAK3, and TCPTP has been shown to

regulate downstream phosphorylation of STAT proteins,

suggesting a role for this phosphatase in cytokine receptor

signalling. TCPTP)/) T cells showed decreased phosphor-

ylation of STAT5 in response to IL-2 stimulation and of

STAT1 in response to interferon-a and interferon-c
stimulation.204 It has also been suggested that TCPTP

dephosphorylates nuclear STAT1, which is dependent

upon arginine methylation of the STAT1 protein.205

Some insights into the role of TCPTP in T-cell activa-

tion emerged from the characterization of the global

TCPTP KO mouse. These mice die between the second

and third weeks after birth and show significant spleno-

megaly, lymphadenopathy and thymic involution, with a

reduction in CD4+ CD8+ thymocytes evident by 3 weeks

of age.206 A defect in T-cell proliferation after anti-CD3

or concanavalin A stimulation was also described in these

mice.206,207 However, no defects in early TCR signalling

(calcium mobilization and CD3 induced tyrosine phos-

phorylation) were found.207 These findings correlated well

with over-expression studies showing that TCPTP does

not affect TCR-induced IL-2 gene activation,203 suggesting

that TCPTP is not involved in early TCR signalling. In

contrast, a recent study with mice carrying a conditional

deletion of TCPTP in T cells suggested that TCPTP is a

key regulator of early TCR signalling through dephos-

phorylation of the active regulatory site of the SFKs LCK

and FYN.208 Notably, these mice showed spontaneous

development of anti-nuclear antibodies and T-cell infiltra-

tion of the lungs and liver. Transfer of CD8+ T cells was

able to replicate this autoimmune phenotype in syngeneic

animals. The importance of this study lies in its support

of the concept that a loss-of-function of TCPTP in T cells

is sufficient to trigger autoimmunity.

The first association between PTPN2 and autoimmune

disease was described in a genome-wide association study

in which an SNP rs2542151 5�5 kb upstream of PTPN2

was found to be associated with coeliac disease, T1D and

rheumatoid arthritis.200 These associations were replicated

in other studies.209,210 A new follow-up analysis con-

firmed the association between the rs2542151 SNP of

PTPN2 and T1D and found two new SNPs in the PTPN2

gene associated with T1D.211 A recent study showed that

CD4+ T cells from healthy controls carrying the

rs1893217 SNP showed reduced pSTAT phosphorylation

in response to IL-2 stimulation, correlating with

decreased PTPN2 RNA levels. This suggests that this

genetic variant functionally alters the IL-2 signalling path-

way in T cells, resulting in reduced expression of

FoxP3.212 However, it is currently unclear how this find-

ing can be reconciled with the known negative role of

TCPTP in STAT5 activation and the recent finding that

deletion of TCPTP in T cells leads to increased numbers

of regulatory T cells in mice.208

Cytoskeletal PTPs

Four cytosolic PTPs – PTPH1, PTP-MEG1, PEZ and

PTP-BAS contain a FERM domain (band 4.1–ezrin–radix-

in–moesin), and are referred to as the cytoskeletal

PTPs.203 They are expressed in T cells and all lymphoid

organs but their expression varies during development.
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PTPH1 and PEZ are more expressed early in develop-

ment, whereas PTP-MEG1 expression is higher in more

mature lymphoid cells.203 The four enzymes contain an

N-terminal FERM domain, a central region, and a C-

terminal PTP domain. Of these, PTPH1 and PTP-MEG1

contain a central PDZ (postsynaptic density-95-discs-

large-ZO-1) domain, whereas PTP-BAS contains five cen-

tral PDZ domains, as well as a very N-terminal putative

kinase non-catalytic C-lobe domain (KIND). Both PTPH1

and PTP-MEG1 associate with the plasma membrane

through their FERM domain.203 The function of PEZ

(encoded by the PTPN14 gene) in T cells has not yet been

defined but the data available for the other three PTPs

are summarized below.

PTPH1, encoded by the PTPN3 gene, is expressed in a

variety of tissues including haematopoietic, colorectal,

gastric and hepatic tissues.213 PTPH1 has been considered

a negative regulator of TCR signalling through dephos-

phorylation of the TCRf chain.214,215 Over-expression of

PTPH1 in Jurkat cells inhibited TCR-induced activation

of MAPKs and activation of an IL-2 promoter.215 The

FERM domain is required for this effect, because deletion

of this region inhibited the localization of PTPH1 to the

plasma membrane203 and its ability to inhibit TCR signal-

ling.215 Additional substrates/interactors of PTPH1 have

been proposed, suggesting that PTPH1 may have addi-

tional roles in the function of T cells and other cell types.

PTPH1 dephosphorylates the valosin-containing protein,

a hexameric ATPase, which has numerous functions,

including regulation of the cell cycle and membrane vesi-

cle fusion.216 Through its PDZ domain, PTPH1 binds to

the C-terminal tail of the tumour necrosis factor a-con-

vertase (TACE), a metalloprotease-disintegrin involved

in ectodomain shedding of proteins.217 PTPH1 was also

recently shown to dephosphorylate p38c and promote Ras

signalling.218

PTP-MEG1, encoded by the PTPN4 gene, was first

cloned from a megakaryoblastic cell line and HUVEC

cDNA libraries.219 PTP-MEG1 is expressed in most tis-

sues, including lymphoid tissue220 and was shown to inhi-

bit TCR-induced T-cell activation when over-expressed in

Jurkat cells.215,221

PTP-BAS, encoded by the PTPN13 gene, is expressed in

most tissues, and with a molecular weight of about

270 000 it is the largest non-receptor PTP.222 PTP-BAS

has been ascribed multiple functions, among which are

inhibition of apoptosis through regulation/inhibition of

the cell surface expression of FAS/CD95.223 A study in

CD4+ T cells showed that PTP-BAS regulates cytokine

signalling through dephosphorylation and inhibition of

STAT4 and STAT6 activation.224

Surprisingly, a recent study in KO mice failed to sup-

port a role for the cytoskeletal PTPs in TCR signalling.

Mice lacking the PTP domain of PTPH1 or PTP-MEG1

showed no difference in T-cell development or TCR-

mediated signal transduction,221,225 although the PTPH1

KO mice did exhibit enhanced growth due to increased

growth hormone signalling.226 Double-deficient PTPN3/

PTPN4 and triple-mutant mice that were null for PTPN3/

PTPN4 and lacking the PTP domain of PTP-BAS mice

also showed no alterations in T-cell development or TCR-

induced cytokine production or proliferation.220

PTP-MEG2

PTP-MEG2, encoded by the PTPN9 gene, was originally

cloned from a megakaryocyte cell line227 and is expressed

in many cell types, including T cells. It is unique among

the PTPs, containing an N-terminal lipid-binding domain

with homology to cellular retinaldehyde-binding protein

and yeast protein Sec14p with phosphatidylinositol trans-

fer activity.227 Through this domain, PTP-MEG2 is found

co-localized with PIP3
228 on the cytoplasmic face of secre-

tory vesicles and regulates secretory vesicle size and fusion

via dephosphorylation of N-ethylmaleimide sensitive fac-

tor on an inhibitory Y83 residue.229 Through dephos-

phorylation and activation of N-ethylmaleimide sensitive

factor, PTP-MEG2 promotes homotypic fusion of secre-

tory vesicles. Over-expression of PTP-MEG2 in Jurkat

cells was shown to cause enlargement of the size of secre-

tory vesicles, which required the catalytic activity of the

phosphatase.230 PTP-MEG2 binds to and is activated by

PIP2, PIP3 and phosphatidylserine, providing a mecha-

nism by which phosphorylation of inositides is coupled

to downstream vesicle trafficking events.228,229,231 Charac-

terization of PTP-MEG2 knockout mice confirmed the

profound effect of PTP-MEG2 on vesicle formation.232

PTP-MEG2-deficient mice are embryonic lethal, however,

PTP-MEG2 deficiency in haematopoietic cells was studied

by transferring haematopoietic progenitors from fetal liv-

ers into irradiated Rag2)/) mice.232 T cells isolated from

the recipient mice were defective in their secretion of IL-2

and several other cytokines, although the intracellular lev-

els of IL-2 were unaffected. Electron microscopy analysis

revealed that T cells from these mice have reduced num-

bers of mature secretory vesicles.

PTPs involved in regulation of MAPKs

There are three major subfamilies of MAPKs that are

expressed in the immune system: ERK, p38 and Jun

N-terminal kinase (JNK) (reviewed in 233–235). All contain

a TxY motif in the activation loop of the kinase that can

be phosphorylated on the threonine and the tyrosine.

MAPKs are activated by phosphorylation on both resi-

dues. Their inactivation is mediated by dephosphorylation

by three types of phosphatases – pSer/pThr phosphatases

(which do not belong to the PTP family), and two types

of PTPs, the pTyr-specific PTPs, and the dual-specific

PTPs (DSPs). The DSPs can dephosphorylate pTyr, pSer
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or pThr and include a subclass of PTPs that contain a

MAPK-binding domain. A second subclass of ‘atypical’

DSPs lacks this domain, but some atypical DSPs still

function to dephosphorylate MAPKs. Although regulators

of the MAPKs appear to be critical for proper function of

T cells and other cell types, no associations between any

of these phosphatases and human autoimmunity have

been reported. This review will highlight some of the

MAPK regulators involved in T-cell activation.

HePTP

HePTP, encoded by the PTPN7 gene, is a cytosolic PTP

containing an N-terminal kinase interaction motif (KIM)

and a PTP domain.236 Two other members of this sub-

class are STEP and PTP-SL. All three of these PTPs

dephosphorylate MAPKs on the activating phosphotyro-

sine residue.237,238 Of this family, only HePTP is

expressed exclusively in haematopoietic cells, in all lin-

eages,239,240 with high expression in T cells.241. HePTP is

considered a negative regulator of T-cell activation

through dephosphorylation of the pY in the activation

loop of the MAPKs ERK and p38.238 This inhibitory

action requires the association of HePTP through the

KIM with ERK1, ERK2 and p38, and provides selectivity,

as HePTP does not interact with JNK.238,241–243 In resting

T cells, through its KIM, HePTP associates with the inac-

tive forms of ERK and p38 in the cytosol.238,241 This

complex is disrupted by phosphorylation of HePTP on

S23 by PKA (in KIM)244,245 or on T45 and S72 by MAP-

Ks/ERK outside the KIM.238 Upon TCR stimulation,

phosphorylation of HePTP on S23 causes the MAPKs to

dissociate. HePTP remains in cytosol, while ERK and p38

move to the nucleus.246 An additional regulation mecha-

nism of HePTP during TCR signalling is through phos-

phorylation by PKCh. HePTP translocates to the immune

synapse upon TCR stimulation, where it is phosphory-

lated on S225 by PKCh. This then targets HePTP to lipid

rafts, where it inhibits TCR signalling.247 HePTP)/) mice

have no T-cell development, differentiation, or functional

phenotype, with the exception of increased TCR-induced

ERK and p38 activation.243

Dual specificity phosphatases

MKP-1

MKP-1, encoded by the DUSP1 gene, is a nuclear DSP

that predominantly dephosphorylates and inactivates p38

and JNK in response to stress.248 MKP-1 has been con-

sidered a negative regulator of the innate immune

response.249 A study of the Mkp-1)/) mouse recently

demonstrated the importance of MKP-1 in T-cell func-

tion.250 Mkp-1-deficient mice showed normal T-cell

development; however, T cells from these mice showed

increased activation of JNK coupled with reduced

expression of NFATc1. Both CD4+ and CD8+ T cells

showed reduced IL-2 production and proliferation after

TCR engagement. T cells from KO mice also demon-

strated increased TCR-induced activation-induced cell

death. Mkp-1 deficiency impaired effector functions of T

helper type 1 (Th1), Th17 and CD8+ T cells, but not

Th2 cells. Consistent with their reduced T-cell function,

Mkp-1)/) mice exhibited reduced antigen-specific T-cell

responses in vivo. These mice exhibited defective viral

clearance when challenged with influenza virus infection,

and also delayed autoimmune development in the EAE

model, possibly as a result of decreased CD4+ T-cell

function.

PAC-1

PAC-1, encoded by the DUSP2 gene, is a nuclear DSP

cloned from human T cells. It is primarily expressed in

haematopoietic cells251 and its expression is induced in

activated leucocytes.252,253 In vitro and over-expression

studies showed that PAC-1 dephosphorylates and inacti-

vates p38 and ERK.254,255 Hence PAC-1 is believed to be

the nuclear counterpart of HePTP and leads to nuclear

inactivation of MAPKs, followed by their return to the

cytosol, and reassociation with HePTP.246 Unexpectedly,

PAC-1-deficient mice show normal T-cell compart-

ments.253 However, studies in these mice showed that

PAC-1 rather promotes inflammatory signalling in mye-

loid cells by suppressing the activation of JNK while

increasing the activation of p38 and ERK1/2.

MKP-2

MKP-2, encoded by the DUSP4 gene, is a nuclear DSP,

expressed in both haematopoietic and non-haematopoiet-

ic tissues, which dephosphorylates ERK and JNK.255 A

role for MKP-2 in IL-2 signalling and CD4+ T-cell

proliferation was recently proposed by a study of Dusp4-

deficient mice. CD4+ T cells from these mice exhibited

increased STAT5 phosphorylation, resulting in elevated

CD25 expression and IL-2 signalling, and hyperprolifera-

tion of CD4+ T cells.256

MKP-3

A role for the cytosolic MKP-3, encoded by the DUSP6

gene, in setting the threshold for thymocyte-positive

selection has been proposed.257 Retroviral expression of

Mkp-3 decreased ERK and JNK activation in T cells in vi-

tro, while expression of a dominant-negative form of

Mkp-3 increased their activation. In the same study,

transduction of bone marrow cells with a construct

encoding dominant-negative Mkp-3, followed by transfer

of these cells into irradiated mice, resulted in increased

positive selection of resulting thymocytes. MKP-3 may

� 2012 The Authors. Immunology � 2012 Blackwell Publishing Ltd, Immunology, 137, 1–19 11

Tyrosine phosphatases in T-cell activation and autoimmunity



also function as a regulator of cross-talk between TLR4

and TCR signalling in CD4+ T cells, mediating an inhibi-

tory effect of TLR4 signalling on subsequent TCR signal-

ling by inhibition of ERK1/2 activation.258

MKP-5

MKP-5, encoded by the DUSP10 gene, is constitutively

expressed in naive CD4+ T cells and is down-regulated by

TCR stimulation.259 The role of this DSP in T cells has

been studied in mice lacking Mkp-5.259 JNK, but not p38,

was hyperactive in Th1 and Th2 cells from these mice.

Naive CD4+ T cells from these mice exhibited reduced

proliferation upon TCR stimulation, however Th1, Th2

and CD8+ effector T cells produced increased levels of

cytokines after stimulation. These mice were protected

from development of EAE, possibly through decreased T-

cell proliferation.

MKP-7

Recent studies of MKP-7, encoded by the DUSP16 gene,

suggest that this DSP is involved in T helper cell differen-

tiation.260 MKP-7 shuttles between the nucleus and cyto-

sol and preferentially dephosphorylates and inactivates

JNK.261 A recent study in mouse T cells showed that

Mkp-7 is expressed in CD4+ T cells, with lower expres-

sion in naive cells, increased expression in in vitro differ-

entiated Th2 cells, and nearly absent expression in in vitro

differentiated Th1 cells.260 Several data support the con-

cept that MKP-7 regulates the balance between Th1/Th2

cells through dephosphorylation of JNK. Overexpression

of Mkp-7 in vitro enhanced Th2 differentiation, as evi-

denced by mRNA production of GATA-3 and IL-4, while

causing only modest changes in Th1 differentiation, as

shown by mRNA production of interferon-c. CD4+ T cells

from transgenic mice over-expressing the active form of

the phosphatase showed enhanced Th2, but not Th1, dif-

ferentiation, while over-expression of inactive dominant

negative Mkp-7 impaired Th2 differentiation. The authors

of this study also demonstrated that upon immunization

with OVA, transgenic mice over-expressing active Mkp-7

also displayed Th2-skewed production of OVA-specific

IgG2a, IgG1 and IgE.260

VHR

VHR, encoded by the DUSP3 gene, is an atypical DSP

constitutively expressed in central and peripheral lym-

phoid organs.262 VHR specifically inactivates ERK2 and

JNK by dephosphorylation of the pTyr in the MAPK acti-

vation loop. Through this regulation of ERK2 and JNK,

VHR acts as an inhibitor of T-cell activation.263 VHR is

recruited to the immune synapse upon TCR engagement,

where it is phosphorylated on tyrosine by ZAP-70, a mod-

ification that is required for the inhibition of ERK2 and

JNK. VHR also has additional roles in T cells and other

cell types. It is required for cell cycle progression through

dephosphorylation of ERK and JNK, and unlike many

other DSPs, its expression is regulated by the cell cycle

rather than by TCR or mitogenic stimuli.264 VHR has also

been recently reported to dephosphorylate STAT5.265

Other DSPs

Other DSPs have been implicated in the negative regula-

tion of T-cell activation, for example MKP-6 (encoded by

the DUSP14 gene) has been shown to bind to CD28 in T

cells and inhibit CD28 co-stimulation.266 VHX (encoded

by the DUSP22 gene) was shown to inhibit activation of

ERK2 and downstream NFAT/AP-1 reporter activity when

over-expressed in Jurkat cells.267

PTEN: a lipid phosphatase

PTEN (phosphatase and tensin homologue), a ubiquitous

phosphoinositide lipid phosphatase, is a unique member

of the PTP family. By dephosphorylating PtdIns(3,4,5)P3

(PIP3), PTEN acts as an antagonist to the activity of

phosphoinositide 3-kinase (PI3K).268 PTEN is a well-

known tumour suppressor that is involved in the

regulation of T-cell function. Stimulation of the TCR, co-

stimulatory molecules, or cytokine receptors of T cells

activates PI3K, resulting in the production of PIP3, a lipid

second messenger critical for the propagation of down-

stream signal transduction. PTEN dephosphorylates and

regulates the levels of PIP3, controlling the strength and

duration of signalling and activation of downstream path-

ways. PTEN effectively suppresses multiple T-cell func-

tions, including cell cycle progression, adhesion,

migration and survival.269,270 Knockout of Pten causes

embryonic lethality, and the partial deficiency of Pten in

heterozygous mice leads to a lethal autoimmunity associ-

ated with reduced Fas-mediated apoptosis.271,272 Condi-

tional KO of Pten in T cells causes lymphadenopathy,

splenomegaly, thymic enlargement, T-cell lymphoma,

T-cell hyperproliferation, production of autoreactive T

cells, impaired apoptosis, increased phosphorylation of

ERK and AKT, and increased cytokine production.269

Class II enzymes: the LMPTP

The ubiquitously expressed low-molecular-weight PTP

(LMPTP) is encoded by the ACP1 gene. Two major iso-

forms have been isolated, called LMPTP-A (also called the

Fast isoform, or ACP1-F) and LMPTP-B (also called the

Slow isoform, or ACP1-S) arising from a splicing event in

which either exon 3 or exon 4 is excised. The ACP1 gene

has a well-known polymorphism with three common

codominant alleles, called *A, *B, and *C (reviewed in refs
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273–275). These alleles affect both the total enzymatic

activity and the ratio between isoforms A and B.276,277

LMPTP is involved in the regulation of growth factor

signalling through dephosphorylation of a variety of

growth factor receptors, which include platelet-derived

growth factor receptor (PDGFR),275,278 fibroblast growth

factor receptor (FGFR),279 insulin receptor (IR)280 and

ephrin receptor.281 In T cells, LMPTP plays a positive reg-

ulatory role in TCR signalling through dephosphorylation

of ZAP-70 on the negative regulatory tyrosine Y292.282

Phosphorylation on this site provides a binding site for

the c-Cbl ubiquitin ligase complex that inhibits TCR sig-

nalling by dephosphorylation and inactivation of ZAP-70

and through internalization of the TCR. The dephosphor-

ylation of ZAP-70 by LMPTP consequently prolongs sig-

nal transduction through the TCR. Additionally, LMPTP

may regulate T-cell cytoskeletal reorganization through

dephosphorylation of FAK, which participates in regulat-

ing cytoskeletal rearrangement.283 LMPTP was shown to

dephosphorylate and inhibit FAK, which led to impair-

ment of LFA-1-dependent T-cell adhesion and LFA-1 and

TCR co-clustering. LMPTP may therefore control T-cell

activation by preventing the cytoskeletal reorganization

needed for LFA-1 and TCR clustering. The authors of this

study propose a model where LMPTP enhances TCR sig-

nalling in the initial phases by dephosphorylation of

ZAP-70, and then subsequently tempers signalling by

reducing the cytoskeletal rearrangements needed for

movement of membrane-associated signalling machinery.

The activity of LMPTP in T cells is enhanced by phos-

phorylation by the SFKs LCK and FYN on Y131. Y132 is

also phosphorylated to a lesser extent.284,285 Studies in

other cell types have shown that phosphorylation of

LMPTP on Y132 has no effect on the catalytic activity,

and instead provides a docking site for the recruitment of

Grb2, which promotes ERK activation, suggesting that

LMPTP may regulate ERK activity in T cells as well.286

The ACP1 polymorphism is associated with numerous

disorders including cardiovascular, metabolic, neurological

and autoimmune diseases.274 Among autoimmune diseases,

ACP1 associates with inflammatory bowel diseases and

T1D. Some studies suggest that ACP1 may influence Th1/

Th2 orientation, in a gender-dependent manner.287 The

ACP1*A allele, which is associated with low LMPTP activ-

ity, makes females more susceptible to allergy (a Th2-medi-

ated disorder), and males more susceptible to T1D and

Crohn’s disease (a Th1-mediated disorder).288 Genotypes

leading to high expression of LMPTP-A are positively asso-

ciated with Crohn’s disease in females and ulcerative colitis

in males.287 Additionally, ACP1 genotype appears to influ-

ence the clinical manifestation of T1D.289 Females with

medium-high activity genotypes have earlier age of onset of

T1D, while low activity genotypes are associated with

higher glycaemic levels at initial diagnosis, and increase sus-

ceptibility to T1D in offspring of older mothers.290

Future directions

In conclusion, a large amount of data support the impor-

tance of PTPs in regulation of TCR signalling. Although

the emphasis is still often on single enzymes and single

substrates, systems biology and proteomics are increas-

ingly applied to the study of phosphorylation networks

and PTPs. Important difficult-to-address issues which

benefit from a systemic approach include the frequent

redundancy between PTPs and the possible pleiotropic

actions of single PTPs at several levels of a signalling

pathway. Our knowledge about post-translational regula-

tion of PTP activity also has progressed tremendously in

the last few years, and in the future increasing emphasis

is expected on dynamic or even real-time monitoring of

PTP activity during signalling. Finally, of the large num-

ber of PTPs that are bona fide regulators of TCR signal-

ling, only a subset has been investigated for a possible

role in autoimmunity. As this subset continues to expand,

we predict that an increasing number of PTPs will be

identified as important autoimmunity genes, biomarkers,

or drug targets.
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