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Summary

Innate and adaptive immunity are inter-related by dendritic cells (DCs),

which directly recognize bacteria through the binding of pathogen-associ-

ated molecular patterns (PAMPs) to specialized receptors on their surface.

After capturing and degrading bacteria, DCs present their antigens as

small peptides bound to MHC molecules and prime naive bacteria-specific

T cells. In response to PAMP recognition DCs undergo maturation, which

is a phenotypic change that increases their immunogenicity and promotes

the activation of naive T cells. As a result, a specific immune response

that targets bacteria-derived antigens is initiated. Therefore, the character-

ization of DC–bacteria interactions is important to understand the mecha-

nisms used by virulent bacteria to avoid adaptive immunity. Furthermore,

any impairment of DC function might contribute to bacterial survival and

dissemination inside the host. An example of a bacterial pathogen capable

of interfering with DC function is Salmonella enterica serovar Typhimuri-

um (S. Typhimurium). Virulent strains of this bacterium are able to dif-

ferentially modulate the entrance to DCs, avoid lysosomal degradation

and prevent antigen presentation on MHC molecules. These features of

virulent S. Typhimurium are controlled by virulence proteins, which are

encoded by pathogenicity islands. Modulation of DC functions by these

gene products is supported by several studies showing that pathogenesis

might depend on this attribute of virulent S. Typhimurium. Here we dis-

cuss some of the recent data reported by the literature showing that sev-

eral virulence proteins from Salmonella are required to modulate DC

function and the activation of host adaptive immunity.

Keywords: antigen presentation; bacteria/bacterial immunity; Fc receptors;

infection.

Introduction

The initiation of adaptive immunity against bacteria

requires professional antigen-presenting cells that recog-

nize and degrade bacterial antigens and present them as

peptide–MHC complexes to naive T cells.1–6 One of the

most relevant antigen-presenting cells are dendritic cells

(DCs), which are a link between innate and adaptive

immunity. These cells have the capacity to directly recog-

nize and uptake pathogens at the site of infection and

migrate to the lymph nodes to activate bacteria-specific

T cells.4,5,7–9 The DCs locate in peripheral tissues, where

they are usually found in an immature state.10–13 In such

a state, DCs have an elevated phagocytic capacity with

reduced expression of co-stimulatory molecules, such as

CD80, CD86 and CD40.8,12,14–17 After pathogen-associ-

ated molecular pattern (PAMP) detection, peripheral/

immature DCs become activated and undergo functional

and phenotypic changes known as maturation.18–20 This

response is triggered on DCs by the signalling via specific

receptors, such as Toll-like receptors, nucleotide oligo-

merization domain (NOD) proteins and NOD-like recep-

tors (NLR). These receptors translate PAMP recognition

into cellular responses,21–23 activating the secretion of

anti-bacterial molecules and pro-inflammatory cytokines

that enhance the bactericidal capacity of phagocytic

cells.4,16,17,24 As the result of maturation, DCs decrease

phagocytosis and increase the expression MHC-I,
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MHC-II and co-stimulatory molecules, which are surface

molecules required for the activation of antigen-

specific naive T cells.4,14,16,25,26 Maturing DCs also secrete

cytokines that contribute to defining the nature and

polarization of the effector function of T cells after recog-

nition of peptide–MHC on the DC surface.27–31 Mature

DCs acquire the capacity to migrate from peripheral sites

of infection to the lymph nodes, where naive T cells

reside.32–34 The establishment of a regulated and efficient

adaptive immune response against the infecting bacteria

requires DCs to prime naive T cells recognizing bacterial

antigens. Consistent with this notion, the acquisition of

molecular mechanisms by virulent bacteria to interfere

with DC function and prevent the activation of T cells

could significantly contribute to the survival and dissemi-

nation of these pathogens inside the host.7,31,35

An important intracellular bacterial pathogen is Salmo-

nella enterica serovar Typhimurium (S. Typhimurium

hereafter), which is a common cause of food poisoning

and gastroenteritis in humans, as well as the aetiological

agent for typhoid-like disease in mice.36,37 Infection of

mice by S. Typhimurium has been widely used as a

model for the typhoid fever caused by S. Typhi in

humans.36,38 It is thought that orally ingested S. Ty-

phimurium accesses the Peyer’s patches after invading

epithelial and M cells in the small intestine.37 Then, this

pathogen spreads from the Peyer’s patches to deeper

organs, such as mesenteric lymph nodes, spleen and

liver.39,40 In these organs, bacteria would reside in intra-

cellular compartments,41 a feature that is probably

required for the successful systemic dissemination of this

bacterium.41–44

It is striking that a low dose of virulent S. Typhimuri-

um can cause systemic infection and the death of

immune-competent mice.42,45,46 It has been shown that

virulent S. Typhimurium can efficiently avoid the activa-

tion of the adaptive immune response.35,44 This observa-

tion is consistent with reduced antigen presentation and

T-cell activation after S. Typhimurium infection in

mice.42,45,47

Because DCs are fundamental for the initiation and

establishment of an anti-bacterial adaptive immunity, the

interference of their function can be a pathogenicity

mechanism used by S. Typhimurium to prevent recogni-

tion by the host adaptive immunity. Several S. Typhimu-

rium virulence proteins are thought to contribute to

intracellular survival and systemic dissemination of this

pathogen.48–50 In agreement with this notion, recent

studies have demonstrated that these virulence proteins

are used by S. Typhimurium to interfere with DC func-

tion.7,42,45,47,51–53 In this review we discuss recent studies

supporting the notion that virulent S. Typhimurium has

the capacity to actively interfere with the function of

DCs and prevent the activation of bacteria-specific

T cells.

Virulence Salmonella proteins required for subversion
of host cells

Several genes involved in S. Typhimurium virulence are

found in pathogenicity islands 1 and 2 (SPI-1 and

SPI-2).50,54–59 The expression of these proteins is regu-

lated by the ability of S. Typhimurium to sense several

molecular components of the environment.60–63 Both

pathogenicity islands encode for Type Three Secretion

Systems (T3SS), which inject bacterial effector proteins

into host cells.64–66

Genes located in SPI-1 are preferentially expressed in

the extracellular environment, such as the intestinal

lumen.67,68 At this location, the virulence proteins

encoded by SPI-1 are needed for bacterial entry to epithe-

lial cells.69–71 In contrast, SPI-2 genes are expressed in the

intracellular environment and S. Typhimurium uses them

to survive inside eukaryotic cells.42,49,53,72 The absence of

either T3SSs or effector proteins encoded by SPI-1 or

SPI-2 reduces the ability of S. Typhimurium to cause a

systemic illness in mice.42,73,74 It has been described that

proteins encoded by genes located in other pathogenicity

islands or prophages are also important for invasion and

survival within host cells.56,75–79 Several reports have

demonstrated that these virulence factors can also con-

tribute to interfering with DC function during bacterial

infection.80–82

Salmonella infection of the intestinal epithelium

After oral infection, S. Typhimurium reaches the small

intestine and invades epithelial cells in the ileum. At this

location, DCs are found residing in the lamina propria

(LP) and Peyer’s patches.36,37 After adhering to epithelial

cells,83 bacteria inject effector proteins, such as SipA,

SopE, SopE2 and SopB, into the host cell cytoplasm

through the T3SS encoded by the SPI-1 (T3SS-1)

(Fig. 1)54,69,84–88 These proteins induce the formation and

stabilization of actin filaments54,89 in epithelial and M

cells, actively promoting S. Typhimurium entry to non-

phagocytic cells.89,90 Together, the activity of these pro-

teins leads to the formation of plasmatic membrane

extensions, known as ruffles, which engulf extracellular

bacteria (Fig. 1).91,92

The active invasion mechanism used by S. Typhimuri-

um to invade epithelial cells is reverted by the effector

protein SptP. This protein restores the normal cytoskele-

ton structure after bacterial entry has been completed

(Fig. 1).93 Given that SptP is also secreted by the T3SS-1

into epithelial cells,93 it is likely that some of the Salmo-

nella effector proteins require a temporal regulation. It

has been suggested that this regulation is achieved by

both hierarchical injection94,95 and differential degra-

dation of these proteins by the proteasome of the host

cells.96
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Salmonella-induced inflammation at the intestine

Once S. Typhimurium invades host intestinal epithelial

cells, a transcriptional re-programming occurs in these

cells,97–99 which includes expression of several pro-

inflammatory molecules99–101 and the activation of

MyD88-dependent Toll-like receptor signalling processes

in epithelial and local immune cells.102–108 This inflam-

matory environment promotes the recruitment of neu-

trophils, macrophages and DCs to the LP.109–111 Recent

studies have shown that effector proteins secreted by the

T3SS-1, such as SopE and SopB, can also promote an

inflammatory response in epithelial cells (Fig. 1).97,101

These proteins mediate the induction of inflammation

through mitogen-activated protein kinase signalling and

nuclear factor-jB activation, independently of the TLR

signalling.97 During this process, epithelial cells secrete

inflammatory cytokines, such as interleukin-8 (IL-8),

CCL2 and CCL20, further promoting the recruitment of

more immune cells.99,101,112,113 These inflammatory

processes induced by S. Typhimurium help intestinal

invasion, LP colonization and the spreading to other

hosts by means of diarrhoea.109,110

T3SS-1 also promotes inflammation by an alternative

pathway that requires the activation of NLR-containing

inflammasomes, specifically NLRP3 and NLRC4, which

induce caspase-1 activity and the concomintant secretion

of IL-1b and IL-18 (Fig. 1B).114,115 A recent report sug-

gests that the T3SS-1 protein PrgJ binds directly to the

NAIP2 protein, promoting the activation of the NLRC4

inflammasome.116 Although it seems possible that these

inflammatory responses can facilitate the dissemination of

S. Typhimurium towards internal organs in the host,117

recent studies have shown that NLRC4 inflammasome

activation is a protective mechanism to discriminate

against commensal and pathogenic bacteria.115,118 Accord-

ing to this theory, mice lacking the NLRP3 and NLRC4

inflammasome are more susceptible to S. Typhimurium

infection than control mice, showing higher bacterial

loads in the liver, spleen and mesenteric lymph nodes

after oral infection.114

Flagellin, the main component of bacterial flagella, has

also been involved in S. Typhimurium-induced inflam-

mation in the LP (Fig. 1b). It has been described that this

protein can also be translocated by T3SS-1 into the host

Figure 1. Lamina propria invasion and inflammatory immune response during Salmonella enterica serovar Typhimurium infection. (a) Once Sal-

monella arrives at the lamina propria (LP), it can traverse cell intestinal layers and cause cytokine secretion and immune cells recruitment. Intesti-

nal dendritic cells (DCs) can sample the pathogen, enhancing the inflammatory environment by Toll-like receptor (TLR) activation after

pathogen-associated molecular pattern (PAMP) recognition. Different types of cells, such as granulocytes and macrophages, can reach the site of

infection increasing both the infiltrate and the acute gastroenteritis. (b) Salmonella pathogenicity island 1 (SPI-1)-derived proteins responsible for

epithelial cell invasion during LP infection. After Salmonella recognize epithelial cell surface, SPI-1-encoded proteins are expressed and injected

into host cells. Virulence effectors such as SipA, SopE, SopE2 and SopB are responsible for reorganizing actin cytoskeleton, promoting bacterial

engulfment. Other SPI-1-secreted factors, such as SptP, decrease this process avoiding host cell death by excessive intracellular bacterial load. Pro-

teins, such as flagellin and PrgJ can also be translocated into the host cell cytosol where they activate nucleotide oligomerization domain-like

receptor (NLR)-containing inflammasomes to promote the secretion of inflammatory cytokines, including interleukin-1b (IL-1b) and IL-18.
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cytosol and bind directly to the intracellular receptors

NAIP5 and NAIP6, which activate the NLRC4 inflamma-

some.116,119–121 This promotes cell death by pyroptosis122

and caspase-1-dependent secretion of cytokines, such as

IL-1b, IL-8, IL-18 and tumour necrosis factor-a.120,122–124

Furthermore, it has been suggested that inflammation

induced by flagellin can play an important role in

S. Typhimurium-induced enterocolitis.125–128 However, a

recent report has described that aflagellated strains of

S. Typhimurium showed increased proliferation in Peyer’s

patches and mesenteric lymph nodes, as compared with

wild-type strains.129 Although these aflagellated strains

failed to induce early inflammation, they promoted an

enhanced secretion of IL-1b, interferon-c and tumour

necrosis factor-a later during infection.129 Previous

reports have also described that aflagellated strains can

cause a more severe systemic infection in mice than do

wild-type strains.130,131 These findings also suggest that

the inflammation induced by flagellin through Toll-like

receptor 5 seems to reduce S. Typhimurium dissemina-

tion to deeper organs.104,129

Salmonella Typhimurium seems also able to prevent an

excessive inflammatory response at the intestinal epithe-

lium by the injection of another effector protein, known

as AvrA.132 Several reports have shown that this protein

prevents IK-B degradation133,134 and other recent studies

indicate that AvrA injection through the T3SS-1 might

also block the Jun N-terminal kinase pathway.135–137 Both

signalling pathways promote the transcription of genes

coding for inflammatory mediators. It has been also

reported that AvrA might contribute to stabilize tight

junctions to prevent inflammatory damage on epithelial

cells.138 It is possible that, because of all the functions of

AvrA, this protein counteracts pro-inflammatory effector

proteins secreted by S. Typhimurium into epithelial cells.

Such a molecular regulatory circuit might contribute

to avoiding sustained inflammation upon Salmonella

infection.

Role of DCs in Salmonella invasion of LP

Several studies have suggested that S. Typhimurium, even

in the absence of T3SS-1, remains capable of translocating

to the LP.58,139 Furthermore, it has been shown that these

strains require functional DCs to be translocated through

the sub-epithelial dome.58 Consistent with this notion,

depletion of DCs from the LP can prevent the invasion of

these T3SS-1 mutant strains.58 However, the capture of

virulent S. Typhimurium by DCs seems to be a process

tightly regulated by effector proteins secreted through the

T3SS-1. Our recent studies suggest that S. Typhimurium

strains lacking functional T3SS-1 are taken up more effi-

ciently by DCs than are wild-type strains.140 It seems that

active translocation of effector molecules through the

T3SS-1 would prevent an excessive entry of bacteria to

DCs, which could be required for controlling the amount

of intracellular bacteria in these cells.140 It is likely that a

massive capture of S. Typhimurium by transepithelial

DCs would promote an immune response that could con-

tribute to restricting Salmonella replication and dissemi-

nation. Hence, virulent S. Typhimurium may optimize

this process by finely regulating the entry to epithelial

and DCs to translocate to the LP.

Salmonella survival inside phagocytic cells

Inside phagocytic cells S. Typhimurium resides in Salmo-

nella-containing vacuoles (SCV).42,45,47,141,142 Inside these

compartments, intracellular Salmonella survives and is

protected from several anti-bacterial molecules. Several

studies have shown that S. Typhimurium can survive for

up to 24 hr inside murine DCs and locate at a specific

sub-cellular area inside DCs, near to the trans-Golgi net-

work.143 In contrast with what has been observed in mac-

rophages, S. Typhimurium seem unable to replicate in a

significant manner inside these cells.42,45,47,52,53,144 Several

virulent proteins encoded by SPI-2 allow S. Typhimurium

to survive and localize inside DCs.45,52,143 These proteins

are secreted by T3SS-2, which can transverse the vacuolar

membrane and inject Salmonella effector proteins directly

into the host cell cytoplasm.52,145,146 Accordingly, the

deletion of SPI-2 or genes encoding the T3SS-2 reduces

the ability of the bacterium to survive inside DCs and

reduces its virulence in mice.42

In DCs, some Salmonella effectors can subvert DC

function by altering the cellular trafficking and preventing

fusion of SCV with lysosomes.147 One of the effector pro-

teins that contributes to avoiding SCV fusion with lyso-

somes in DCs is SpiC, which prevents vesicular trafficking

in target cells.42,148 This effector protein specifically binds

a host protein known as Hook-3, which links the Golgi

apparatus to the microtubules.148 In addition, SpiC acts

as a regulator for the assembly of T3SS-2 and the translo-

cation of other virulence factors into host cell cyto-

plasm.145,149 Accordingly, Salmonella strains lacking SpiC

are unable to secrete other effector proteins to the DC

cytoplasm and are targeted for lysosome degradation.143

For this reason, SpiC-deficient strains are attenuated in

mice.42,150

Another effector protein secreted by T3SS-2 that is

required for survival inside DCs is SifA. This protein

modulates the SCV integrity in macrophages and

promotes the formation of Salmonella-induced fila-

ments.151–153 SifA also binds to SipA and Kinesin-inter-

acting protein (or SKIP), which antagonizes the Rab9

protein and prevents kinesin-1 recruitment to SCV.154–

157 Strains of S. Typhimurium lacking SifA escape from

SCV and fail to replicate inside the cytoplasm of macro-

phages.153 In support of this notion, it has been shown

that SifA-deficient bacteria escape from SCV to the DC
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cytoplasm and fail to co-localize with lysosomal mark-

ers.144 However, another report describes how SifA

mutants still reside in an intact SCV and co-localize

with the lysosomal marker Lamp-1 within DCs.143 The

reason for the discrepancies observed in these studies

has not been resolved. There are additional T3SS-2-

secreted effector proteins that are injected by S. Ty-

phimurium into the cytoplasm of DCs, such as SseJ,

SseF, SspH2 and PipB2, and that contribute to intracel-

lular survival and subversion of DC function.143 How-

ever, further studies are required to define whether

S. Typhimurium strains lacking these effector proteins

show reduced survival inside DCs, increased fusion with

lysosomes and reduced virulence in mice.

Salmonella interference with host adaptive immunity

A hallmark of S. Typhimurium is its capacity to prevent

the processing and presentation of bacterial antigens by

DCs to T cells, both on class I and class II MHC mole-

cules (Fig. 2).42,47,144,158–161 Importantly, suppression of

antigen presentation by S. Typhimurium is restricted to

antigens expressed by this bacterium, because DCs

infected with Salmonella remain capable of presenting

bystander soluble antigens.42,143 However, one study

showed that the presentation of non-bacterial antigens

might be also affected by S. Typhimurium infection.42,51

It has also been described that S. Typhimurium infec-

tion reduces the amount of MHC molecules expressed on

the surface of both mouse and human DCs.143,162 Studies

in this area suggest that this evasion mechanism is the

result of the negative effect of bacteria effector proteins in

both endosomal trafficking and lysosomal degradation of

the bacterium.42,47,158,163 This effect results in reduced

availability of bacterial antigens loaded on MHC mole-

cules and poor activation of T cells.47,52,142 Additionally,

studies in human DCs suggest that S. Typhimurium

infection promotes degradation of HLA-DR molecules by

poly-ubiquitination.162

In agreement with the previous notion, attenuated

strains of S. Typhimurium lacking SPI-2, T3SS-2 or

T3SS-2-secreted effector proteins fail to prevent antigen

presentation by DCs (Fig. 2).42,51 These bacterial strains

show a significant impairment in their intracellular sur-

vival inside DCs and become attenuated in mice.42,51

The TTSS-2-secreted effector proteins required for avoid-

ing antigen presentation include SlrP, SspeH2, PipB2,

SopD and SifA.143 The S. Typhimurium strains lacking

these genes are unable to prevent the activation of T

cells by Salmonella-infected DCs.143 Importantly, other

Salmonella serovars, such as S. Enteritidis and S. Typhi,

are also unable to prevent antigen presentation by mur-

ine DCs.53 These Salmonella serovars are less virulent in

mice and similar to SPI-2 or T3SS-2 mutant strains,

these bacteria are targeted for lysosomal degradation in

murine DCs.53 Therefore, the capacity of Salmonella to

prevent antigen presentation might be a feature of host

restriction.

Importantly, we have described how impairment of

antigen presentation would depend on effector proteins

secreted largely by T3SS-2, because S. Typhimurium

strains lacking T3SS-1 remain capable of preventing

antigen presentation on MHC molecules by DCs.140 In

addition, we have observed that prevention of antigen

presentation, might be fundamental for S. Typhimurium

Figure 2. Fcc receptor-mediated enhancement of T-cell priming by

dendritic cells (DCs) after recognition and degradation of Salmo-

nella-derived antigens. (a) After IgG opsonization, Salmonella can be

recognized by FccRIII expressed on the surface of DCs. Then, these

cells are able to present bacterial-derived antigens MHC-I and

MHC-II to CD8+ and CD4+ T cells, respectively. IgG opsonization

can restore antigen presentation by DCs infected with Salmonella.

(b) IgG-opsonized Salmonella engages FccRIII on the surface of the

DCs, triggering an intracellular class III phosphatidyl inositol 3 kni-

ase (PI3K)-dependent degradation pathway, which enhances fusion

of the Salmonella-containing vacuoles (SCV) with lysosomes

(Lamp1+). SCV-containing IgG-coated bacteria are created after

internalization of elevated numbers of Salmonella complexes in an

FccRs/class I PI3K/Actin/Class I and Class II dynamin-independent

mechanism. Internalization is driven by an unidentified receptor,

which could recognize bacterial surface molecules unblocked by IgG-

opsonization. Once inside the SCV, Salmonella still remain able to

secrete Salmonella pathogenicity island 2 (SPI-2)-derived virulence

determinants. As a result of IgG opsonization, antigen capture, deg-

radation and presentation by DCs are significantly enhanced.
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to cause systemic disease in mice, as SPI-2 or T3SS-2

mutant strains fail to colonize internal organs and cause a

lethal infection.42 In contrast, either T3SS-1 or SPI-1

mutant strains show mild attenuation and remain capable

of causing systemic infection.164

Salmonella interactions with Fcc receptors and its role
in T-cell activation by DCs

Although virulent strains of S. Typhimurium are able to

prevent antigen presentation by host DCs, we have

described how the presence of anti-Salmonella antibodies

in the infected host is an efficient way to counteract

these evasion mechanisms that prevent the activation of

adaptive immunity. This phenomenon takes place

because IgG-opsonized virulent Salmonella can be both

taken up and processed by Fcc receptors expressed by

DCs. It is widely accepted that Fcc receptor engagement

can significantly increases the capacity of DCs to degrade

and present bacterial antigens on MHC molecules and

activate T cells.47,141 It has been suggested that enhance-

ment of processing and presentation of Salmonella anti-

gens is mainly mediated by FccRIII, a low-affinity

activating Fcc receptor expressed by DCs (Fig. 2).141 We

have shown that binding of Salmonella-IgG to FccRIII
results in the fusion of the SCV with DC lysosomes and

subsequently in the degradation of bacteria for antigen

presentation, perhaps because of the activation of spe-

cific signalling pathways.47,141 Although opsonization

with IgG does not prevent secretion of effector proteins

by T3SS-1 and T3SS-2,165 FccRIII signalling seems to

overcome the effect of the T3SS-2 secreted proteins that

are responsible for evading the degradation of captured

Salmonella. Furthermore, enhancement of Salmonella

degradation and antigen presentation induced by FccRIII
requires class III phosphatidyl inositol 3-kinase (PI3K)

activity on DCs, as it can be reverted by the PI3K inhib-

itor Wortmannin (Fig. 2).141 This molecule not only

reduces presentation of bacterial antigens to T cells, but

also increases the intracellular survival of either virulent

or attenuated Salmonella in DCs.141

In addition, we have shown that Salmonella-specific

IgGs increase bacterial engulfment by DCs, so abrogating

the uptake evasion displayed by SPI-1.165 However, nei-

ther FccRI, FccRIIb nor FccRIII are employed by DCs to

capture these large immune complexes (Fig. 2).165 Our

data suggest that antigen presentation enhancement dis-

played by IgG-coated Salmonella-infected DCs is orches-

trated by an FccRIII-dependent degradation and an

FccRs-independent internalization.165 Hence, IgG on the

surface of Salmonella could be engaging FccRIII, promot-

ing intracellular degradation and, at the same time,

another still undefined receptor could be recognizing dif-

ferent bacterial components promoting internalization.

This new receptor (or cluster of receptors) does not

require class I PI3K, an actin cytoskeleton or class I/class

II dynamin because specific inhibitors for these molecules

failed to prevent bacterial internalization by DCs

(Fig. 2).165 Hence, despite the finding that anti capture

SPI-1-derived effectors could still be translocated by IgG-

coated Salmonella into the DC cytoplasm, an alternative

internalization mechanism could effectively enhance Sal-

monella uptake.140,165 Enhanced bacterial uptake increases

the amount of intracellular antigen available to be further

processed. This could explain why DCs present on their

surfaces elevated the numbers of bacterial-derived anti-

gens on both class I and class II MHC molecules that can

prime naive T cells, enhancing host adaptive immunity

(Fig 2).141

In conclusion, our observations suggest that a previ-

ously acquired antibody response against S. Typhimurium

might contribute to counteract the virulence mechanisms

displayed by this pathogen, due to the targeting of bacte-

ria to activating Fcc receptors and to the enhancement of

the DCs capacity to capture, degrade and present bacte-

rial antigens to T cells.

Concluding remarks

Salmonella Typhimurium has successfully evolved molec-

ular mechanisms to alter DC function and exploit the

immune response to cause a successful infection in the

host. Studies performed in the past decade allowed us to

conclude that effector molecules encoded by SPI-1 and

SPI-2 contribute to exploiting the inflammation induced

by DCs and other immune cells at the intestinal mucosa

to replicate and spread to new hosts. Further, Salmonella

has evolved molecular mechanisms to prevent activation

of T cells by DCs and cause an uncontrolled systemic dis-

ease. The characterization of the strategies used by S. Ty-

phimurium to evade host immunity could contribute to

generate new prophylactic tools aimed at improving DC

function and to promote immune responses to counteract

this pathogen virulence. Studies describing Fcc receptor-

independent uptake separate from Fcc receptor-mediated

intracellular degradation of Salmonella by DCs could pro-

vide new insights for improved immunotherapies and

vaccines against salmonellosis, using DCs and antibodies

as a new therapeutic approaches.
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