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ABSTRACT Estimation of evolutionary distances has al-
ways been a major issue in the study of molecular evolution
because evolutionary distances are required for estimating the
rate of evolution in a gene, the divergence dates between genes
or organisms, and the relationships among genes or organ-
isms. Other closely related issues are the estimation of the
pattern of nucleotide substitution, the estimation of the degree
of rate variation among sites in a DNA sequence, and statis-
tical testing of the molecular clock hypothesis. Mathematical
treatments of these problems are considerably simplified by
the assumption of a stationary process in which the nucleotide
compositions of the sequences under study have remained
approximately constant over time, and there now exist fairly
extensive studies of stationary models of nucleotide substitu-
tion, although some problems remain to be solved. Nonsta-
tionary models are much more complex, but significant
progress has been recently made by the development of the
paralinear and LogDet distances. This paper reviews recent
studies on the above issues and reports results on correcting
the estimation bias of evolutionary distances, the estimation
of the pattern of nucleotide substitution, and the estimation of
rate variation among the sites in a sequence.

Evolutionary distances (usually designated by d) such as the
number of nucleotide substitutions between two DNA se-
quences (K) are basic quantities in the study of molecular
evolution because they are required for computing the rate of
evolution in a DNA or protein sequence, for inferring the
evolutionary relationships among genes or organisms, and for
estimating the divergence dates between taxa or genes (1–9).
For these purposes, however, it is essential to obtain reliable
estimates of evolutionary distances. Indeed, if the evolutionary
distances are not accurately estimated, all distance matrix
methods of tree reconstruction may be misleading (5–6, 8).
Because accurate estimation of evolutionary distances requires
a realistic model of nucleotide substitution, much effort has
been made to develop general models of nucleotide substitu-
tion (4, 8).

If the process of nucleotide substitution is stationary, i.e., if
the nucleotide compositions of the sequences under study have
been approximately constant over time, then fairly general
models of nucleotide substitution can be developed. For the
stationary, time-reversible model (the SR model), Lanave et al.
(10), Gu and Li (11), and others (12–14) have developed
methods for estimating K. This model includes many other
models as special cases (see next page). Moreover, Gu and Li
(11) have recently extended the SR model to include rate

variation among sites, i.e., the SRV model, in which SRV
stands for stationary, time-reversible, and rate-variable.

When nucleotide frequencies change with time so that
stationarity does not hold, phylogenetic reconstruction using
distances estimated under a stationary model can be mislead-
ing because it tends to group together sequences of similar
nucleotide compositions irrespective of their true evolutionary
relationships (15–18). Nonstationarity greatly complicates the
mathematics. Fortunately, significant progress has been made
with the development of the paralinear (19) and LogDet
distances (17, 20). However, both methods assume a uniform
rate among sites, and so methods for dealing with rate heter-
ogeneity remain to be developed.

An issue related to the estimation of evolutionary distances
is the estimation of the pattern of nucleotide substitution. This
pattern can be reliably estimated under stationarity (21–23)
but is difficult to estimate under nonstationarity. Another
problem closely related to distance estimation is how to
estimate the degree of rate variation among sites (24–29).
Many methods have been proposed for this purpose under a
specific distribution (e.g., a gamma distribution). However,
how to estimate rate heterogeneity without assuming a specific
distribution has been unclear (30). These issues will be con-
sidered in this paper.

A further issue is that estimation bias usually occurs when
the sequence length is short so that stochastic effects are
strong. Although the bias tends to become trivial as the
sequence length increases, it is desirable to correct the bias
because in practice many sequences studied are actually very
short (31–32).

The purpose of this article is to review recent studies on the
above issues and to present our results.

Stationary Models

The SR Model. Assume that nucleotide substitution follows
a stationary Markov process (10–14). Denote A, G, T, and C
as 1, 2, 3, and 4, respectively. Let R be the rate matrix whose
ij-th element rij is the rate of change from nucleotide i to
nucleotide j (i Þ j, i, j 5 1, 2, 3, 4); the diagonal elements are
given by rii 5 2¥jÞi rij. Then the matrix of transition proba-
bilities P for t time units is given by P 5 eRt, where the ij-th
element Pij is the probability of transition from nucleotide i to
nucleotide j after t evolutionary time units.

The substitution process is reversible in time if and only if
pirij 5 pjrji, where pi is the equilibrium frequency of nucle-
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otide i. The preceding relation implies that the off-diagonal
elements of R can be expressed as

A G T C
A p2s1 p3v1 p4v2

G p1s1 p3v3 p4v4

T p1v1 p2v3 p4s2

C p1v2 p2v4 p3s2

Therefore, the SR model is a nine-parameter model and
includes many models as special cases, e.g., the models of Jukes
and Cantor (33), Kimura (34), Tajima and Nei (35), Hasegawa
et al. (21), and Tamura and Nei (22). The SR model has been
studied by many authors (10–14, 23, 36).

Consider two sequences (designated by 1 and 2) that have
evolved from O, their common ancestor, t time units ago (Fig.
1). Under stationarity, time-reversibility means that the sub-
stitution process from the common ancestor O to sequences 1
and 2 is equivalent to the substitution process from 1 through
O to 2 (or from 2 through O to 1), whose transition probability
matrix for 2t time units is given by

P 5 e2tR. [1]

Let lk (k 5 1, 2, 3, 4) be the k-th eigenvalue of the rate
matrix R; one of them is zero, say l4 5 0. Let zk be the k-th
eigenvalue of P. Eq. 1 implies zk 5 e2tlk. Gu and Li (11) showed
that the evolutionary distance defined by the average number
of substitutions per site (i.e., K 5 22t ¥i51

4 pirii) is given by

K 5 2O
k51

3

ck ln zk, [2]

where constants ck are determined by the eigenmatrix of P. Eq.
2 is generally valid since all eigenvalues zk are real under the
SR model (11, 37). For example, under the Jukes-Cantor
model (33), z1 5 z2 5 z3 5 1 2 4py3 and c1 5 c2 5 c3 5 1y4
so that Eq. 2 is reduced to d 5 2(3y4)ln(1 2 4py3), where
p is the proportion of nucleotide differences between the two
sequences.

The SR distance can be estimated from the data matrix J,
whose ij-th element (Jij) is the frequency of sites at which the
nucleotides in the two sequences are i and j, respectively. By
time-reversibility, we have Jij 5 piPij. Therefore, the ij-th
element of P (for 2t time units) can be estimated by P̂ij 5 Jijypi
(i, j 5 1, . . . , 4), where pi and Jij are easily obtained from the
sequence data. Let matrix P̂ consist of P̂ij. Its eigenvalues ẑk (k
5 1, . . . , 3) can be computed by a standard algorithm, and the
constants are given by ck 5 2¥i51

4 ¥jÞi piuikvkj (k 5 1, 2, 3),
where uik and vkj are the elements of the corresponding
eigenmatrix U and its inverse matrix V, respectively. For

details, see Saccone et al. (38), Gu and Li (11), and Li and Gu
(39). The sampling variance of d and the variance-covariance
matrix for more than two DNA sequences can be found in Gu
and Li (11).

Eq. 2 can be used to define many additive distances by
choosing appropriate constants ck (Table 1), e.g., the number
of nucleotide substitutions per site (K), the number of tran-
sitional substitutions per site (A), the number of transversional
substitutions per site (B), and the number of substitutions from
nucleotides i to j (Dij). These distance measures are useful for
phylogenetic analysis and molecular clock testing.

The SRV Model. Rate variation among sites can be incor-
porated into the SR model by assuming rij 5 aiju, where aij is
a constant and u varies according to a gamma distribution

f~u! 5
ba

G~a!
ua21e2bu [3]

with mean u# 5 ayb; a is the shape parameter and determines
the degree of rate variation. Under this model, the (mean)
transition probability matrix P for 2t time units is given by

P 5 S I 2
2R# t
a
D2a

, [4]

where I is the identity matrix and the mean rate matrix R# 5 u# A
where matrix A consists of aij (11). From Eq. 4, one can show
that the k-th eigenvalue of P is given by

zk 5 S1 2
2l kt

a
D2a

, [5]

where lk is the k-th eigenvalue of R# . It follows that the
evolutionary distance under the SRV model is given by

d 5 a O
k51

3

ck~zk
21ya 2 1!. [6]

The constants ck are determined in the same manner as above
(Table 1). Note that Eq. 4 reduces to Eq. 1 and Eq. 6 to Eq.
2 as a 3 `, i.e., the substitution rate is uniform among sites.

Furthermore, Eq. 6 can be generalized to any distribution
f(u) for the rate variation among sites. Let G(s) 5 *0

` esuf(u)du
be the moment-generating function of f(u). Gu and Li (11)
showed that zk 5 G(2lkt), k 5 1, 2, 3, 4. Thus, the general
additive distance is given by

d 5 2O
k51

3

ckG21~zk!, [7]

where G21 is the inverse function of the moment-generating
function G. For example, consider the invariant 1 gamma
model (26, 40–41): (i) for a given site, the probability of being
invariable (i.e., u 5 0) is u, whereas the probability of being
variable is 1 2 u; and (ii) among the sites that are variable, the
substitution rate follows a gamma distribution. By applying Eq.

FIG. 1. Two DNA sequences diverged t time units ago.

Table 1. The constants ck in the general SR or SRV distance

Distance ck (k 5 1, 2, 3)

K 2¥i51
4 ¥jÞi piuikvkj

A 2¥i51
4 ¥jÞi[Ts piuikvkj

B 2¥i51
4 ¥jÞi[Tv piuikvkj

Dij 2piuikvkj

K is the number of substitutions per site; A is the number of
transitional substitutions per site; B is the number of tranversional
substitutions per site, and Dij is the number of substitutions from
nucleotides i to j per site. The subscripts j Þ i [ Ts and j Þ i [ Tv
mean that the differences between nucleotides i and j are transitional
and transversional, respectively.
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7, one can show that the evolutionary distance under the
invariant 1 gamma distribution is given by

d 5 ~1 2 u!a O
k51

3

ckHS zk 2 u

1 2 u
D21ya

2 1J [8]

For other distributions, see Waddell et al. (30).
Bias-Corrected SR and SRV Distances. Our computer

simulation has shown that when the sequence length is short
the SR and SRV methods tend to overestimate the evolution-
ary distance. The bias can be corrected as follows.

Let d̂ be an estimate of the SR or SRV distance. We use the
first three terms of the Taylor expansion to obtain an approx-
imate expression of E[d̂]. For the SR model,

E@d̂# < E@d# 1
1
2 O

k51

3 ck

zk
2 Var~ẑk!. [9]

Therefore, the bias-corrected SR distance is given by

d̂c 5 d̂ 2 d, [10]

where d is defined as

d 5
1
2 O

k51

3 ck

ẑk
2 Var~ẑk!, [11]

and Var(ẑk) can be obtained by the method of Gu and Li (11).
The bias-corrected distance under the SRV model also can

be written as Eq. 10, except that d is replaced by

d 5
1
2 O

k51

3

ckS1 1
1
a
D ẑk

2~211ya! Var~ẑk!. [12]

Computer Simulation. Extensive computer simulations on
the performance of the SR and SRV methods have been
conducted in this study and in Rodriguez et al. (14), Zharkikh
(31), and Gu and Li (11). The results can be summarized as
follows.

(i) When the sequence length (L) is long and the rate of
substitution is uniform among sites, the SR method performs
well, whereas simpler methods [e.g., Kimura’s two-parameter
method (34)] give biased estimates if some assumptions of the
method are violated (11, 14, 31). Because the actual substitu-
tion pattern of DNA evolution may be complex, the SR
method is preferred when the sequences are long, say, longer
than 1,000 bp.

(ii) The SR method may give large biases when the sequence
length is short (say, L # 200), but the biases can be substan-
tially reduced by the bias-corrected SR distance (Table 2). As
L becomes longer than 2,000 bp, the estimation bias virtually
decreases to zero. The same comment applies to the SRV
method (Table 3).

(iii) The SR method performs well even when DNA se-
quence evolution is not time-reversible (see models NR1 and
NR2 in Table 2). Therefore, the assumption of time-
reversibility, which simplifies the estimation problem consid-
erably, may not have serious effects on distance estimation.

(iv) When the substitution rate varies among sites, the
evolutionary distance can be seriously underestimated by the
SR method; note that this bias is systematic and cannot be
eliminated by increasing sequence length. As shown in Table
3, the SRV method performs well and the estimation bias
vanishes when L is long.

(v) The methods developed by Gu and Li (11) for estimating
sampling variance under the SR and SRV models appear to be
reliable except when L , 200 and d . 1.0.

(vi) The mean squared error defined by MSE 5 bias2 1
Var(d) is useful for comparing the relative performance of two
methods because for a simple method, the sampling variance

tends to be smaller but the bias tends to be larger (11). For
example, using this criterion, Gu and Li (11) found that SR is
superior to JC when L . 500 bp and that SRV is always
superior to SR when the substitution rate varies among sites.

Estimating the Pattern of Nucleotide Substitution. The
pattern of nucleotide substitution can be measured by the
off-diagonal elements of the rate matrix R. For simplicity,
these elements are usually rescaled, and here, we define the
pattern of nucleotide substitution as R* 5 2tR. Consider two
DNA sequences (Fig. 1) under the SR model. Denote the
diagonal matrix of the eigenvalues of P 5 e2tR by diag(z1, z2,

Table 2. The mean of distances (d) over simulation replicates
estimated by the bias-corrected SR method and the SR method

Model

Sequence length (L)

200 500 2000

(1) d 5 0.5
JC 0.506 (0.516) 0.503 (0.506) 0.501 (0.502)
K2P 0.507 (0.517) 0.502 (0.506) 0.501 (0.502)
TN 0.508 (0.516) 0.504 (0.507) 0.501 (0.502)
TmN 0.505 (0.516) 0.505 (0.509) 0.501 (0.502)
SR 0.509 (0.517) 0.503 (0.506) 0.501 (0.502)
NR1 0.509 (0.517) 0.503 (0.507) 0.501 (0.502)
NR2 0.510 (0.517) 0.505 (0.509) 0.501 (0.502)

(2) d 5 1.0
JC 1.036 (1.082) 1.013 (1.029) 1.005 (1.008)
K2P 1.072 (1.093) 1.008 (1.038) 1.003 (1.009)
TN 1.046 (1.089) 1.015 (1.037) 1.006 (1.010)
TmN 1.061 (1.085) 1.016 (1.050) 1.005 (1.012)
SR 1.049 (1.085) 1.006 (1.038) 1.005 (1.009)
NR1 1.057 (1.090) 1.009 (1.044) 1.005 (1.011)
NR2 1.071 (1.094) 1.015 (1.055) 1.006 (1.012)

The value presented in each case is the mean of d estimated by the
bias-corrected SR method and the value in parentheses by the
(uncorrected) SR method. Simulation models: JC, the Jukes–Cantor
model (33). K2P, Kimura’s two parameter model (34): the transitiony
transversion ratio is 4. For TN (Tajima and Nei, Ref. 35), TmN
(Tamura and Nei, Ref. 22), SR, and the two time-irreversible models
(NR1 and NR2), see Gu and Li (11) for a detailed description.

Table 3. The mean of distance (d) estimated by the SRV method
and the bias-corrected SRV method

L true d
SR 1 V
model

NR2 1 V
model

(1) a 5 0.5
200 0.3 0.317 (0.325) 0.320 (0.334)

0.5 0.520 (0.552) 0.555 (0.574)
1.0 1.068 (1.179) 1.193 (1.303)

500 0.3 0.303 (0.307) 0.305 (0.310)
0.5 0.508 (0.517) 0.510 (0.520)
1.0 1.027 (1.061) 1.037 (1.077)

(2) a 5 1.0
200 0.3 0.312 (0.318) 0.313 (0.319)

0.5 0.513 (0.528) 0.531 (0.544)
1.0 1.038 (1.126) 1.063 (1.149)

500 0.3 0.306 (0.309) 0.306 (0.309)
0.5 0.508 (0.514) 0.502 (0.507)
1.0 1.013 (1.037) 1.022 (1.053)

(3) a 5 2.0
200 0.3 0.307 (0.311) 0.308 (0.312)

0.5 0.514 (0.526) 0.514 (0.524)
1.0 1.046 (1.132) 1.060 (1.146)

500 0.3 0.300 (0.302) 0.300 (0.301)
0.5 0.503 (0.508) 0.502 (0.507)
1.0 1.012 (1.034) 1.015 (1.043)

The value presented in each case is the mean of d estimated by the
bias-corrected SRV method, and the value in parentheses by the
(uncorrected) SRV method. See the note of Table 2 for details.
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z3, z4). By matrix theory, we have P 5 U diag(z1, z2, z3, z4)U21,
where U is the eigenmatrix of P. Then, the substitution pattern
R* 5 2tR 5 ln P can be expressed as

R* 5 U diag~ln z1, ln z2, ln z3, ln z4!U21. [13]

Therefore, using the same procedure, we can estimate the
evolutionary distance and the pattern of nucleotide substitu-
tion simultaneously. In the same manner, under the SRV
model, one can show that the pattern of nucleotide substitution
can be estimated by

R* 5 U diag~l*1, l*2, l*3, l*4!U21, [14]

where l*k 5 a(zk
21ya 2 1) (see also ref. 42).

It is known that estimation of the pattern of nucleotide
substitution can be significantly improved by using n . 2
sequences, but the estimation procedure becomes complex
because it needs to consider the phylogenetic tree of the
sequences, which may be unknown. The following simple
method does not require knowledge of the tree topology. For
a given pair of sequences i and j, which diverged tij time units
ago, the transition probability matrix under the SR model is
P(ij) 5 e2tijR. By multiplying P(ij) over all pairs of sequences, we
have

P~2t! 5 P
i,j

P~ij! 5 e2tR, [15]

where t 5 ¥i,j tij. Similarly, under the SRV model, one can
show that

P~2t! 5 P
i,j

P~2tij! 5 S I 2
2R# t

a
D2a

. [16]

Therefore, when the transition probability matrix for each
pair of sequences has been estimated, which is denoted by P̂ij,
we first compute P̂(2t) 5 )i,j P̂ij. Then, under the SR or SRV
model, the substitution pattern R* 5 2tR# for n sequences can
be estimated by an approach similar to that for the case of two
sequences. The sampling variances for the estimated substitu-
tion pattern can be obtained by the analytical method devel-
oped by Gu and Li (11) or by a simple resampling technique
(e.g., bootstrapping).

When many sequences are considered for estimating the
substitution pattern, the time scale t in Eq. 16 can be very large,
resulting in some elements in R* larger than one. Because we
are more concerned with the relative rates among the types of
nucleotide substitutions, it is better to provide a normalized
substitution pattern. A simple normalization procedure is to
compute P̂(2t) 5 [)i,j P̂ij

wij]1yM, where M 5 n(n 2 1)y2 and
the weight wij 5 1ydij.

A General Measure of Rate Variation Among Sites

Gu et al. (26) suggested a normalized measure (r) for evalu-
ating the relative strength of the rate variation among sites:

r 5
CV

2

1 1 CV
2 , [17]

where CV 5 =Var(u)yu# ; Var(u) and u# are the variance and
mean of the evolutionary rate (u) for any distribution f(u). As
r varies from 0 to 1, the rate heterogeneity increases from a
uniform rate over sites (r 5 0 or CV 5 0) to the maximum
heterogeneity (r 5 1 or CV 5 `). Therefore, r can directly
reflect rate heterogeneity, and unlike the shape parameter a
of the gamma distribution, it does not depend on a specific
distribution.

In the following we describe a simple method for estimating
r without assuming a specific model for the rate variation

among sites. We assume (i) at each site nucleotide substitution
follows a Poisson process, and (ii) the evolutionary rate u
varies among sites according to the distribution f(u). Let X be
the number of substitutions at a nucleotide site with rate u.
Then, the first two conditional moments of X are given by
E[Xuu] 5 uT and E[X2uu] 5 uT 1 (uT)2, respectively, where
T is the total evolutionary time. It follows that the first two
(unconditional) moments of X over all sites are E[X] 5
E[E(Xuu)] 5 TE[u], and E[X2] 5 E[E[X2uu]] 5 TE[u] 1
T2E[u2], respectively, where E[u] and E[u2] are the first two
moments of f(u), respectively. Let m 5 E[X] and V 5 E[X2]
2 m2, and let u# 5 E[u] and Var(u) 5 E[u2] 2 (u# )2. One can
show that m 5 u# T and V 5 u# T 1 Var(u)T2, and so CV 5
=(V 2 m)ym. Therefore, the parameter r is given by

r 5
V 2 m

V 2 m 1 m2 . [18]

To estimate r from sequence data, we need to know the
number of substitutions at each site. Conventionally, this
number is inferred by the parsimony method (43) when the
phylogenetic tree is known. However, the parsimony method
tends to underestimate the true number of substitutions (29,
44). Gu and Zhang (29) solved this problem by using a
combination of ancestral sequence inference and maximum
likelihood estimation. Let X̂i be the number of substitutions at
the ith site estimated by Gu and Zhang’s method (29). Then,
m̂ 5 ¥i51

L XiyL and V̂ 5 ¥i51
L Xi

2yL 2 m2 (L is the sequence
length) so that r̂ can be easily obtained from Eq. 18 without
knowing the distribution f(u).

The biological meaning of r can be easily understood by
using the following simple model. Let v be the mutation rate
at a site. For invariant sites, the substitution rate is 0, and for
the other sites, the rate is hv, where 0 , h # 1. The average
substitution rate of the gene is therefore u 5 (1 2 u)hv, where
u is the frequency of invariable sites. It is easy to show that CV
5 =uy(1 2 u) and r 5 u. Thus, the substitution rate can be
expressed as

u 5 ~1 2 r!hv. [19]

This formula predicts a negative correlation between substi-
tution rate and the rate variation among sites, which has been
observed by J. Zhang and X. Gu (unpublished results).

Nonstationary Models

LogDet and Paralinear Distances. The paralinear (19) and
LogDet (17, 20) distances have been proposed to deal with
nonstationarity. They are based on the most general model of
nucleotide substitution. Historically, these methods can be
traced back to Barry and Hartingan (13) and Cavender and
Felseinstein (45).

Consider the evolution of two sequences (Fig. 1). Denote the
diagonal matrix of nucleotide frequencies at node k (k 5 0, 1,
2) by F(k) 5 diag(f1

(k), f2
(k), f3

(k), f4
(k)), where the subscript j refers

to nucleotide j. Let J be the data matrix as defined previously.
Then, the paralinear distance (between sequences 1 and 2) is
defined as

d 5 2
1
4

ln
det@J#

Îdet@F~1!#det@F~2!#
, [20]

where det( ) means the determinant of a matrix, and for a
diagonal matrice, we have det[F(k)] 5 )i51

4 fi
(k), k 5 1, 2 (19).

A related measure is the LogDet distance (17, 20), which is
defined as

d 5 2
1
4

ln det@J# 2 ln 4. [21]
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In Eq. 21, the constant 2ln 4 is added because it does not
change any property of the original LogDet distance but makes
the biological interpretation easier (32). The paralinear and
LogDet distances have the following properties:

(i) Both distances are based on the most general model of
nucleotide substitution, i.e., the 12-parameter model (17,
19–20, 31). Moreover, they are valid even if the rate matrix R
varies among lineages. Therefore, in the case where the
assumption of a uniform substitution rate among sites holds,
the paralinear and LogDet distances are very useful for
phylogenetic reconstruction when nucleotide frequencies are
nonstationary (19–20, 32).

(ii) For the neighbor-joining method and related methods,
the two distance measures give the same tree topology (32).
However, there are some differences between the two dis-
tances. First, the paralinear distance between two sequences is
the sum of ‘‘paralinear’’ lengths of the branches involved. Thus,
the branch lengths under a given tree can be well estimated
from the paralinear distance matrix by the least-squares
method. In contrast, this property does not hold for the
LogDet distance. Second, the LogDet distance is particularly
useful for testing the molecular clock hypothesis under non-
stationarity, whereas the paralinear distance is not suitable for
this purpose (see Eqs. 27 and 28).

(iii) The biological interpretation of the two distances can be
described as follows. Let m(k) 5 2¥i51

4 rii
(k)y4 be the arithmetic

mean rate in lineage k (k 5 1, 2), and m 5 (m(1) 1 m(2))y2. Gu
and Li (32) showed that the expected paralinear distance (Eq.
20) is given by

d 5 2mt 1
1
8 O

i51

4

~ln f i
~1! 1 ln f i

~2! 2 2 ln f i
~0!!, [22]

and the expected LogDet distance (Eq. 21) is given by

d 5 2mt 2
1
4 O

i51

4

ln f i
~0! 2 ln 4. [23]

Note that, when the nucleotide frequency is stationary, Eq. 22
reduces to d 5 2mt, which is the expected number of substi-
tutions between the two sequences and is equivalent to the SR
distance with ck 5 1y4 (Eq. 2). Eq. 23 reduces to d 5 2mt if
fi
(0) 5 1y4, i 5 1, . . . , 4.

(iv) The approximate sampling variance of the paralinear
distance is given by

Var~d! <
1

16L O
i51

4 S O
j51

4

Mji
2 Jij 2 1yÎf1i f2iD [24]

and that of the LogDet distance is given by

Var~d! <
1

16L O
i51

4 O
j51

4

~Mji
2 Jij 2 1!, [25]

where L is the sequence length and Mij is the ij-th element of
M 5 J21 (13, 20, 32). For more than two sequences, the method
for computing the variance-covariance matrix of the two
distances has been developed by Gu and Li (32).

Bias-Corrected Paralinear and LogDet Distances. Because
the data matrix J and the nucleotide frequencies can be directly
estimated from the sequence data, the estimation of paralinear
and LogDet distances is simple (19–20). However, our simu-
lation study has revealed that the true (paralinear or LogDet)
distance can be overestimated when the sequences are short
(32), a situation similar to the SRySRV distance. Gu and Li
(32) obtained the following bias-corrected paralinear or Log-
Det distance.

d̂c 5 d̂ 2 2 Var~d̂!, [26]

where d̂ and Var(d̂) are the estimates of the ‘‘standard’’
paralinear or LogDet distance and the sampling variance,
respectively (see Eqs. 20, 21, 24, 25).

The performance of the bias-corrected distances has been
examined by extensive computer simulation (32). We consid-
ered two DNA sequences (Fig. 1) that evolve under a very
general model: in one lineage the nucleotide substitution
follows a time-reversible model (TR) and in another lineage it
follows a time-irreversible model (NR). The rate matrices of
TR and NR are designed to be very different, and the
equilibrium GC% is 70% in TR but only 17% in NR (see ref.
32 for the detail). Moreover, The initial GC% at node O (Fig.
1) is set to be 15%, 50%, and 70%, in three cases. Our
simulation results indicate that, when the sequence length is
short, the bias-corrected paralinear or LogDet distance per-
forms considerably better than the uncorrected method (Table
4).

Testing the Molecular Clock Hypothesis Under Nonstation-
arity. The relative rate test (2) can be described as follows.
Consider three species as shown in Fig. 2, where species 3 is an
outgroup. To test whether the evolutionary rate in lineage O1
is the same as that in lineage O2 (i.e., the molecular clock
hypothesis), one tests whether or not the difference D 5 d13
2 d23 is significantly different from zero. Wu and Li (2), Gu
and Li (46), Muse and Weir (47), Tajima (48), and others have
developed tests for the case of stationarity. When the nucle-
otide frequencies are nonstationary, D Þ 0 can arise from
differences in nucleotide frequencies between the two se-
quences. Gu and Li (32) showed that this problem can be
avoided by using the LogDet distance; that is,

D 5 d13 2 d23 5 ~m~1! 2 m~2!!t , [27]

where t is the divergent time between species 1 and 2 (Fig. 2).
To test whether D is significantly different from zero, one can
estimate the sampling variance of D, V(D) 5 V(d13) 1 V(d23)
2 2 Cov(d13, d23) by the method of Gu and Li (32). When the
sequence is long, the statistic Z 5 Dy=V(D) follows approx-
imately the standard normal distribution (2). Actually, this new
relative rate test can be easily generalized to the two-cluster

Table 4. Statistical performances of the bias-corrected
paralinear distance

Initial GC% L d̃ d̂c d̂

2mt 5 0.5
50% 200 0.486 0.488 (0.4%) 0.497 (2.3%)

500 0.486 0.489 (0.6%) 0.492 (1.2%)
2,000 0.486 0.487 (0.2%) 0.488 (0.4%)

70% 200 0.555 0.556 (0.2%) 0.572 (3.1%)
500 0.555 0.557 (0.4%) 0.563 (1.4%)

2,000 0.555 0.555 (0.0%) 0.557 (0.4%)
15% 200 0.607 0.599 (1.3%) 0.637 (4.9%)

500 0.607 0.602 (0.8%) 0.613 (1.0%)
2,000 0.607 0.609 (0.3%) 0.611 (0.7%)

2mt 5 0.8
50% 200 0.770 0.766 (0.5%) 0.791 (2.7%)

500 0.770 0.768 (0.3%) 0.777 (0.9%)
2,000 0.770 0.770 (0.0%) 0.772 (0.3%)

70% 200 0.858 0.842 (1.9%) 0.890 (3.7%)
500 0.858 0.854 (0.5%) 0.868 (1.2%)

2,000 0.858 0.859 (0.1%) 0.862 (0.5%)
15% 200 0.926 0.880 (5.0%) 0.986 (6.5%)

500 0.926 0.918 (0.9%) 0.946 (1.2%)
2,000 0.926 0.925 (0.1%) 0.930 (0.5%)

L is the sequence length; d is the true value of the paralinear; d̂c and
d̂ are the means of d estimated by the bias-corrected and uncorrected
paralinear distances. The percentage values in parentheses are the
biases of d̂c (i.e., ud̂c 2 d# uyd# 3 100%), and d̂ (i.e., ud̂ 2 d# uyd# 3 100%),
respectively.
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test of Li and Bousquet (49) and Takezaki et al. (50), who
considered the case of stationarity (Gu and Li, unpublished
data).

On the other hand, if dij is measured by the paralinear
distance, one can show that D9 5 d13 2 d23 is given by

D9 5 ~m1 2 m2!t 1 O
i51

4

~ln f i
~1! 2 ln f i

~2!!. [28]

Obviously, D9 is affected by differences in nucleotide frequen-
cies and thus not suitable for testing the molecular clock
hypothesis.

Discussion

In the above, we discussed the estimation of evolutionary
distances and related issues under three models of nucleotide
substitution: the SR model (10–14, 36), the SRV model (11),
and the nonstationary model (13, 17, 19–20, 32, 45). The
conclusions can be summarized as follows. (i) Under station-
arity, the evolutionary distances and the pattern of nucleotide
substitution can be estimated under the SR or SRV model. (ii)
When the nucleotide frequencies are nonstationary, the para-
linear or LogDet distances should be used. However, although
both distances lead to the same tree topology, the branch
lengths of a tree can be appropriately estimated only from the
paralinear distances, whereas the molecular clock hypothesis
should be tested by the LogDet distance. (iii) The proposed
bias-corrected methods for the SRySRV and paralineary
LogDet distances are useful when the sequences are shorter
than 500 bp. (iv) A general measure for the rate variation
among sites is proposed, which does not depend on any specific
distribution of rates.

In principle, the SRySRV and paralinearyLogDet distances
can be easily extended to more complex models in which the
dimension of the rate matrix R is .4 (51–55). Two interesting
cases are the amino acid-based model (a general 20 3 20
model) and the codon-based model (a general 61 3 61 model).
However, our preliminary simulation showed that, even for the
amino-acid based model, these distances are subject to large
sampling variances unless the sequence is very long, say, larger
than 2,000 amino acids; the sampling variance would be much
larger for the codon-based model. Indeed, because there are
too many unknown parameters, the distances cannot be esti-

mated accurately. Thus, one should be cautious when applying
these methods to analyze amino acid sequence data.

We suggested to use r (related to the coefficient of variation
CV) as a general measure of rate heterogeneity. However,
Waddell et al. (30) questioned its usefulness because they
found, for a given sequence data set, the estimated CV value
differs under different assumptions of rate distribution. This
dilemma has now been removed because we have developed a
method for estimating r (or CV) that does not require any
specific model of rate distribution. Apparently, the discrepancy
found by Waddell et al. (30) is caused by sampling errors or the
unsuitability of the model.

When the nucleotide frequencies are not stationary, the
parlinear and LogDet methods provide concise and elegant
distance measures for phylogenetic inference and molecular
clock testing. However, how to incorporate the effect of
heterogeneity into these two distances is a problem that
remains to be solved.
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