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Abstract
Voxelwise quantification of hepatic perfusion parameters from dynamic contrast enhanced (DCE)
imaging greatly contributes to assessment of liver function in response to radiation therapy.
However, the efficiency of the estimation of hepatic perfusion parameters voxel-by-voxel in the
whole liver using a dual-input single-compartment model requires substantial improvement for
routine clinical applications. In this paper, we utilize the parallel computation power of a graphics
processing unit (GPU) to accelerate the computation, while maintaining the same accuracy as the
conventional method. Using CUDA-GPU, the hepatic perfusion computations over multiple
voxels are run across the GPU blocks concurrently but independently. At each voxel, non-linear
least squares fitting the time series of the liver DCE data to the compartmental model is distributed
to multiple threads in a block, and the computations of different time points are performed
simultaneously and synchronically. An efficient fast Fourier transform in a block is also developed
for the convolution computation in the model. The GPU computations of the voxel-by-voxel
hepatic perfusion images are compared with ones by the CPU using the simulated DCE data and
the experimental DCE MR images from patients. The computation speed is improved by 30 times
using a NVIDIA Tesla C2050 GPU compared to a 2.67 GHz Intel Xeon CPU processor. To obtain
liver perfusion maps with 626400 voxels in a patient’s liver, it takes 0.9 min with the GPU-
accelerated voxelwise computation, compared to 110 min with the CPU, while both methods
result in perfusion parameters differences less than 10−6. The method will be useful for generating
liver perfusion images in clinical settings.
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1. Introduction
The liver has a dual-blood supply; one is from the hepatic artery and another from the portal
vein. In the normal liver parenchyma, portal venous perfusion contributes to 70–80% of the
total perfusion, and hepatic arterial perfusion about 20–30% (Chiandussi et al 1968).
Diseases and tumors in the liver can alter both portal venous and hepatic arterial perfusion in
the tissue (Hashimoto et al 2006, Leggett et al 1997, Van Beers et al 2001). Quantitative
arterial and portal venous perfusion derived from dynamic contrast enhanced (DCE)
imaging by fitting a pharmacokinetic model has shown clinical values for detection of
hepatic cancers, diagnosis of liver cirrhosis and its severity, and assessment of therapy
effectiveness(Thng et al 2010, Materne et al 2002, Goetti et al 2011). Recently, Cao et al.
(Cao et al 2012, Cao et al 2007) show volumetric hepatic perfusion images derived from
DCE-CT or DCE-MRI have the potential to assess global and spatial liver function change
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in response to radiation therapy. To quantify both arterial and hepatic venous perfusion, a
dual-input single-compartment model is commonly used to fit the DCE data by minimizing
a multivariable nonlinear least-squares (NLS) cost function (Dawson 2007, Materne et al
2002, Thng et al 2010). As MRI and CT technologies are advancing, it is possible to acquire
volumetric liver DCE images with both high spatial and temporal resolutions. However,
fitting the volumetric liver DCE images to the kinetic model voxel-by-voxel is very time
consuming, which hinders utilization of the volumetric hepatic perfusion measurements in
clinical applications.

Several studies have proposed computationally efficient methods to fit the liver DCE data to
the pharmacokinetic model (Cao et al 2007, Hagiwara et al 2008, Materne et al 2002,
Pandharipande et al 2005). The methods linearize the kinetic model by directly using either
the derivative of the liver DCE time-concentration curve or the integrals of the two blood
input functions, and then estimate the perfusion parameters by a linear least squares (LLS)
fitting. Although the LLS methods speed up the perfusion estimation by up to 10 times
compared with the conventional NLS method (Murase et al 2007), a LLS fitting can
generate biased results even though the data noise is white (Feng et al 1996). Also, time
delays of the contrast agent (CA) bolus arrival from the artery and portal vein to the liver
parenchyma, which can have a great impact on the perfusion estimation (Miyazaki et al
2008), have been either ignored or only partially considered in the LLS models (Murase et al
2007, Cao et al 2006).

A graphics processing unit (GPU), originally designed for graphic rendering, possesses a
great arithmetic capability, and is well suited for computationally-intensive, highly-
parallelizable applications (Owens et al 2008). Recent advances in the GPU programming
architecture have enabled GPU for a variety of computations in science and medicine (Jia et
al 2011, Pratx and Xing 2011). Therefore, an alternative to accelerating voxelwise hepatic
perfusion quantification is to utilize the GPU. In this paper, we implemented CUDA-based
parallel computation to fit DCE MR images with the liver dual-input single-compartment
model in order to estimate volumetric hepatic perfusion maps. Our parallel computation
strategy can be generalized, and several components of our programs can be directly
adopted for fitting DCE images to other pharmacokinetic models.

2. Methods and Materials
2.1. Pharmacokinetic Model of Hepatic Perfusion

Liver parenchyma receives a dual blood supply from the hepatic artery and the portal vein,
and then it drains blood into the central vein. A dual-input single compartment model that is
commonly used to describe the pharmacokinetics and fit DCE data is expressed as follows
(Cao et al 2006, Materne et al 2002):

(1)

where Ca and Cp are CA concentrations of respective artery and portal vein; C̄l is the
modeled CA concentration at liver parenchyma where the acquired CA concentration is
denoted as Cl; ka, kp and kl are arterial inflow, portal venous inflow and central venous
outflow rate constants, respectively; and τa and τp are time delays of the CA bolus arrival
from the artery and portal vein, respectively, to the parenchyma. The differential equation
(1) is solved as:
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(2)

where we denote f (t) = Ka Ca (t − τa) + kp Cp (t − τp) and h(t) = e−klt, and ⊗ is a
convolution operator.

To estimate perfusion parameters ka, kp, kl, τa and τp, time-concentration curves Cl, Ca and
Cp are derived from DCE images (figure 1) and fitted to the kinetic model in equation (2) by
minimizing a NLS cost function E between the acquired Cl and modeled C̄l,

(3)

where T is a sampling time interval of DCE imaging, and Nt is a total number of time points
acquired during dynamic imaging. The NLS minimization with respect to the five
parameters (ka, kp, kl, τa, τp) is commonly solved by the Nelder-Mead “Simplex”
optimization algorithm (Lagarias et al 1998, Nelder and Mead 1965). The Simplex
algorithm is an iterative optimization procedure that heuristically updates the solution
according to the cost function values at the previous iterations. Given that in our study the
number of voxels in the liver MR images of the patients with intrahepatic cancers is as large
as 106, it is very time consuming to estimate hepatic perfusion voxel-by-voxel throughout
the whole liver.

2.2. GPU-Accelerated Perfusion Quantification
We aimed to accelerate volumetric hepatic perfusion quantification without compromising
accuracy by using a GPU. To maximally utilize the GPU, computation should be structured
to expose as much parallelization as possible (Owens et al 2008). Two types of
computations in the volumetric DCE quantification can be parallelized: one is to
simultaneously estimate perfusion among the Nv voxels, and another is to concurrently
compute the cost function values from the Nt-time point curves in one voxel.
Synchronization of the Nt -time point parallel computation is required in order to obtain a
cost function value per voxel (equation (3)). On the other hand, parallel computations for
multiple voxels should be asynchronous to allow individual convergence behaviors in the
Simplex minimization of the voxels since the voxels are independent of each other. In the
following subsections, we describe the implementations of these two parallelization
strategies on the GPU using the compute unified device architecture (CUDA) from NVIDIA
(Nvidia 2010).

2.2.1. Introduction of GPU and CUDA—A GPU device is comprised of a number of
multiprocessors (MPs), each of which consists of multiple streaming processors, or
processor cores, for massive parallel computation. CUDA abstracts the complexity in
programming the graphic hardware, and provides a general-purpose parallel computing
platform (Nvidia 2010). In CUDA, multiple copies of a C/C++ function, called a kernel, are
executed as parallel threads on the GPU, multiple threads are scaled as a block, and all the
blocks that are designed for a specific task compose a grid. The threads can access a large
amount of, but slow, off-chip device memory, a limited amount of, but fast, on-chip shared
memory, a constant cache, and a texture cache. Therefore, developing a CUDA GPU-
accelerated application involves both the partition of computation units into parallel
executions in a hierarchical grid-block-thread configuration for maximal parallelization, and
the explicit management of memory access for optimal performance.
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2.2.2. Parallelization of Multivoxel Perfusion Computation—In CUDA, the threads
in a block can share data through the shared memory and synchronize their kernel
executions, but there is no explicit support for the synchronization of threads across different
blocks. Therefore, we configure Nv blocks for parallel computations for Nv voxels, and one
block exclusively performs computation for one voxel. The computations across the blocks
are concurrent but independent. The following subsections describe how the NLS fitting for
one voxel is performed on the threads of a block.

2.2.3. Parallelization of the NLS Cost Function Calculation—The perfusion
quantification at each voxel is to minimize the NLS cost function of equation (3) by the
Simplex algorithm. The cost function (equation (3)) calculations include (1) a convolution of
two time curves (f(iT) and h(iT)) with Nt time points of each; (2) a square of the difference
between the measured and modeled values at each time point; and (3) a sum of the square
differences over Nt time points. The most expensive computation is the convolution if it is
straightforwardly computed, which requires every time point of f(iT) to be multiplied by
every point of h(iT). Alternatively, the time-domain convolution can be computed in the
Fourier domain, in which the convolution becomes a complex-number multiplication at each
frequency component. Therefore, Fourier transform (FT) and its inverse transform have to
be implemented on a GPU block in order to be called upon to calculate the cost function
value at each of the Simplex iterations on the block. Although CUDA provides a parallel
Fast Fourier Transform library (CUFFT), the CUFFT can only be called by the host CPU to
perform transforms of multiple-batch data on the whole GPU but not on a block. Therefore,
we developed a Block-FFT to perform the FT in order to execute the Fourier domain
convolution on a block.

Block-FFT: First, a time curve with Nt time points is zero-padded to have Nt=qp (i.e., q×p)
points, where p is a power of 2, q is a small integer greater than 1, and Nt is as close to the
number of the original time points as possible. To avoid the circular convolution problem
due to the Fourier domain multiplication (Oppenheim et al 1999), the curve is further zero-
padded to 2Nt points. Next, we organize 2Nt points of the curve into a 2q×p table
(row×column) and order them along the row first (figure 2a), where the temporal index i of
the curve is rewritten by two dimensional (2D) indices as i= pi1+i2 (0 ≤ i1≤2q−1, 0 ≤ i2 ≤ p
−1). According to the general Cooley-Tukey algorithm (Duhamel and Vetterli 1990), FT of
a curve (f) with 2Nt points can be written as:

(4)

where  for integers P and Q, called a twiddle factor in FT, and k (0 ≤ k ≤
2Nt-1) is a frequency index and also expressed by 2D indices as k =2qk2+k1 (0 ≤ k1 ≤2q−1,
0 ≤ k2 ≤p−1). Using the configuration of the 2q×p table in figure 2a, FT of curve f in
equation (4) can be done by performing a 2q-point FT along each column (inner
parenthesis), and finally performing a p-point FT along each row (outer parenthesis). As a
result, the frequency components during the FT can be stored in a 2q×p complex-number
table as in figure 2b, in which the frequency components are ordered along the column first.

To further speed up computation and reduce memory usage, the complex conjugation of FT
of the real data is used. By organizing the frequency components into the 2q×p frequency

table as in figure 2b, , and thus, computation and data storage for
the frequency components from row q+1 to 2q−1 can be omitted. In addition, the time points
of the curve from row q to 2q−1 in the time table figure 2a are zeros (due to zero padding)
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and do not have to be stored. As a result, (q+1)×p memory are allocated on the shared
memory of a block for the (q+1)×p complex frequency components (rows 0 to q of figure
2b). Rows 0 to q−1 of the real part of the allocated memory are also used to load the Nt time
points of a time curve before its FT. In our CUDA codes, a block is configured to have (q
+1)×p threads as a 2D matrix (figure 3), each of which executes the computation for one
frequency component in the table memory figure 2b.

With one-to-one correspondences of the table memory cells and threads, the Block-FFT

performs calculations on each thread as follows: (1) compute  along the

column with a total of q points; (2) multiple  to the column-FT results in each cell (k1,
k2) of the table; and (3) perform FFT along the row with a total of p points. In the third step,
the recursive radix-2 FFT algorithm (Moreland and Angel 2003) is utilized since p (the
number of components in a row) is a power of 2. As a total, each thread performs q
+1+log2(p) complex-number multiplications and q+log2(p) complex-number additions to
perform the FT of a 2qp-point curve. Of note, q is designed to be a small integer; thus the q-
point FT would not slow down the Block-FFT, but q is greater than 1 in order to utilize the
complex conjugation relationship of the frequency components between the rows in the
frequency table. Using the same principle, the inverse Block-FFT is implemented by
inversing the three-step process and replacing the twitter factor with its complex conjugate,
and then dividing the real components of the results by the number of points.

NLS cost function calculation: The NLS cost function calculation at each trial solution of
(kl, ka, kp, τa, τp) during the Simplex searching process involves three time-concentration
curves. The curves Ca and Cp, used by all the voxels, are loaded into the texture memory and
accessed by all the blocks. Each of the liver dynamic curves Cl after zero padding to Nt is
stored as a contiguous segment in the device memory to allow the threads in a block to
efficiently access the coalescent data.

To compute the convolution f (iT) ⊗ h(iT) in the cost function, Ca(iT) and Cp(iT) are read
from the texture memory, linearly interpolated according to the given time delays (τa, τp),
summed into f(iT), and maintained in the frequency component table in the share memory.
Its Fourier transform F(k) is obtained by performing the Block-FFT as described in the
previous subsection. Then, the analytical form of FT of h(iT) after zero-padding to 2Nt

points, , is multiplied by F(k) in each cell of the frequency component
table according to their frequency correspondences. Finally, the convolution result C̄l (iT) is
obtained by the inverse Block-FFT. Table 1 shows the operation counts per thread for the
convolution on the GPU, as well as the operation numbers of a CPU for the time-domain
and frequency-domain convolutions.

After each thread calculates the squared distance between C̄l (iT) and Cl(iT) at a time point i,
the cost function value is a summation of the squared distances over all the time points in the
table memory cells using a naïve parallel scan algorithm executed on the block (Daniel
2005).

2.2.4. Implementation of the Simplex Algorithm on GPU—The Nelder-Mead
Simplex method is a direct search method to minimize a scalar-valued nonlinear function of
n real variables using function values only. In the Simplex method, a vector of the n
variables of a possible solution is defined as a vertex. The search begins with a simplex with
n+1 vertices and the associated function values, and then one new vertex is calculated and
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tested. The search is continued until reaching stopping criteria. In our NLS cost function,
there are five unknown parameters (kl, ka, kp, τa, τp). Thus, a six-vertex simplex plus an
extra vertex as the new solution are maintained and updated based on their cost function
values by following the Simplex searching scheme. For fast access, the memories for the 7
vertices and their cost function values are allocated in the shared memory. The Simplex
search scheme in the NLS fitting is implemented on a block and exactly as the one reported
by Lagarias et al (Lagarias et al 1998). Branching to a new vertex in the Simplex searching
is only based on the cost function values of the vertices, and all the threads in a block follow
the same branching path. Figure 4 shows the flowchart of the GPU-accelerated voxelwise
perfusion quantification.

2.3. GPU and CPU Implementations
The GPU computation was implemented by GNU C with a CUDA 4.0 toolkit on an NVidia
Tesla C2500 GPU card. The card has 14 MPs and each MP has 32 cores. The host computer
has a 6-core 2.67GHz Intel Xeon CPU X5650. The NLS fitting of the DCE images requires
a high-precision cost function calculation. Therefore, double-precision computation and
memory allocation were used on the GPU. For the purpose of comparison, the conventional
hepatic perfusion computation was implemented on the host CPU by using GNU C
programming and named as C-CPU. The C-CPU method performed voxel-by-voxel
perfusion computation which minimized equation (3) without parallelization. The Simplex
algorithm in the CPU method used the same search scheme as Lagarias et al (Lagarias et al
1998), adopted from Numeric Recipes 3.0 (Press et al 2007). Convolution in the cost
function was also calculated in the Fourier domain by using the FFT in the GNU Scientific
Library (GSL) (Galassi et al 2009). Both the CPU and GPU computations started with the
same initial solution and were terminated when a difference between the maximal and
minimal function values of the vertices in the simplex was less than 10−8 or the iteration
number was greater than 600.

In order to evaluate the efficiency of GPU computation, computation time per voxel was
calculated by averaging the total computation time over the same number of voxels for the
GPU and C-CPU methods. The total time for the GPU computation included the time to
load the DCE data into the GPU device memory from the host CPU memory, estimating
perfusion parameters over a given number of voxels on the GPU, and exporting the resultant
perfusion parameters to the CPU memory. In the C-CPU computation, only the voxel-by-
voxel perfusion estimation time was included.

2.4. Evaluation Experiments
2.4.1. Simulation Studies—Simulated data with known perfusion parameters were used
to evaluate the accuracy and efficiency of liver perfusion quantification on the GPU. We
obtained an arterial input Ca and a portal venous input Cp from our previous IRB-approved
DCE-CT study (Cao et al 2006, Cao et al 2007), in which the DCE data was acquired at a
temporal resolution of 1sec for 2 min. The curves Ca and Cp were interpolated to obtain
curves with the following numbers of time points: 32, 64, 128, 256, 320 and 448. A time-
concentration curve Cl was simulated from Ca and Cp using equation (2), where ka, kp and kl
were set to be 20, 100 and 400 ml/100g/min, respectively, and ta and tp were 1s and 2 s,
respectively. These parameters are typical for normal hepatic perfusion (Cao et al 2006).
The Cl curve was replicated up to 10000 voxels. The perfusion parameters of these voxels
were estimated in parallel on the GPU, and in serial on the host CPU. Both computations
were initialized with 10 ml/100g/min, 80 ml/100g/min, 200 ml/100g/min, 2 s and 3 s for ka,
kp, kl, τa and τp, respectively. The computation time per voxel with respect to the number of
voxels (Nv) and the number of time points (Nt) were measured for both the GPU and C-CPU
computations.
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To evaluate the accuracy of the GPU perfusion computation, Gaussian noise was added to
the simulation data. The noise is quantified by the contrast-to-noise ratio (CNR) that was
defined as the ratio of the signal peak to the standard deviation of the curve at the baseline.
We used the typical CNR of 150 and 100 for Ca and Cp, respectively, and varied the CNRs
of Cl from 10 to 100 by steps of 10. For each tested CNR, the noisy signals with 128 time
points were generated 1000 times. The perfusion parameters were estimated by both the
GPU and C-CPU methods, as well as the method implemented in Matlab on the CPU,
named as Matlab-CPU, using the Matlab optimization function “fminsearch”. The function
“fminsearch” used the Simplex search algorithm in exactly the same way as our GPU and C-
CPU computations. The means and standard deviations of ka, kp and kl estimated by the
three methods were compared with respect to the noise levels.

We also evaluated the speed of the Block-FFT by comparing it with the CUFFT of multiple
liver curves on the GPU. First, the curves were zero padded to double the number of points
in order to perform convolution computation in Fourier domain. Then, the zero-padded
curves Cl of Nv voxels were Fourier transformed and then inverse Fourier transformed on
the GPU using the Block-FFT and the CUFFT. Both computations were invoked in the same
way by the CPU for parallel FT of the Nv voxels. The CUFFT performed the transformation
by its real-to-complex Fourier transform and complex-to-real inverse Fourier transform. We
compared the time per curve transform between the two implementations with respect to the
number of curves (Nv) and the number of time points in the curve (Nt). To evaluate the
accuracy of the Block-FFT, a root mean squared error (RMSE) of a curve transformed by
forward FT and followed by inverse FFT to the original curve was calculated.

2.4.2. Patients Hepatic Perfusion Studies—DCE-MRI scans of three patients with
intra-hepatic cancers were obtained in a prospective IRB-approved protocol. The DCE data
were acquired during a bolus injection of 15mL Gd-DTPA at a rate of 2 mL/sec on a clinical
3T MR scanner (Philips Achieva 3.0T; Philips Healthcare, Netherlands). A 3D DCE MRI
covering the whole liver was obtained every 2.37 sec for a total of 2 min with a gradient
echo pulse sequence (TR/TE/FA: 4.48/2.15/20°; Matrix: 320×320×66; FOV: 33×33×19.8
cm; SENSE factor: 2 in 2 different directions). The 3D data was acquired in sagittal/coronal
orientation to avoid the inflow effect.

An arterial input (Ca) and a portal venous input (Cp) were obtained from VOIs of the aorta
and portal vein, respectively, on the MR images. The voxel numbers of the aorta and portal
vein VOIs were approximately 800 and 400, respectively. The MR time-intensity signals
were converted to the CA time-concentration curves by assuming a linear relationship
between the CA concentration and the relaxivity (R1) enhancement after the CA
administration. As the original DCE data had 42–48 temporal phases, we attached zero-
intensity phases to the ends of the time series to have 48 phases (i.e. Nt=48). The GPU and
C-CPU methods were applied to estimate volumetric perfusion maps from the DCE data. In
the GPU computation, Nt of 48 was decomposed to be 3×16 (q×p) so that a GPU block was
configured to have 4×16 ((q+1)×p) threads. According to availability of the device memory,
the liver dynamic curves from the first 60000 voxels were loaded into the device memory,
and the GPU was configured into 60000 blocks for parallel perfusion quantification over the
60000 voxels. After completing the first 60000-voxel computations, the liver data of the
next 60000 voxels were loaded into the GPU for perfusion estimation. The process was
stopped when computations for all the voxels in the liver volume were done. The absolute
differences of perfusion parameters between GPU and C-CPU computations were calculated
at each voxel to evaluate the accuracy of the GPU computation.
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3. Results
3.1. Simulation Studies

The comparison of the computation speeds of the Block-FFT and the CUFFT of the curves
with 32–512 (Nt) time points over 100–15000 (Nv) voxels is shown in figure 5. As expected,
the computation time per curve increased with the number of time points, but deceased with
the number of curves that can be computed in parallel for both methods. However, the
Block-FFT was 40–60% faster than the CUFFT, due to the fact that the Block-FFT ignores
the computation of the zero-padded points in the curves and applies the complex conjugates
in frequency components of a real signal FT. The RMSE of a curve transformed by FT and
followed by inverse FT was 2.33E-14 by the Block-FFT, compared to 2.46E-16 and
1.11E-16 by the CUFFT and CPU GSL FFT, respectively. The small non-significant
discrepancy of the RMSEs between the Block-FFT and CUFFT might be due to the
numerical implementation of π in the Fourier transformation.

To compute liver perfusion over a large number of voxels, multiple blocks run estimations
simultaneously for multiple voxels on the GPU. Table 2 shows the performance of the GPU
computation on the simulated DCE data. The computation time per voxel by GPU
substantially decreased with the number of voxels due to parallel computation, and was
much faster than by the C-CPU method except for only one voxel computed on the GPU
(Nv=1). For the DCE data with 32, 64, 128, 256, 320 or 448 time points and 10,000 voxels,
the computation speeds by the GPU were 34, 32, 30, 28, 29 and 31 times faster than by the
C-CPU method, respectively. Table 2 also provides q×p decompositions of 32, 64, 128, 256,
320 and 448 time points, in which Nt (=qp) were selected as close to the number of DCE
imaging time points as possible and q was as small as possible but greater than 1. For the
DCE data with the number of time points different from the examples in table 2, the
dynamic data can be zero-padded to have a curve length the same as one of these cases.

The convergent behavior of the Simplex minimization for liver perfusion computation
implemented on GPU was evaluated and compared to C-CPU and Matlab-CPU
computations. Figure 6 shows the GPU method, CPU computations implemented with C and
Matlab followed the exact same convergence course and were terminated after the same
number of iterations for the given termination criteria when initiated by the same simplex.

The accuracy and stability of the GPU-based liver perfusion quantification under the
influence of noise were evaluated. Table 3 shows the means and standard deviations of the
parameters estimated from the 1000 simulated data by the GPU, C-CPU and matlab-CPU
methods. For the simulated DCE data with CNRs of 10 to 100, there were no differences in
the means and standard deviations of the perfusion estimates among the three methods.

3.2. Experimental Patient Study
The volumetric hepatic perfusion parameters maps of the patients were estimated from DCE
MRI by using the GPU and C-CPU computations. Figure 7 shows examples of slices of the
liver perfusion parameters, estimated by the GPU method, in a patient. The means of the
absolute differences of perfusion parameters over all the voxels in the liver between the
GPU and C-CPU computations were in the order of magnitude from 10−4 to 10−5 in all three
patients (Table 4).

As well as showing that the GPU and C-CPU produced similar accuracy in liver perfusion
quantification, the computation times per voxel by GPU and C-CPU were 0.25 msec and
10.74 msec, respectively. Table 5 shows the total times of the GPU and CPU perfusion
quantifications in the whole livers of the three patients. For a liver with approximately
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600000 voxels, the voxelwise perfusion computation lasted approximately 2 hours by C-
CPU, 2.5 min by single GPU, and less than 1 min by 3 GPUs.

4. Discussion and Conclusions
In this report, we developed a CUDA parallel computation method on an NVIDIA Tesla
C2050 GPU to improve the speed of voxelwise hepatic perfusion quantification from DCE
images. The parallel computations are not only executed over multiple voxels, but also over
multiple time points in the cost function calculation. In addition, an efficient block-based
FFT algorithm was implemented to convolve two time curves in the Fourier domain.
Overall, we were able to achieve an approximately 30-fold improvement in the computation
speed using a single GPU card, compared with using a CPU without compromise of the
accuracy of the estimated parameters. The computation can be further accelerated if multiple
GPUs are utilized. The parallel programming techniques reported here quell the
longstanding concern about the computation time for voxelwise quantification of the hepatic
perfusion over the whole liver in a clinical setting. Also, the framework as well as the
components of the CUDA programming implementations, e.g., block-based FFT and
parallel computation for the cost function over time points, can be generalized for other
pharmacokinetic modeling of DCE data to substantially accelerate perfusion estimation in
other organs.

GPU is a dedicated device for parallel computation. To achieve the best performance of the
GPU computation, the first objective of the CUDA programming is to maximally parallelize
the computation. Using the block-thread hierarchy in CUDA, perfusion parameters of
multiple voxels are computed independently across multiple blocks, and Simplex
minimization of one voxel is executed on a block with a parallel calculation of cost function
values over multiple time points. Furthermore, individual convergence behavior of the
Simplex optimization (figure 6) is allowed on each block to accommodate the different
perfusion characteristics at a voxel.

We implement a Block-FFT for the Fourier domain convolution of two time curves. The
Block-FFT is designed to run on a block for an arbitrary length of the time curve. By
arranging a curve into a q×p table with q>1, the memory allocations for frequency
components from row q+1 to 2q−1 in the frequency table can be omitted (figure 2). This
reduction of the memory usage in the Block-FFT makes it possible to store the data on the
limited shared memory for fast access. However, if the shared memory in an MP is not
enough for any dataset, the frequency component table can be allocated on the device
memory but with a tradeoff for slow device memory access. In CUDA program, a block is
configured to (q+1)×p threads to match the dimensions of the time or frequency table. Note
that this configuration is also limited by the maximal number of threads within a block. Our
implementation allows perfusion quantification from DCE data with 448 time points or less
on the Tesla C2050 GPU. The maximal number of threads in one block for the GPU card is
1024, which is quite generous for DCE data acquired in a clinical setting.

We report a method to accelerate voxel-by-voxel liver perfusion computation from
volumetric DCE imaging by using the dual-input single-compartment model. The hepatic
perfusion consists of two phases, i.e., the arterial and portal venous perfusion. Although a
single vascular input model is popularly used for characterizing the vascular behavior of a
highly arterialized tumor, the dual-input single-compartmental model is more reasonable in
representing the underlying physiology of hepatic perfusion, particularly in situations where
the clinical and scientific interests are not limited to the tumor, e.g., cirrhosis, and drug and
radiation effects on the liver parenchyma (Hashimoto et al 2006, Leggett et al 1997, Van
Beers et al 2001). The latter studies (Cao et al 2012, Cao et al 2007) show it is not only that
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portal venous perfusion needs to be considered but also it is necessary to map the whole
liver perfusion voxel-by-voxel. Finally, although our method is designed to accelerate the
perfusion quantification using the conventional hepatic dual-input single compartment
model, the GPU-based parallel computation framework can be applied to other
pharmacokinetic models to speed up the computation (Tofts 1997, Koh et al 2008) since the
convolution and optimization of a least squares cost function are the common computations
in these models.

In conclusion, the GPU method greatly speeds up the computation of voxelwise hepatic
perfusion from DCE data. The method may make volumetric perfusion evaluation practical
in clinical applications. The quantitative liver perfusion imaging may improve detection of
liver disease and assessment of tissue therapeutic response beyond region-based
quantifications.
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Figure 1.
Left: a sagittal MRI slice that covers VOIs to determine arterial input (Ca), portal venous
input (Cp) and time-course signals of liver tissue (Cl). Right: time-concentration curves of
Ca, Cp and Cl. Blue Arrow: aorta; red arrow: portal vein; green arrow: liver tissue.
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Figure 2.
Configurations of time points (top) and frequency components (bottom) designed for the
Block-FFT. Both tables contain 2q rows and p columns. i1 and k1 are row indices and i2 and
k2 are column indices for the time and frequency component table, respectively. Time points
in rows q+1 to 2q−1 (shaded) are zero due to zero padding. The frequency components in
shaded rows q+1 to 2q−1 can be determined by complex conjugation of real signal FT.

Wang and Cao Page 13

Phys Med Biol. Author manuscript; available in PMC 2013 September 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
CUDA thread-block-grid hierarchy for the Block-FFT. The threads in a block are indexed
with (k1, k2) used in figure 2b, and so one-to-one corresponds to the frequency component
computation.
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Figure 4.
Flowchart of the GPU-accelerated voxelwise hepatic perfusion estimation.
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Figure 5.
Performances of the Block-FFT and CUFFT of time curves with Nt time points and over Nv
voxels. Left: computation time per curve transform vs the number of time points over
Nv=10000 voxels. Right: computation time per curve transform vs the number of voxels for
a curve with 128 time points.

Wang and Cao Page 16

Phys Med Biol. Author manuscript; available in PMC 2013 September 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Convergence behaviors of the Simplex minimization implemented in the GPU and C-CPU
methods. Both methods have the exactly same convergence behavior, which is also the same
as the one obtained from the Matlab-CPU method.
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Figure 7.
Hepatic perfusion maps of a liver slice estimated by the GPU computation. (a): estimated kl
map; (b): estimated ka map; (c): estimated kp map. The perfusion parameters are in a unit of
ml/100g/min.
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Table 1

Operation counts for convolutions in time-domain, and frequency-domaina on the CPU and GPU.

Operations Time-domain convolution Frequency-domain convolution on CPUb Frequency-domain convolution on
GPUc

Complex Multiplications p(q+1)(2log2p+2q+3) 2log2p+2q+3

Complex Additions p(q+1)(2log2p+2q) 2log2p+2q

Real Multiplications pq(pq+1)/2 4p(q+1) (2log2p+2q+3) 4(2log2p+2q+3)

Real Additions pq(pq−1)/2 2p(q+1)(4log2p+4q+3) 2(4log2p+4q+3)

a
Frequency-domain convolution includes FFT, frequency component multiplication and inverse FFT.

b
The FFT on CPU is based upon the Cooley-Tukey algorithm.

c
The Block-FFT is utilized for convolution on the GPU. The counts are operations on each thread.
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Table 4

The absolute differences of perfusion parameters between the GPU and C-CPU computations of all liver
voxels.

Patient 1 Patient 2 Patient 3

kl 2.4E-7 ± 3.4E-6 1.5E-7 ± 2.6E-6 1.2E-7 ± 2.3E-6

ka 1.7E-7 ± 2.3E-5 1.0E-7 ± 8.3E-6 6.1E-8 ± 2.1E-6

kp 2.4E-7 ± 2.2E-5 1.3E-7 ± 5.8E-6 7.7E-8 ± 1.8E-6
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