Skip to main content
Cytotechnology logoLink to Cytotechnology
. 2002 Nov;40(1-3):107–116. doi: 10.1023/A:1023926407877

Fermented milk, Kefram-Kefir enhances glucose uptake into insulin-responsive muscle cells

Kiichiro Teruya 1,, Maiko Yamashita 1, Rumi Tominaga 1, Tsutomu Nagira 1, Sun-Yup Shim 1, Yoshinori Katakura 1, Sennosuke Tokumaru 2, Koichiro Tokumaru 2, David Barnes 3, Sanetaka Shirahata 1
PMCID: PMC3449522  PMID: 19003111

Abstract

Diminution of insulin-responses in the target organ is the primary cause of non-insulin dependent diabetes mellitus (NIDDM).It is thought to be correlated to the excessive production of reactive oxygen species (ROS). In this article, we attempted to evaluate whether fermented milk, Kefram-Kefir known as an antioxidant, reduces the cellular ROS levels and can stimulate the glucose uptake in L6 skeletal muscle cells. Water-soluble or chloroform/methanol-extracted fractions from Kefram-Kefir were examined to evaluate the glucose uptake ability of L6 myotubes.As a result, the water-soluble fraction augmented the uptake of glucose in L6 myotubes both in the presence and absence of insulin stimulation. Estimation of intracellular ROS level revealed that the water-soluble fraction of Kefram-Kefir reduced the intracellular ROS level on both the undifferentiated and differentiated L6 cells. Especially, glucose uptake was augmented up to six times with the addition of water-soluble fraction in the insulin-stimulated L6 myotubes. Glucose transport determination revealed that the active agent in Kefram-Kefir was resistant to autoclave and stable in pH range from 4 to 10, and the small molecule below the molecular weight of 1000. Furthermore, this augmentation was inhibited in the presence of phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor wortmannin. Considering together with the reports that PI 3-kinase is locatedin the insulin signaling pathway and the participation in the translocation of glucose transporter 4 to the cell membrane, it is suggested that the water-soluble fraction of Kefram-Kefir activates PI 3-kinase or other upstream molecules in the insulin signaling pathway, which resulted in the augmentation of glucose uptake and its specific inhibition by wortmannin.

Keywords: glucose uptake, Kefram-Kefir, L6 cells, myotubes, Non-Insulin Dependent Diabetes Mellitus (NIDDM), skeletal muscle cells

Full Text

The Full Text of this article is available as a PDF (140.7 KB).

References

  1. Andreasson K, Galuska D, Thorne A, Sonnenfeld T, Wallberg-Henriksson H. Decreased insulin-stimulated 3-O-methylglucose transport in in vitro incubated muscle strips from type II diabetic subjects. Acta Physiol Scand. 1991;142:255–260. doi: 10.1111/j.1748-1716.1991.tb09154.x. [DOI] [PubMed] [Google Scholar]
  2. Bashan N, Burdett E, Hundal HS, Klip A. Regulation of glucose transport and GLUT1 glucose transporter expression by O2 in muscle cells in culture. Am J Physiol. 1992;262:C682–690. doi: 10.1152/ajpcell.1992.262.3.C682. [DOI] [PubMed] [Google Scholar]
  3. Bass DA, Parce JW, Dechatelet LR, Szejda P, Seeds MC, Thomas M. Flow cytometric studies of oxidative product formation by neutrophils: A graded response to membrane stimulation. J Immunol. 1983;130:1910–1917. [PubMed] [Google Scholar]
  4. Ceriello A, Giugliano D, Quatraro A, Donzella C, Dipalo G, Lefebvre PJ. Vitamin E reduction of protein glycosylation in diabetes. New prospect for prevention of diabetic complications? Diabetes Care. 1991;14:68–72. doi: 10.2337/diacare.14.1.68. [DOI] [PubMed] [Google Scholar]
  5. Ceriello A, Quatraro A, Giugliano D. New insights on non-enzymatic glycosylation may lead to therapeutic approaches for the prevention of diabetic complications. Diabet Med. 1992;9:297–299. doi: 10.1111/j.1464-5491.1992.tb01783.x. [DOI] [PubMed] [Google Scholar]
  6. Ceriello A, dello Russo P, Amstad P, Cerutti P. High glucose induces antioxidant enzymes in human endothelial cells in culture. Evidence linking hyperglycemia and oxidative stress. Diabetes. 1996;45:471–477. doi: 10.2337/diab.45.4.471. [DOI] [PubMed] [Google Scholar]
  7. Chari SN, Nath N, Rathi AB. Glutathione and its redox system in diabetic polymorphonuclear leukocytes. Am J Med Sci. 1984;287:14–15. doi: 10.1097/00000441-198405000-00004. [DOI] [PubMed] [Google Scholar]
  8. DeFronzo RA, Bonadonna RC, Ferrannini E. Pathogenesis of NIDDM. A balanced overview. Diabetes Care. 1992;15:318–368. doi: 10.2337/diacare.15.3.318. [DOI] [PubMed] [Google Scholar]
  9. DeFronzo RA, Gunnarsson R, Bjorkman O, Olsson M, Wahren J. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J Clin Invest. 1985;76:149–155. doi: 10.1172/JCI111938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber JP. The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes. 1981;30:1000–1007. doi: 10.2337/diab.30.12.1000. [DOI] [PubMed] [Google Scholar]
  11. Dohm GL, Tapscott EB, Pories WJ, Dabbs DJ, Flickinger EG, Meelheim D, Fushiki T, Atkinson SM, Elton CW, Caro JF. An in vitro human muscle preparation suitable for metabolic studies. Decreased insulin stimulation of glucose transport in muscle from morbidly obese and diabetic subjects. J Clin Invest. 1988;82:486–494. doi: 10.1172/JCI113622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Estrada DE, Ewart HS, Tsakiridis T, Volchuk A, Ramlal T, Tritschler H, Klip A. Stimulation of glucose uptake by the natural coenzyme alpha-lipoic acid/thioctic acid: Participation of elements of the insulin signaling pathway. Diabetes. 1996;45:1798–1804. doi: 10.2337/diab.45.12.1798. [DOI] [PubMed] [Google Scholar]
  13. Ferris FLD. Diabetic retinopathy. Diabetes Care. 1993;16:322–325. doi: 10.2337/diacare.16.1.322. [DOI] [PubMed] [Google Scholar]
  14. Kabayama S, Osada K, Tachibana H, Katakura Y, Shirahata S. Enhancing effects of food components on the production of interferon beta from animal cells suppressed by stress hormones. Cytotechnology. 1997;23:119–125. doi: 10.1023/A:1007971906061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Keen H, Clark C, Laakso M. Reducing the burden of diabetes: Managing cardiovascular disease. Diabetes Metab Res Rev. 1999;15:186–196. doi: 10.1002/(SICI)1520-7560(199905/06)15:3<186::AID-DMRR30>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
  16. Kubo M, Odani T, Nakamura S, Tokumaru S, Matsuda H. Pharmacological study on kefir – A fermented milk product in Caucasus. I. On antitumor activity (1) Yakugaku Zasshi. 1992;112:489–495. doi: 10.1248/yakushi1947.112.7_489. [DOI] [PubMed] [Google Scholar]
  17. Kusumoto K, Helmrich A, Mericko P, Chen L, Sato JD, Shirahata S, Tokumaru S and Barnes D (2002) The protective anti-oxidant effects of Kefir on SFME neural stem cells. In: Shirahata S, Teruya K and Katakura Y (eds) Animal Cell Technology: Basic and Applied Aspects, Vol. 12 (pp. 353–357) Kluwer Academic Publishers.
  18. Manson JE, Colditz GA, Stampfer MJ, Willett WC, Krolewski AS, Rosner B, Arky RA, Speizer FE, Hennekens CH. A prospective study of maturity-onset diabetes mellitus and risk of coronary heart disease and stroke in women. Arch Intern Med. 1991;151:1141–1147. doi: 10.1001/archinte.151.6.1141. [DOI] [PubMed] [Google Scholar]
  19. Müller HK, Kellerer M, Ermel B, Muhlhofer A, Obermaier-Kusser B, Vogt B, Haring HU. Prevention by protein kinase C inhibitors of glucose-induced insulin-receptor tyrosine kinase resistance in rat fat cells. Diabetes. 1991;40:1440–1448. doi: 10.2337/diab.40.11.1440. [DOI] [PubMed] [Google Scholar]
  20. Nagira T, Narisawa J, Kusumoto K, Teruya K, Katakura Y, Barnes D, Tokumaru S and Shirahata S (1999) Protection of human melanoma cells from UV damage by a fermented milk, Kefir. In: Kitagawa Y, Matsuda T and Iijima S (eds) Animal Cell Technology: Basic and Applied Aspects, Vol. 10 (pp. 369–373) Kluwer Academic Publishers.
  21. Okada T, Kawano Y, Sakakibara T, Hazeki O, Ui M. Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin. J Biol Chem. 1994;269:3568–3573. [PubMed] [Google Scholar]
  22. Osada K, Nagira K, Teruya K, Tachibana H, Shirahata S, Murakami H. Enhancement of interferon-beta production with sphingomyelin from fermented milk. Biotherapy. 1994;7:115–123. doi: 10.1007/BF01877735. [DOI] [PubMed] [Google Scholar]
  23. Paolisso G, D'Amore A, Balbi V, Volpe C, Galzerano D, Giugliano D, Sgambato S, Varricchio M, D'Onofrio F. Plasma vitamin C affects glucose homeostasis in healthy subjects and in non-insulin-dependent diabetics. Am J Physiol. 1994;266:E261–268. doi: 10.1152/ajpendo.1994.266.2.E261. [DOI] [PubMed] [Google Scholar]
  24. Ritz E. Nephropathy in type 2 diabetes. J Intern Med. 1999;245:111–126. doi: 10.1046/j.1365-2796.1999.00411.x. [DOI] [PubMed] [Google Scholar]
  25. Rudich A, Kozlovsky N, Potashnik R, Bashan N. Oxidant stress reduces insulin responsiveness in 3T3-L1 adipocytes. Am J Physiol. 1997;272:E935–940. doi: 10.1152/ajpendo.1997.272.5.E935. [DOI] [PubMed] [Google Scholar]
  26. Rudich A, Tirosh A, Potashnik R, Hemi R, Kanety H, Bashan N. Prolonged oxidative stress impairs insulin-induced GLUT4 translocation in 3T3-L1 adipocytes. Diabetes. 1998;47:1562–1569. doi: 10.2337/diabetes.47.10.1562. [DOI] [PubMed] [Google Scholar]
  27. Tanishita T, Shimizu Y, Minokoshi Y, Shimazu T. The beta3-adrenergic agonist BRL37344 increases glucose transport into L6 myocytes through a mechanism different from that of insulin. J Biochem. 1997;122:90–95. doi: 10.1093/oxfordjournals.jbchem.a021744. [DOI] [PubMed] [Google Scholar]
  28. Vinik AI, Park TS, Stansberry KB, Pittenger GL. Diabetic neuropathies. Diabetologia. 2000;43:957–973. doi: 10.1007/s001250051477. [DOI] [PubMed] [Google Scholar]
  29. Vlahos CJ, Matter WF, Hui KY, Brown RF. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002) J Biol Chem. 1994;269:5241–5248. [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES