Skip to main content
Cytotechnology logoLink to Cytotechnology
. 1998 Sep;27(1-3):175–185. doi: 10.1023/A:1008064804678

Drug resistance and DNA repair in leukaemia

Mark R Müller, Jürgen Thomale, Manfred F Rajewsky, Siegfried Seeber
PMCID: PMC3449576  PMID: 19002791

Abstract

Most cytotoxic agents exert their action via damage of DNA. Therefore, the repair of such lesions is of major importance for the sensitivity of malignant cells to chemotherapeutic agents. The underlying mechanisms of various DNA repair pathways have extensively been studied in yeast, bacteria and mammalian cells. Sensitive and drug resistant cancer cell lines have provided models for analysis of the contribution of DNA repair to chemosensitivity. However, the validity of results obtained by laboratory experiments with regard to the clinical situation is limited. In both acute and chronic leukaemias, the emergence of drug resistant cells is a major cause for treatment failure. Recently, assays have become available to measure cellular DNA repair capacity in clinical specimens at the single-cell level. Application of these assays to isolated lymphocytes from patients with chronic lymphatic leukaemia (CLL) revealed large interindividual differences in DNA repair rates. Accelerated O6-ethylguanine elimination from DNA and faster processing of repair-induced single-strand breaks were found in CLL lymphocytes from patients nonresponsive to chemotherapy with alkylating agents compared to untreated or treated sensitive patients. Moreover, modulators of DNA repair with different target mechanisms were identified which also influence the sensitivity of cancer cells to alkylating agents. In this article, we review the current knowledge about the contribution of DNA repair to drug resistance in human leukaemia.

Keywords: acute lymphatic leukaemia, acute myeloid leukaemia, alkylating agents, chronic lymphatic leukaemia, chronic myeloid leukaemia, DNA damage, DNA repair, drug resistance

Full Text

The Full Text of this article is available as a PDF (111.6 KB).

References

  1. Aebi S, Kurdi-Haidar B, Gordon R, Cenni B, Zheng H, Fink D, Christen RD, Boland R, Koi M, Fishel R, Howell SB. Loss of DNA mismatch repair in acquired resistance to cisplatin. Cancer Res. 1996;56:3087–3090. [PubMed] [Google Scholar]
  2. Andersson BS, Mroue M, Britten RA, Murray D. The role of DNA damage in the resistance of human chronic myleoid leukemia cells to cyclophosphamide analogues. Cancer Res. 1994;54:5394–5400. [PubMed] [Google Scholar]
  3. Barret JM, Calsou P, Salles B. Deficient nucleotide excision repair activity in protein extracts from normal human lymphocytes. Carcinogenesis. 1995;16:1611–1616. doi: 10.1093/carcin/16.7.1611. [DOI] [PubMed] [Google Scholar]
  4. Barret JM, Calsou P, Laurent G, Salles B. DNA repair activity in protein extracts of fresh human malignant lymphoid cells. Mol Pharmacol. 1996;49:766–771. [PubMed] [Google Scholar]
  5. Beck T, Grogan TM, illman CL, Cordon-Cardo C, Parham DM, Kuttesch JF, Andreef M, Bates SE, Berard CW, Boyett JM, Brophy NA, Broxterman HJ, Chan HS, Dalton WS, Dietel M, Fojo AT, Gascoyne RD, Head D, Houghton PJ, Srivastava DK, Lehnert M, Leith CP, Paietta E, Pavelic ZP, Weinstein R. Methods to detect P-glycoprotein-associated multidrug resistance in patients' tumors: Consensus recommendations. Cancer Res. 1996;56:3010–3020. [PubMed] [Google Scholar]
  6. Begleiter A, Goldenberg GJ, Anhalt CD, Lee K, Mowat MR, Israels LG, Johnston JB. Mechanisms of resistance to chlorambucil in chronic lymphocytic leukaemia. Leuk Res. 1991;15:1019–1027. doi: 10.1016/0145-2126(91)90107-5. [DOI] [PubMed] [Google Scholar]
  7. Beketic-Oreskovic L, Osmak Modulation of resistance to cisplatin by amphotericin B and aphidicolin in human larynx carcinoma cells. Cancer Chemother Pharmacol. 1995;35:327–333. doi: 10.1007/BF00689453. [DOI] [PubMed] [Google Scholar]
  8. Bentley P, Thomas A, Thomas J. Failure to induce resistance to cytotoxic drugs in normal lymphocytes. Leuk Res. 1996;20:645–648. doi: 10.1016/0145-2126(96)00024-0. [DOI] [PubMed] [Google Scholar]
  9. Boulton S, Pemberton LC, Porteous JK, Curtin NJ, Griffin RJ, Golding BT, Durkacz BW. Potentiation of temozolomideinduced cytotoxicity: A comparative study of the biological effects of poly(ADP-ribose) polymerase inhibitors. Br J Cancer. 1995;72:849–856. doi: 10.1038/bjc.1995.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bramson J, Prévost J, Malapetsa A, Noe AJ, Poirier GG, DesNoyers S, Alaoui-Jamali M, Panasci L. Poly(ADP-ribose) polymerase can bind melphalan damaged DNA. Cancer Res. 1993;53:5370–5373. [PubMed] [Google Scholar]
  11. Bramson J, McQuillan A, Panasci LC. DNA repair enzyme expression in chronic lymphocytic leukemia vis-à-vis nitrogen mustard drug resistance. Cancer Lett. 1995;90:139–148. doi: 10.1016/0304-3835(95)03696-T. [DOI] [PubMed] [Google Scholar]
  12. Buschfort C, Müller MR, Seeber S, Rajewsky MF, Thomale J. DNA excision repair profiles of normal and leukemic human lymphocytes: Functional analysis at the single-cell level. Cancer Res. 1997;57:651–658. [PubMed] [Google Scholar]
  13. Cappelli E, Redaelli A, Rivano ME, Abbondandolo A, Frosina G. Repair of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosoureainduced damage by mammalian cell extracts. Carcinogenesis. 1995;16:2267–2270. doi: 10.1093/carcin/16.9.2267. [DOI] [PubMed] [Google Scholar]
  14. Chaney SG, Sancar A. DNA repair: Enzymatic mechanisms and relevance to drug response. J Natl Cancer Inst. 1996;88:1346–1360. doi: 10.1093/jnci/88.19.1346. [DOI] [PubMed] [Google Scholar]
  15. Cleaver JE, Charles WC, McDowell ML, Sadinsky WJ, Mitchell DL. Overexpression of the XPA repair gene increases resistance to ultraviolet radiation in human cells by selective repair of DNA damage. Cancer Res. 1995;55:6152–6160. [PubMed] [Google Scholar]
  16. Cole SPC, Bhardwaj G, Gerlach JH, Mackie JE, Grant CE, Almquist KC, Stewart AJ, Kurz EU, Duncan AMV, Deeley RG. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science. 1992;258:1650–1654. doi: 10.1126/science.1360704. [DOI] [PubMed] [Google Scholar]
  17. Cunningham RP. DNA glycosylases. Mutat Res. 1997;383:189–196. doi: 10.1016/s0921-8777(97)00008-6. [DOI] [PubMed] [Google Scholar]
  18. Dabholkar M, Bostick-Bruton F, Weber V, Egwuagu C, Bohr VA, Reed E. Expression of excision repair genes in nonmalignant bone marrow from cancer patients. Mutat Res. 1993;293:151–160. doi: 10.1016/0921-8777(93)90066-p. [DOI] [PubMed] [Google Scholar]
  19. Eder JP, Jr, Chan VTW, Ng SW, Rizwi NA, Zacharoulis S, Teicher BA, Schnipper LE. DNA topoisomerase II alpha expression is associated with alkylating agent. Cancer Res. 1995;55:6109–6116. [PubMed] [Google Scholar]
  20. Engelbergs J, Thomale J, Galhoff A, Rajewsky MF. Fast repair of O6-ethyl, but not O6-methylguanine, in transcribed genes prevents mutation of H-rasin rat mammary tumorigenesis induced by ethyl-in place of methylnitrosourea. Proc Natl Acad Sci USA. 1998;95:1635–1640. doi: 10.1073/pnas.95.4.1635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Engelward BP, Dreslin A, Christensen J, Huszar D, Kurahara C, Samson L. Repair-deficient 3-methyladenine DNA glycosylase homozygous mutant mouse cells have increased sensitivity to alkylation-induced chromosome damage and cell killing. EMBO J. 1996;15:945–952. [PMC free article] [PubMed] [Google Scholar]
  22. Filipits M, Suchomel RW, Zöchbauer S, Brunner R, Lechner K, Pirker R. Multidrug resistance-associated protein in acute myeloid leukemia: No impact on treatment outcome. Clin Cancer Res. 1997;3:1419–1425. [PubMed] [Google Scholar]
  23. Geleziunas R, McQuillan A, Malapetsa A, Hutchinson M, Kopriva D. Increased DNA synthesis and repair-enzyme expression in lymphocytes from patients with chronic lymphocytic leukaemia resistant to nitrogen mustards. J Natl Cancer Inst. 1991;83:557–564. doi: 10.1093/jnci/83.8.557. [DOI] [PubMed] [Google Scholar]
  24. Gerson SL, Trey JE, Miller K, Berger NA. Comparison of O6-alkylguanine-DNA alkyltransferase activity based on cellular DNA content in human, rat and mouse tissues. Carcinogenesis. 1986;7:745–749. doi: 10.1093/carcin/7.5.745. [DOI] [PubMed] [Google Scholar]
  25. Gerson SL, Miller K, Berger NA. O6-alkylguanine-DNA alkyltransferase activity in human myeloid cells. J Clin Invest. 1985;76:2106–2114. doi: 10.1172/JCI112215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Goth R, Rajewsky MF. Persistence of O6-ethylguanine in rat-brain DNA: Correlation with nervous system-specific carcinogenesis by ethylnitrosourea. Proc Natl Acad Sci USA. 1974;71:639–643. doi: 10.1073/pnas.71.3.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Griffin RJ, Curtin NJ, Newell DR, Golding BT, Durkacz BW, Calvert AH. The role of inhibitors of poly(ADPribose) polymerase as resistance-modifying agents in cancer therapy. Biochimie. 1995;77:408–422. doi: 10.1016/0300-9084(96)88154-5. [DOI] [PubMed] [Google Scholar]
  28. Ibeanu G, Hartenstein B, Dunn WC, Chang LY, Hofmann E, Coquerelle T, Mitra S, Kaina B. Overexpression of human DNA repair protein N-methylpurine-DNA glycosylase results in the increased removal of N-methylpurines in DNA without a concomitant increase in resistance to alkylating agents in Chinese hamster ovary cells. Carcinogenesis. 1992;13:1989–1995. doi: 10.1093/carcin/13.11.1989. [DOI] [PubMed] [Google Scholar]
  29. Johnson SW, Swiggard PA, Handel LM, Brennan JM, Godwin AK, Ozols RF, Hamilton TC. Relationship between platinum-DNA adduct formation and removal and cisplatin cytotoxicity in cisplatin-sensitive and-resistant human ovarian cancer cells. Cancer Res. 1994;54:5911–5916. [PubMed] [Google Scholar]
  30. Joncourt F, Oberli A, Redmond SMS, Fey MF, Tobler A, Margison GP, Gratwohl A, Buser K, Cerny T. Cytostatic drug resistance: Parallel assessment of glutathione-based detoxifying enzymes, O6-alkylguanine-DNA alkyltransferase and Pglycoprotein in adult patients with leukaemia. Br J Haematol. 1993;85:103–111. doi: 10.1111/j.1365-2141.1993.tb08652.x. [DOI] [PubMed] [Google Scholar]
  31. Juliano R, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta. 1976;455:152–162. doi: 10.1016/0005-2736(76)90160-7. [DOI] [PubMed] [Google Scholar]
  32. Karran P, Hampson R. Genomic instability and tolerance to alkylating agents. Cancer Surv. 1996;28:69–85. [PubMed] [Google Scholar]
  33. Kolodner RD. Mismatch repair: Mechanisms and relationship to cancer susceptibility. TIBS. 1995;20:397–401. doi: 10.1016/s0968-0004(00)89087-8. [DOI] [PubMed] [Google Scholar]
  34. Li L, Liu XM, Glassman AB, Keating MJ, Stros M, Plunkett W, Yang LY. Fludarabine triphosphate inhibits nucleotide excision repair of cisplatin-induced DNA adducts in vitro. Cancer Res. 1997;57:1487–1494. [PubMed] [Google Scholar]
  35. Lindahl T, Karran P, Wood RD. DNA excision repair pathways. Curr Opin Genet Dev. 1997;7:158–169. doi: 10.1016/S0959-437X(97)80124-4. [DOI] [PubMed] [Google Scholar]
  36. List AF. Non-P-glycoprotein drug export mechanisms of multidrug resistance. Semin Hematol. 1997;34(Suppl51):20–24. [PubMed] [Google Scholar]
  37. Liu L, Markowitz S, Gerson SL. Mismatch repair mutations override alkyltransferase in conferring resistance to temozolomide but not to 1,3-bis(2-chloroethyl)nitrosourea. Cancer Res. 1996;56:5375–5379. [PubMed] [Google Scholar]
  38. Modrich P. Mismatch repair, genetic stability, and cancer. Science. 1994;266:1959–1960. doi: 10.1126/science.7801122. [DOI] [PubMed] [Google Scholar]
  39. Müller MR, Thomale J, Lensing C, Rajewsky MF, Seeber S. Chemosensitisation to alkylating agents by pentoxifylline, O6-benzylguanine and ethacrynic acid in haematological malignancies. Anticancer Res. 1993;13:2155–2160. [PubMed] [Google Scholar]
  40. Müller MR, Seiler F, Thomale J, Buschfort C, Rajewsky MF, Seeber S. Capacity of individual chronic lymphatic leukemia lymphocytes and leukemic blast cells for repair of O6-ethylguanine in DNA: Relation to chemosensitivity in vitroand treatment outcome. Cancer Res. 1994;54:4524–4531. [PubMed] [Google Scholar]
  41. Müller MR, Buschfort C, Thomale J, Lensing C, Rajewsky MF, Seeber S. DNA repair and cellular resistance to alkylating agents in chronic lymphocytic leukemia. Clin Cancer Res. 1997;3:2055–2061. [PubMed] [Google Scholar]
  42. Olive PL, Wlodek D, Banáth JP. DNA double-strand breaks measured in individual cells subjected to gel electrophoresis. Cancer Res. 1991;51:4671–4676. [PubMed] [Google Scholar]
  43. Panasci L, Henderson D, Torres-Garcia SJ, Skalski V, Caplan S, Hutchinson M. Transport, metabolism, and DNA interaction of melphalan in lymphocytes from patients with chronic lymphocytic leukemia. Cancer Res. 1988;48:1972–1976. [PubMed] [Google Scholar]
  44. Pegg AE. Mammalian O6-alkylguanine-DNA alkyltransferase: Regulation and importance in response to alkylating agents. Cancer Res. 1990;50:6119–6129. [PubMed] [Google Scholar]
  45. Petersen LN, Mamenta EL, Stevnsner T, Chaney SG, Bohr VA. Increased gene specific repair of cisplatin induced interstrand crosslinks in cisplatin resistant cell lines, and studies on carrier ligand specificity. Carcinogenesis. 1996;17:2597–2602. doi: 10.1093/carcin/17.12.2597. [DOI] [PubMed] [Google Scholar]
  46. Pieper RO, Futscher BW, Dong Q, Erickson LC. Effects of streptozotocin/bis-chlorethylnitrosourea combination therapy on O6-methylguanine-DNA methyltransferase activity and mRNA levels in HT-29 cells in vitro. Cancer Res. 1991;51:1581–1585. [PubMed] [Google Scholar]
  47. Pirker R, Wallner J, Geissler K, Linkesch W, Haas OA, Bettelheim P, Hopfner M, Scherrer R, Valent P, Havelec L, Ludwig H, Lechner K. MDR1 gene expression and treatment outcome in acute myeloid leukemia. J Natl Cancer Inst. 1991;83:708–712. doi: 10.1093/jnci/83.10.708. [DOI] [PubMed] [Google Scholar]
  48. Preuss I, Thust R, Kaina B. Protective effect of O6-methylguanine-DNA methyltransferase (MGMT) on the cytotoxic and recombinogenic activity of different antineoplastic drugs. Int J Cancer. 1996;65:506–512. doi: 10.1002/(SICI)1097-0215(19960208)65:4<506::AID-IJC19>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
  49. Purnell MR, Whish WJD. Novel inhibitors of poly(ADPribose) synthetase. Biochem J. 1980;185:775–777. doi: 10.1042/bj1850775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Sancar A. Mechanisms of DNA excision repair. Science. 1994;266:1954–1956. doi: 10.1126/science.7801120. [DOI] [PubMed] [Google Scholar]
  51. Sancar A. DNA repair in humans. Annu Rev Genet. 1995;29:69–105. doi: 10.1146/annurev.ge.29.120195.000441. [DOI] [PubMed] [Google Scholar]
  52. Sargent JM, Elgie AW, Williamson CJ, Taylor CG. Aphidicolin markedly increases the platinum sensitivity of cells from primary ovarian tumours. Br J Cancer. 1996;74:1730–1733. doi: 10.1038/bjc.1996.622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Seiler F, Kirstein U, Eberle G, Hochleitner K, Rajewsky MF. Quantification of specific DNA O-alkylation products in individual cells by monoclonal antibodies and digital imaging of intensified nuclear fluorescence. Carcinogenesis. 1993;9:1907–1913. doi: 10.1093/carcin/14.9.1907. [DOI] [PubMed] [Google Scholar]
  54. Silber JR, Blank A, Bobola MS, Mueller BA, Kolstoe DD, Ojemann GA, Berger MS. Lack of the DNA repair protein O6-methylguanine-DNA methyltransferase in histologically normal brain adjacent to primary human brain tumors. Proc Natl Acad Sci USA. 1996;93:6941–6946. doi: 10.1073/pnas.93.14.6941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Tentori L, Orlando L, Lacal PM, Benincasa E, Faraoni I, Bonmassar E, D'Atri S. Inhibition of O6-alkylguanine-DNA alkyltransferase or poly(ADP-ribose) polymerase increases susceptibility of leukemic cells to apoptosis induced by temozolomide. Mol Pharmacol. 1997;52:249–258. doi: 10.1124/mol.52.2.249. [DOI] [PubMed] [Google Scholar]
  56. Terheggen PMAB, Emondt JY, Floot BGJ, Dijkman R, Schrier PI, den Engelse L, Begg AC. Correlation between cell killing by cis-diamminedichloroplatinum(II) in six mammalian cell lines and binding of a cis-diamminedichloroplatinum(II)-DNA antiserum. Cancer Res. 1990;50:3556–3561. [PubMed] [Google Scholar]
  57. Thomale J, Seiler F., Müller MR, Seeber S, Rajewsky MF. Repair of O6-alkylguanines in the nuclear DNA of human lymphocytes and leukaemic cells: Analysis at the single-cell level. Br J Cancer. 1994;69:698–705. doi: 10.1038/bjc.1994.132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Torres-Garcia SJ, Cousineau L, Caplan S, Panasci L. Correlation of resistance to nitrogen mustards in chronic lymphocytic leukaemia with enhanced removal of melphalan-induced cross-links. Biochem Pharmacol. 1989;38:3122–3123. doi: 10.1016/0006-2952(89)90025-7. [DOI] [PubMed] [Google Scholar]
  59. Valkov NI, Sullivan DM. Drug resistance to DNA topoisomerase I and II inhibitors in human leukemia, lymphoma and multiple myeloma. Semin Hematol. 1997;34(Suppl.51):48–62. [PubMed] [Google Scholar]
  60. Vendrik CPJ, Fichtinger-Schepman AMJ, van Dijk-Knijnenburg, de Jong WH, van der Minnen ACE, de Groot G, Berends GF, Steerenberg PA. Response of sensitive and resistant IgM immunocytomas to cis-diamminedichloroplatinum(II) does not correlate with the platination level or with the formation or removal of DNA adducts. Cancer Chemother Pharmacol. 1997;39:479–485. doi: 10.1007/s002800050602. [DOI] [PubMed] [Google Scholar]
  61. Waldstein E, Cao E, Bender M, Setlow RB. Abilities of extracts of human lymphocytes to remove O6-methylguanine from DNA. Mutat Res. 1982;95:406–416. doi: 10.1016/0027-5107(82)90274-3. [DOI] [PubMed] [Google Scholar]
  62. Walker IG, Reid BD. Caffeine potentiation of the lethal action of alkylating agents on L-cells. Mutat Res. 1971;12:101–104. doi: 10.1016/0027-5107(71)90079-0. [DOI] [PubMed] [Google Scholar]
  63. Wang G, Weiss C, Sheng P, Bresnick E. Retrovirus-mediated transfer of the human O6-methylguanine-DNA methyltransferase gene into a murine hematopoietic stem cell line and resistance to the toxic effects of certain alkylating agents. Biochem Pharmacol. 1996;51:1221–1228. doi: 10.1016/S0006-2952(95)02255-4. [DOI] [PubMed] [Google Scholar]
  64. Yang LY, Li L, Keating MJ, Plunkett W. Arabinosyl-2-fluoroadenine augments cisplatin cytotoxicity and inhibits cisplatin-DNA cross-link repair. Mol Pharmacol. 1995;47:1072–1079. [PubMed] [Google Scholar]
  65. Yen L, Woo A, Christopoulopoulos G, Batist G, Panasci L, Roy R, Mitra S, Alaoui-Jamali MA. Enhanced host cell reactivation capacity and expression of DNA repair genes in human breast cancer cells resistant to bifunctional alkylating agents. Mutat Res. 1995;337:179–189. doi: 10.1016/0921-8777(95)00022-c. [DOI] [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES