Abstract
To employ physiological mechanisms to control cell growth primary cells were reversibly immortalized using the SV40 TAg. The cells showed a fibroblast-like morphology. When the expression of the TAg was turned off, the cells arrested in the G0/G1 cell cycle phase. The cell culture could be kept for over 1 week in the proliferation-controlled state while the growth arrest remained fully reversible. The regulation was highly efficacious in that the arrested cell population did not spontaneously resume growth, suggesting that in the absence of the immortalizing gene expression endogenous growth-control mechanisms can keep these cells in a viable state for a prolonged time. Recombinant protein expression increased in growth-controlled cells when compared to conventionally cultured cells. Analysis of a secreted pharmaceutical protein revealed high product integrity without any signs of degradation. Therefore, it is feasible to apply genetic regulation of cell immortalization to obtain proliferation-controlled cell lines and this technique may be of interest to generate novel biotechnological producer cells.
Keywords: Conditional immortalization, EPO, Proliferation, Recombinant protein expression, Regulated cell growth
Full Text
The Full Text of this article is available as a PDF (289.6 KB).
Glossary
- DMEM
Dulbecco’s modified Eagle’s medium
- Dox
doxycycline
- eGFP
enhanced green fluorescent protein
- EPO
recombinant human erythropoietin
- FCS
fetal calf serum
- IRES
internal ribosomal binding site
- LTR
long terminal repeat
- MEF
murine embryonic fibroblast cell
- neo
Neomycin phosphotransferase
- TAg
SV40 virus large T-antigen
- w.t.
wild type
References
- Ali S.H., DeCaprio J.A. Cellular transformation by SV40 large T antigen: interaction with host proteins. Semin. Cancer Biol. 2001;11:15–23. doi: 10.1006/scbi.2000.0342. [DOI] [PubMed] [Google Scholar]
- Andersen D.C., Krummen L. Recombinant protein expression for therapeutic applications. Curr. Opin. Biotechnol. 2002;13:117–123. doi: 10.1016/S0958-1669(02)00300-2. [DOI] [PubMed] [Google Scholar]
- Baron U., Freundlieb S., Gossen M., Bujard H. Co-regulation of two gene activities by tetracycline via a bidirectional promoter. Nucleic Acids Res. 1995;23:3605–3606. doi: 10.1093/nar/23.17.3605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bi J.X., Shuttleworth J., Al-Rubeai M. Uncoupling of cell growth and proliferation results in enhancement of productivity in p21CIP1-arrested CHO cells. Biotechnol. Bioeng. 2004;85:741–749. doi: 10.1002/bit.20025. [DOI] [PubMed] [Google Scholar]
- Chilov D., Fux C., Joch H., Fussenegger M. Identification of a novel proliferation-inducing determinant using lentiviral expression cloning. Nucleic Acids Res. 2003;31:1–7. doi: 10.1093/nar/gng115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colbère-Garapin F., Horodniceanu F., Khourilsky P., Garapin A.C. A new dominant hybrid selection marker for higher eucaryotic cells. J. Mol. Biol. 1981;150:1–13. doi: 10.1016/0022-2836(81)90321-1. [DOI] [PubMed] [Google Scholar]
- Davies J., Jiang L., Pan L.Z., LaBarre M.J., Anderson D., Reff M. Expression of GnTIII in a recombinant anti-CD20 CHO production cell line: Expression of antibodies with altered glycoforms leads to an increase in ADCC through higher affinity for FC gamma RIII. Biotechnol. Bioeng. 2001;74:288–294. doi: 10.1002/bit.1119. [DOI] [PubMed] [Google Scholar]
- Fallaux F.J., Bout A., Velde I., Wollenberg D.J., Hehir K.M., Keegan J., Auger C., Cramer S.J., Ormondt H., Eb A.J., Valerio D., Hoeben R.C. New helper cells and matched early region 1-deleted adenovirus vectors prevent generation of replication-competent adenoviruses. Hum. Gene Ther. 1998;9:1909–1917. doi: 10.1089/hum.1998.9.13-1909. [DOI] [PubMed] [Google Scholar]
- Fibi M.R., Hermentin P., Pauly J.U., Lauffer L., Zettlmeissl G. N- and O-glycosylation muteins of recombinant human erythropoietin secreted from BHK-21 cells. Blood. 1995;85:1229–1236. [PubMed] [Google Scholar]
- Fogolin M.B., Wagner R., Etcheverrigaray M., Kratje R. Impact of temperature reduction and expression of yeast pyruvate carboxylase on hGM-CSF-producing CHO cells. J. Biotechnol. 2004;109:179–191. doi: 10.1016/j.jbiotec.2003.10.035. [DOI] [PubMed] [Google Scholar]
- Fussenegger M., Bailey J.E., Hauser H., Mueller P.P. Genetic optimization of recombinant glycoprotein production by mammalian cells. Trends Biotechnol. 1999;17:35–42. doi: 10.1016/S0167-7799(98)01248-7. [DOI] [PubMed] [Google Scholar]
- Fussenegger M., Schlatter S., Datwyler D., Mazur X., Bailey J.E. Controlled proliferation by multigene metabolic engineering enhances the productivity of Chinese hamster ovary cells. Nat. Biotechnol. 1998;16:468–472. doi: 10.1038/nbt0598-468. [DOI] [PubMed] [Google Scholar]
- Gawlitzek M., Conradt H.S., Wagner R. Effect of different cell culture conditions on the polypeptide integrity and N-glycosylation of a recombinant model glycoprotein. Biotechnol. Bioeng. 1995;46:536–544. doi: 10.1002/bit.260460606. [DOI] [PubMed] [Google Scholar]
- Gawlitzek M., Valley U., Wagner R. Ammonium ion/glucosamine dependent increase of oligosaccharide complexity in recombinant glycoproteins secreted from cultivated BHK-21 cells. Biotechnol. Bioeng. 1998;57:518–528. doi: 10.1002/(SICI)1097-0290(19980305)57:5<518::AID-BIT3>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
- Geserick C., Bonarius H., Kongerslev L., Hauser H., Mueller P.P. Enhanced productivity during controlled proliferation of BHK cells in continuously perfused bioreactors. Biotechnol. Bioeng. 2000;69:266–274. doi: 10.1002/1097-0290(20000805)69:3<266::AID-BIT4>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
- Grabenhorst E., Hoffmann A., Nimtz M., Zettlmeissl G., Conradt H.S. Construction of stable BHK-21 cells coexpressing human secretory glycoproteins and human Gal(beta 1–4)GlcNAc-R alpha 2,6-sialyltransferase alpha 2,6-linked NeuAc is preferentially attached to the Gal(beta 1–4)GlcNAc(beta 1–2)Man(alpha 1–3)-branch of diantennary oligosaccharides from secreted recombinant beta-trace protein. Eur. J. Biochem. 1995;232:718–725. doi: 10.1111/j.1432-1033.1995.718zz.x. [DOI] [PubMed] [Google Scholar]
- Grabenhorst E., Schlenke P., Pohl S., Nimtz M., Conradt H.S. Genetic engineering of recombinant glycoproteins and the glycosylation pathway in mammalian host cells. Glycoconjugate J. 1999;16:81–97. doi: 10.1023/A:1026466408042. [DOI] [PubMed] [Google Scholar]
- Graham F.L., Prevec L. Manipulation of adenovirus vector. In: Murray E.J., editor. Gene Transfer and Expression Protocols. Clifton, NJ: Humana Press; 1991. pp. 109s–129s. [Google Scholar]
- Ibarra N., Watanabe S., Bi J.X., Shuttleworth J., Al-Rubeai M. Modulation of cell cycle for enhancement of antibody productivity in perfusion culture of NS0 cells. Biotechnol. Prog. 2003;19:224–228. doi: 10.1021/bp025589f. [DOI] [PubMed] [Google Scholar]
- Irani N., Beccaria A.J., Wagner R. Expression of recombinant cytoplasmic yeast pyruvate carboxylase for the improvement of the production of human erythropoietin by recombinant BHK-21 cells. J. Biotechnol. 2002;93:269–282. doi: 10.1016/S0168-1656(01)00409-6. [DOI] [PubMed] [Google Scholar]
- Irani N., Wirth M., Heuvel J., Wagner R. Improvement of the primary metabolism of cell cultures by introducing a new cytoplasmic pyruvate carboxylase reaction. Biotechnol. Bioeng. 1999;66:238–246. doi: 10.1002/(SICI)1097-0290(1999)66:4<238::AID-BIT5>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
- Jat P.S., Sharp P.A. Cell lines established by a temperature-sensitive simian virus 40 large-T-antigen gene are growth restricted at the nonpermissive temperature. Mol. Cell. Biol. 1989;9:1672–1681. doi: 10.1128/mcb.9.4.1672. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaufmann H., Mazur X., Marone R., Bailey J.E., Fussenegger M. Comparative analysis of two controlled proliferation strategies regarding product quality influence on tetracycline-regulated gene expression and productivity. Biotechnol. Bioeng. 2001;72:592–602. doi: 10.1002/1097-0290(20010320)72:6<592::AID-BIT1024>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
- Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lidington E.A., Rao R.M., Marelli-Berg F.M., Jat P.S., Haskard D.O., Mason J.C. Conditional immortalization of growth factor-responsive cardiac endothelial cells from H- 2K(b)-tsA58 mice. Am. J. Physiol. Cell Physiol. 2002;282:C67–C74. doi: 10.1152/ajpcell.2002.282.1.C67. [DOI] [PubMed] [Google Scholar]
- Lloyd D.R., Holmes P., Jackson L.P., Emery A.N., Al-Rubeai M. Relationship between cell sizecell cycle and specific recombinant protein productivity. Cytotechnology. 2000;34:59–70. doi: 10.1023/A:1008103730027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- May T., Hauser H., Wirth D. Transcriptional control of SV40 T-antigen expression allows a complete reversion of immortalization. Nucleic Acids Res. 2004;32:5529–5538. doi: 10.1093/nar/gkh887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mazur X., Eppenberger H.M., Bailey J.E., Fussenegger M. A novel autoregulated proliferation-controlled production process using recombinant CHO cells. Biotechnol. Bioeng. 1999;65:144–150. doi: 10.1002/(SICI)1097-0290(19991020)65:2<144::AID-BIT3>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
- Meents H., Enenkel B., Eppenberger H.M., Werner R.G., Fussenegger M. Impact of coexpression and coamplification of sICAM and antiapoptosis determinants bcl-2/bcl-x(L) on productivity cell survival and mitochondria number in CHO-DG44 grown in suspension and serum-free media. Biotechnol. Bioeng. 2002a;80:706–716. doi: 10.1002/bit.10449. [DOI] [PubMed] [Google Scholar]
- Meents H., Enenkel B., Werner R.G., Fussenegger M. p27Kip1-mediated controlled proliferation technology increases constitutive sICAM production in CHO-DUKX adapted for growth in suspension and serum-free media. Biotechnol. Bioeng. 2002b;79:619–627. doi: 10.1002/bit.10322. [DOI] [PubMed] [Google Scholar]
- Mittereder N., March K.L., Trapnell B.C. Evaluation of the concentration and bioactivity of adenovirus vectors for gene therapy. J. Virol. 1996;70:7498–7509. doi: 10.1128/jvi.70.11.7498-7509.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Monaco L., Marc A., Eon-Duval A., Acerbis G., Distefano G., Lamotte D., Engasser J.M., Soria M., Jenkins N. Genetic engineering of 2,6-sialyltransferase in recombinant CHO cells and its effects on the sialylation of recombinant interferon-gamma. Cytotechnology. 1996;22:197–203. doi: 10.1007/BF00353939. [DOI] [PubMed] [Google Scholar]
- Nimtz M., Martin W., Wray V., Klöppel K.D., Augustin J., Conradt H.S. Structures of sialylated oligosaccharides of human erythropoietin expressed in recombinant BHK-21 cells. Eur. J. Biochem. 1993;213:39–56. doi: 10.1111/j.1432-1033.1993.tb17732.x. [DOI] [PubMed] [Google Scholar]
- Obinata M. Possible applications of conditionally immortalized tissue cell lines with differentiation functions. Biochem. Biophys. Res. Commun. 2001;286:667–672. doi: 10.1006/bbrc.2001.5247. [DOI] [PubMed] [Google Scholar]
- O’Hare M.J., Bond J., Clarke C., Takeuchi Y., Atherton A.J., Berry C., Moody J., Silver A.R., Davies D.C., Alsop A.E., Neville A.M., Jat P.S. Conditional immortalization of freshly isolated human mammary fibroblasts and endothelial cells. Proc. Natl. Acad. Sci. USA. 2001;98:646–651. doi: 10.1073/pnas.98.2.646. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rutkowski D.T., Kaufman R.J. A trip to the ER: coping with stress. Trends Cell Biol. 2004;14:20–28. doi: 10.1016/j.tcb.2003.11.001. [DOI] [PubMed] [Google Scholar]
- Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: A Laboratory Manual. Cold Spring HarborNY: Cold Spring Harbor Laboratory; 1989. [Google Scholar]
- Schlatter S., Bailey J.E., Fussenegger M. Novel surface tagging technology for selection of complex proliferation-controlled mammalian cell phenotypes. Biotechnol. Bioeng. 2001;75:597–606. doi: 10.1002/bit.1189. [DOI] [PubMed] [Google Scholar]
- Schlenke P., Grabenhorst E., Nimtz M., Conradt H.S. Construction and characterization of stably transfected BHK-21 cells with human-type sialylation characteristics. Cytotechnology. 1999;30:17–25. doi: 10.1023/A:1008049603947. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schroeder K., Koschmieder S., Ottmann O.G., Hoelzer D., Hauser H., Mueller P.P. Coordination of cell growth in cocultures by a genetic proliferation control system. Biotechnol. Bioeng. 2002;78:346–352. doi: 10.1002/bit.10196. [DOI] [PubMed] [Google Scholar]
- Sekiguchi T., Hunter T. Induction of growth arrest and cell death by overexpression of the cyclin-Cdk inhibitor p21 in hamster BHK21 cells. Oncogene. 1998;16:369–380. doi: 10.1038/sj.onc.1201539. [DOI] [PubMed] [Google Scholar]
- Takeuchi M., Inoue N., Strickland T.W., Kubota M., Wada M., Shimizu R., Hoshi S., Kozutsumi H., Takasaki S., Kobota A. Relationship between sugar chain structure and biological activity of recombinant human erythropoietin produced in Chinese hamster ovary cells. Proc. Natl. Acad. Sci. USA. 1989;86:7819–7822. doi: 10.1073/pnas.86.20.7819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Umaña P., Jean-Mairet J., Moudry R., Amstutz H., Bailey J.E. Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat. Biotechnol. 1999;17:176–180. doi: 10.1038/6179. [DOI] [PubMed] [Google Scholar]
- Urlinger S., Baron U., Thellmann M., Hasan M.T., Bujard H., Hillen W. Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range sensitivity. Proc. Natl. Acad. Sci. USA. 2000;97:7963–7968. doi: 10.1073/pnas.130192197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verhoeyen E., Hauser H., Wirth D. Evaluation of retroviral vector design in defined chromosomal loci by Flp-mediated cassette replacement. Hum. Gene Ther. 2001;12:933–944. doi: 10.1089/104303401750195890. [DOI] [PubMed] [Google Scholar]
- Watanabe S., Shuttleworth J., Al-Rubeai M. Regulation of cell cycle and productivity in NS0 cells by the over-expression of p21CIP1. Biotechnol. Bioeng. 2002;77:1–7. doi: 10.1002/bit.10112. [DOI] [PubMed] [Google Scholar]
- Westerman K.A. and Leboulch P. 1996. Reversible immortalization of mammalian cells mediated by retroviral transfer and site-specific recombination. Proc. Natl. Acad. Sci. USA. 8971–8976. [DOI] [PMC free article] [PubMed]
- Wiethe C., Dittmar K., Doan T., Lindenmaier W., Tindle R. Provision of 4–1BB ligand enhances effector and memory CTL responses generated by immunization with dendritic cells expressing a human tumor-associated antigen. J. Immunol. 2003;170:2912–2922. doi: 10.4049/jimmunol.170.6.2912. [DOI] [PubMed] [Google Scholar]
- Yamaguchi K., Akai K., Kawanishi G., Ueda M., Masuda S., Sasaki R. Effects of site-directed removal of N-glycosylation sites in human erythropoietin on its production and biological properties. J. Biol. Chem. 1991;30:20434–20439. [PubMed] [Google Scholar]
