Skip to main content
Cytotechnology logoLink to Cytotechnology
. 1997 Jan;23(1-3):119–125. doi: 10.1023/A:1007971906061

Enhancing effects of food components on the production of interferon β from animal cells suppressed by stress hormones

Shigeru Kabayama 1, Kazuhiro Osada 1, Hirofumi Tachibana 1, Yoshinori Katakura 1, Sanetaka Shirahata 1
PMCID: PMC3449869  PMID: 22358527

Abstract

In today's 'modern' society, no one can escape from the stresses of daily life. Stress stimulates the secretion of stress hormones (e.g. cortisol or noradrenaline) which generally suppress the immune response system, thus rendering the body vulnerable to infectious diseases and cancer. Therefore finding anti-stress food components, which diminish and/or inhibit the stress related suppression of the immune response system would be helpful in maintaining and promoting the health of the human population. Here we established a screening system for anti-stress substances using the cultured human cell line MG-63. The production of interferon-β (IFN-β) by MG-63 cells super-induced by Poly (I): Poly (C) was shown to decrease in a dose dependent manner upon the addition of 0.01–10 μg/ml of cortisol or noradrenaline (NA). 1,2–Diacylglycerol (DG) was demonstrated to abrogate this suppression. Lipid from the fermented milk, kefir, also inhibited the influence of cortisol. Kefiran, a polysaccharide secreted from L. kafiranofasiens GKL-28 diminished the cortisol or NA influenced IFN-β production. But phosphatidylcholine had no significant effect in this system. These results suggest that DG, lipids from kefir and kefiran may be equated as anti-stress food component.

Abbreviations DG – diacylglycerol; IFN-β – interferon-β; NA – noradrenaline; PC – phosphatidylcholine; Poly (I):Poly (C) – polyinosinic polycytidylic acid.

Keywords: diacylglycerol, fermented milk, food component, interferon-β, stress hormone

Full Text

The Full Text of this article is available as a PDF (128.8 KB).

References

  1. Auphan N, Didonato JA, Rosette C, Helmberg A, Karin M. Immunosuppression by glucocorticoids: inhibition of NFκB activity through induction of IκB synthesis. Science. 1995;270:286–290. doi: 10.1126/science.270.5234.286. [DOI] [PubMed] [Google Scholar]
  2. Ben-Eliyahu S, Yirmiya R, Liebeskind JC, Taylor AN, Gale RP. Stress increases metastatic spread of a mammary tumor in rats: evidence for mediation by the immune system. Brain Behav Immun. 1991;5:193–205. doi: 10.1016/0889-1591(91)90016-4. [DOI] [PubMed] [Google Scholar]
  3. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  4. Cohen S, Tyrrell DAJ, Smith AP. Psychological stress and susceptibility of the common cold. New Eng J Med. 1991;325:606–612. doi: 10.1056/NEJM199108293250903. [DOI] [PubMed] [Google Scholar]
  5. Dobbs CM, Vasquez M, Glaser R, Sheridan JF. Mechanisms of stress induced modulation of viral pathogenesis and immunity. J Neuroimmunol. 1993;48:151–160. doi: 10.1016/0165-5728(93)90187-4. [DOI] [PubMed] [Google Scholar]
  6. Garoufalis E, Kwan I, Lin R, Mustafa A, Pepin N, Roulston A, Lacoste J, Hiscott J. Viral induction of human beta interferon promoter: modulation of transcription by NF-κB/rel proteins and interferon regulatory factors. J Virol. 1994;68:4707–4715. doi: 10.1128/jvi.68.8.4707-4715.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gessani S, McCandless S, Baglioni C. The glucocorticoid dexamethasone inhibits synthesis of interferon by decreasing the level of its mRNA. J Biol Chem. 1988;263:7454–7457. [PubMed] [Google Scholar]
  8. Hermann G, Beck FM, Sheridan JF. Stress-induced glucocorticoid response modulates mononuclear cell trafficking during an experimental influenza viral infection. J Neuroimmunol. 1995;56:179–186. doi: 10.1016/0165-5728(94)00145-e. [DOI] [PubMed] [Google Scholar]
  9. Kooiman P. The chemical structure of kefiran, the watersoluble polysaccharide of the kefir grain. Carbohyd Res. 1968;7:220–211. [Google Scholar]
  10. Kumer A, Haque J, Lacoste J, Hiscott J, Williams B. R. Double-stranded RNA-dependent protein kinase activates transcription factor NF-κB by phosphorylating IκB. Proc Natl Acad Sci USA. 1994;91:6288–6292. doi: 10.1073/pnas.91.14.6288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Osada K, Nagira K, Teruya K, Tachibana H, Shirahata S, Murakami H. Enhancement of interferon — β production with sphingomyelin from fermented milk. Biotherapy. 1994;7:115–123. doi: 10.1007/BF01877735. [DOI] [PubMed] [Google Scholar]
  12. Pestka S, Langer JA, Zoon KC, Samuel CE. Interferons and their actions. Annu Rev Biochem. 1987;56:727–777. doi: 10.1146/annurev.bi.56.070187.003455. [DOI] [PubMed] [Google Scholar]
  13. Robert A, David LF, Nicholas C. Psychoneuroimmunology. 2nd ed. Sandiego, California: Academic press, Inc.; 1991. [Google Scholar]
  14. Scheinman RI, Cogswell PC, Lofquist AK, Baldwin AS., Jr Role of transcriptional activation of IκBα in mediation of immunosuppression by glucocorticoids. Science. 1995;270:283–286. doi: 10.1126/science.270.5234.283. [DOI] [PubMed] [Google Scholar]
  15. Schutze S, Nottrot S, Pfizenmaier K, Kronk M. Tumor necrosis factor signal transduction. Cell-type-specific activation and translocation of protein kinase C. J Immunol. 1990;144:2604–2608. [PubMed] [Google Scholar]
  16. Schutze S, Potthoff K, Machleidt T, Berkovic D, Wiegmann K, Kronke M. TNF activates NF-κB by phosphatidylcholine-specific phospholipase C-induced 'acidic' sphingomyelin breakdown. Cell. 1992;71:765–776. doi: 10.1016/0092-8674(92)90553-o. [DOI] [PubMed] [Google Scholar]
  17. Shiomi M, Sakaki K, Murohushi M, Aibara K. Antitumor activity in mice orally administered polysaccharide from kefir grain. Japan J Med Sci Biol. 1982;35:75–80. doi: 10.7883/yoken1952.35.75. [DOI] [PubMed] [Google Scholar]
  18. Stewart WE., II Interferon nomenclature. Nature. 1980;286:110. doi: 10.1038/286110a0. [DOI] [PubMed] [Google Scholar]
  19. Tan YH, Armstrong JA, Ke YH, Ho M. Regulation of cellular interferon production: enhancement by antimetabolites. Proc Natl Acad Sci USA. 1970;64:464–471. doi: 10.1073/pnas.67.1.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Thanos D, Maniatis T. Identification of the rel family members required for virus induction of the human beta interferon gene. Mol Cell Biol. 1995;15:152–164. doi: 10.1128/mcb.15.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES