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Abstract

The enzyme telomerase is involved in the replication of telomeres, specialized structures that cap and
protect the ends of chromosomes. Its activity is required for maintenance of telomeres and for unlimited
lifespan, a hallmark of cancer cells. Telomerase is overexpressed in the vast majority of human cancer cells
and therefore represents an attractive target for therapy. Several approaches have been developed to inhibit
this enzyme through the targeting of its RNA or catalytic components as well as its DNA substrate, the
single-stranded 3¢-telomeric overhang. Telomerase inhibitors are chemically diverse and include modified
oligonucleotides as well as small diffusable molecules, both natural and synthetic. This review presents an
update of recent investigations pertaining to these agents and discusses their biological properties in the
context of the initial paradigm that the exposure of cancer cells to these agents should lead to progressive
telomere shortening followed by a delayed growth arrest response.

Abbreviations: 2¢MOE – 2¢-O-(2-methoxyethyl) RNA; 2¢OMe – 2¢-O-methyl-RNA; hTERT – human
Telomerase Reverse Transcriptase; hTR – human Telomerase RNA; LNA – locked nucleic acids; PN –
phosphoramidate; PNA – peptide nucleic acids; PS – phosphorothioate; TRAP – Telomeric Repeat
Amplification Protocol.

Introduction

Telomeric DNA consists of highly repetitive but
short sequences characterized by an asymmetry of
guanines and cytosines, which are generally placed
on two separate strands. In most organisms, these

repetitions are regular (except in some lower
eukaryotes) and of variable length; the telomeric
motif can spread over tens of kilobases. Human
telomeric sequences are synthesized by telomerase,
a specialized reverse transcriptase. Telomerase is
composed of a catalytic subunit (hTERT) and a
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451 nucleotide RNA (hTR) that carries the
template for the addition of the repetitive motif
d(GGTTAG)n to the 3¢ end of chromosomes.
Telomerase was first identified in ciliates (Greider
and Blackburn 1985).

This enzyme telomerase is essential for immor-
talization and tumorigenicity (Meyerson et al.
1997; Hahn et al. 1999a). It is inactive (or less
active) in normal somatic cells as compared to
cancer cells. Normal human cells transfected with
vectors encoding the human telomerase catalytic
subunit become immortal (Bodnar et al. 1998).
Unlimited proliferative potential, which depends
on telomere maintenance, is one of six properties
considered hallmarks of cancer cells (Hanahan and
Weinberg 2000). Key studies have since confirmed
the value of telomerase as a potential target for
anticancer therapy: expression of a dominant
negative mutant of hTERT in tumor cells results in
the inhibition of telomerase activity, reduction in
telomere length, as well as delayed cell death and
abrogation of tumorigenicity in vivo (Hahn et al.
1999b). These observations demonstrate that dis-
ruption of telomere maintenance limits the lifespan
and tumorigenicity of human cancer cells, thus
validating telomerase as a target for the develop-
ment of anti-neoplastic therapies. Compounds
targeting its reverse transcriptase activity, its RNA
component or its DNA substrate have since been
reported. Several reviews on telomerase inhibitors
have been published within the last few years
(Kerwin 2000; White et al. 2001; Mergny et al.
2002; Cuesta et al. 2003; Rezler et al. 2003; Sare-
tzki 2003). For this reason, this review will mainly
be focused on the recent developments in the field.

The TRAP telomerase assay

The evaluation of telomerase inhibitors was made
possible by the introduction of enzymatic assays to
measure the activity of telomerase in cell extracts.
A so-called ‘direct’ telomerase assay was first
developed, which was relatively insensitive for
detecting the limiting amount of telomerase
activity present in cell extracts. A PCR-based
assay, the Telomeric Repeat Amplification Proto-
col (TRAP), was subsequently developed to over-
come this limitation (Kim et al. 1994). In the
TRAP assay, a PCR reaction is utilized to amplify
the products of the telomerase reaction, thereby

increasing the sensitivity of the assay. Performing
the TRAP assay in the presence of increasing
concentrations of a potential telomerase inhibitor
can be used to determine the inhibitor’s IC50. To
discriminate between the inhibition of telomerase
or of the Taq polymerase, an internal control
(ITAS) is included, which is designed to co-amplify
with the telomerase products. For samples con-
taining Taq inhibitors, procedures have been
developed to remove these inhibitors after telo-
merase extension and before PCR amplification
(Francis and Friedman 2003). It should also be
noted that nanosensors have recently been devel-
oped for the sensitive detection of telomerase
activity (Grimm et al. 2004).

Oligonucleotidic inhibitors

Targeting hTR

The RNA component of telomerase hTR is abso-
lutely required for telomerase reverse transcription
and is therefore a natural target for anti-telomer-
ase agents. Unlike hTERT, hTR is present in most
normal tissues that do not express telomerase
activity. Thus, the targeting of hTR in normal
human somatic cells is not expected to generate
toxicity, as these cells are mostly telomerase-neg-
ative. However, the recent observation that a low
but detectable telomerase activity is present in
cycling primary presenescent human fibroblasts,
which were previously thought to lack hTERT
expression and telomerase activity, challenges this
prediction (Masutomi et al. 2003). Different
strategies and chemical modifications (Figure 1)
have successfully been developed to target hTR,
starting with antisense oligomers. hTR has several
features that makes it a good target for oligonu-
cleotidic inhibitors: (i) hTR is not translated and
should remain unprotected by ribosomal machin-
ery, so that RNAse H-independent strategies for
targeting hTR should be possible; (ii) hTR
provides a template (nucleotide 46–56; 5¢-CU-
AACCCUAAC-3¢) for reverse transcription that is
expected to be highly accessible.

2¢-O-methyl-RNA (2¢-O-MeRNA) and 2¢-O- (2-
methoxyethyl) (2¢-MOE) RNAs directed against
the template region of hTR possess favorable
pharmacokinetic properties and inhibit human tel-
omerase with IC50 values of 2–10 nM (Pitts and
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Corey 1998; Elayadi et al. 2001; Figure 1). Long-
term treatment with 2¢-MOE oligomers induces
telomere shortening in human prostate cancer cells
(Chen et al. 2003). 2¢,5¢-oligoadenylate antisense
oligomers directed against hTRhave been described
that could efficiently inhibit telomerase (Kondo
et al. 1998) as well as the growth of xenografted
tumors (Mukai et al. 2000; Koga et al. 2001). A
2¢,5¢-oligoadenylate oligomer directed hTR inhib-
ited telomerase activity in cervical cancer cells,
rapidly decreased cell viability and induced apop-
tosis within 3–6 days of treatment, when telomeres
had not yet shortened (Yatabe et al. 2002).

Peptide nucleic acids (PNAs) are neutral oligo-
nucleotide analogues made of a flexible polyamide
backbone. PNAs directed against the template
region of hTR were among the first oligomers

tested that could efficiently inhibit telomerase
(Norton et al. 1996). Using a scanning approach,
the binding determinants within hTR that are
needed for the potent inhibition of telomerase by
PNAs have been delineated (Hamilton et al. 1997).
Covalent linkage of PNAs to a small peptide
containing five arginines was found to improve
telomerase inhibition (Harrison et al. 1999a) and
facilitated nuclear import (Villa et al. 2000). Elec-
troporation of these agents effectively inhibits
telomerase activity in intact cells, shortens telo-
meres, reduces colony size, and arrests cell prolif-
eration after a lag period of 5–30 cell generations,
consistent with suppression of their ‘immortality’
(Shammas et al. 1999).

LNAs (bicyclic analogues) directed against the
template region of hTR exhibit high affinity and

Figure 1. Modified oligonucleotides used for telomerase inhibition. 2¢MOE: 2¢-O-(2-methoxyethyl) RNA; 2¢OMe: 2¢-O-methyl-RNA;

PNA: peptide nucleic acids; LNA: locked nucleic acids; PN: phosphoramidate; PS: phosphorothioate.
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inhibit telomerase (IC50=2 nM) with limited
nonspecific cellular toxicity (Elayadi et al. 2002).
Phosphoramidates and thiophosphoramidates
analogues are other promising telomerase inhibi-
tors (IC50=1 nM) that can induce delayed senes-
cence and telomere shortening (Pruzan et al. 2002).
Two such oligomers called GRN163 and
GRN163L were tested in vivo against a large panel
of xenografted tumors. They exhibited strong
antitumor activities on prostate, lymphoma and
myeloma models with short telomeres (Akiyama
et al. 2003; Asai et al. 2003; Wang et al. 2004).

Yokoyama et al. (1998) as well as Folini et al.
(2000) generated hammerhead ribozymes
composed of a catalytic domain with flanking
sequences complementary to hTR. When the
ribozyme was delivered to growing melanoma or
carcinoma cells, a marked inhibition of telomerase
activity was observed. The ribozyme-transfected
melanoma cells had significantly longer doubling
times than the control cells, and displayed a den-
dritic appearance in monolayer culture, which was
not associated with telomere shortening (Folini
et al. 2000). Yokoyama et al. (2002) recently de-
signed a divalent ribozyme to cleave hTR at two
positions. Compared to its monovalent counter-
part, this divalent ribozyme cleaved hTR more
efficiently in vitro, but its capacity to inhibit telo-
merase in carcinoma cells was reduced. Other
alternative approaches were also tested and found
to inhibit telomerase, which included short duplex
RNAs (short-interfering RNA or siRNA) target-
ing hTR (Kosciolek et al. 2003) and hTR-hybrid-
izing oligonucleotides that inhibited telomerase by
blocking the association of hTERT with hTR
(Keppler and Jarstfer 2004).

Targeting hTERT

A limited number of studies have been performed
with antisense oligomers against the catalytic
component of telomerase. Phosphorothioate oli-
gonucleotides against the hTERT mRNA were
tested in DU145 prostate cancer cells. A significant
delayed inhibition of cell viability occurred
(Schindler et al. 2001; Kraemer et al. 2003). A
235 bp fragment of the hTERT cDNA was sub-
cloned, and sense and antisense hTERT expression
vectors were transfected into a human thyroid
carcinoma cell line. Significant down-regulation of

telomerase activity and delayed (20 PD) cell
growth inhibition and apoptosis were seen in cells
transfected with the antisense construct. More-
over, anchorage-independent growth in vitro and
tumor growth rate in vivo were both diminished in
the antisense hTERT clones (Teng et al. 2003). In
a separate study, photochemical internalization of
anti-hTERT PNAs into the cytoplasm of DU145
prostate cancer cells led to a marked inhibition of
telomerase activity and reduced cell survival
(Folini et al. 2003).

Yokoyama et al. (2000) studied the efficiency of
several hammerhead ribozymes targeting the
hTERT mRNA by transient and stable transfec-
tion procedures. The ribozyme targeting 13
nucleotides downstream from the 5¢-end of the
hTERT mRNA (13-ribozyme) exhibited the
strongest telomerase inhibitory activity. In an
independent study, telomerase-positive ovarian
cancer cell lines with widely differing telomere
lengths were efficiently transduced with an
adenovirus expressing a ribozyme directed against
the conserved T motif of hTERT. Three days after
transduction, telomerase activity was significantly
reduced and massive cell loss was induced in
cultures of all four cell lines tested (Saretzki et al.
2001).

siRNAs were also generated against the hTERT
mRNA. In a recent study, Masutomi et al. (2003)
demonstrated that the rate-limiting hTERT
subunit is also expressed in normal cycling primary
human fibroblasts, which were previously thought
to lack hTERT expression and telomerase activity.
Disruption of telomerase activity by siRNA slows
cell proliferation, restricts cell lifespan, and alters
the maintenance of the 3¢ single-stranded telomeric
overhangs without altering the overall rate of
telomere shortening.

Catalytic inhibitors

Nucleoside analogues

Nucleoside analogues acting as chain-terminating
inhibitors of reverse transcriptases were among
the first drugs to be tested for their ability to
inhibit telomerase (Strahl and Blackburn 1994;
Figure 2). Both Ara-GTP and ddGTP efficiently
inhibited telomerase activity in vitro. In their
nucleoside form, the analogues azidothymidine
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(AZT), 3¢-deoxy-2¢, 3¢-didehydrothymidine (d4T)
and Ara-G caused consistent and rapid telomere
shortening in vegetatively growing tetrahymena.
The same group analyzed the effects of such
molecules in two immortalized human cell lines
(Strahl and Blackburn 1996). Dideoxyguanosine
(ddG) caused reproducible, progressive telomere
shortening over several weeks of passaging, after
which point telomeres became stable but remained
short. AZT caused progressive telomere
shortening in some but not all T- and B-cell
cultures (Strahl and Blackburn 1996) as well as
MCF7 (Multani et al. 1998), HeLa (Gomez et al.
1998) and mouse fibroblasts cells (Yegorov et al.
1996). When tested in combination with 5-fluoro-
uracil (5-FU), the presence of AZT increased
5-FU cytotoxicity, suggesting that the effects of
these two drugs are synergistic (Brown et al.
2003). A very potent and specific nucleoside tel-
omerase inhibitor, 6-thio-2¢-deoxyguanosine
5¢-triphosphate (TDG-TP; IC50=0.06 lM), has
also been described (Fletcher et al. 2001).

Non-nucleoside inhibitors

A variety of non-nucleoside drugs have also been
shown to inhibit telomerase (Figure 2). Green tea
appears to contain epicatechin derivatives, such as

epigallocatechin gallate (EGCG), which strongly
and directly inhibit telomerase (Naasani et al.
1998). In the presence of nontoxic concentrations
of EGCG, two representative human cancer cell
lines, U937 monoblastoid leukemia cells and HT29
colon adenocarcinoma cells, showed lifespan
limitations accompanied with telomere shortening,
chromosomal abnormalities, and expression of
senescence-associated b-galactosidase activity.
According to Naasani et al. (2003), EGCG would
be acting as a prodrug-like molecule, which needs
to undergo structural changes for potent inhibi-
tory activity against telomerase (Naasani et al.
2003). In a recent study, EGCG inhibited telo-
merase and triggered apoptosis in a number of
cervical cancer cell lines, and prevented progres-
sion in an organotypic model of cervical cancer
(Yokoyama et al. 2004). In the micromolar range,
EGCG is also active on telomerase-positive prim-
itive neuroectodermal tumor cell lines (Didiano
et al. 2004). For the inhibition of telomerase in
leukemia U937 cells, one synthetic derivative of
EGCG was recently found to be 15- to 20-fold
more potent than EGCG (Seimiya et al. 2002).

With an IC50 of 93 nM, BIBR1532 is one of the
most potent non-nucleoside inhibitors of telomer-
ase (Damm et al. 2001). BIBR1532 is a mixed-type
non-competitive inhibitor (Pascolo et al. 2002).
With no evidence of acute cytotoxicity, treatment

Figure 2. Chemical formula of telomerase inhibitors. The chemical structures of a nucleoside inhibitor of telomerase (6-thio-2¢-
deoxyguanosine 5¢-triphosphate (TDG-TP)) and of many non-nucleoside inhibitors of the enzyme (epigallocatechin gallate (EGCG),

BIBR1532, 3-(3,5-dichlorophenoxy)-nitrostyrene (DPNS), 2,3,7-trichloro-5-nitroquinoxaline (TNQX), isothiazolone derivatives (e.g.

TMPI), bisindole and rubromycin derivatives) are shown.
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of cancer cells with this compound led to pro-
gressive telomere shortening and, after a charac-
teristic lag, to a proliferation block displaying
hallmarks of senescence, which included morpho-
logical and proliferative changes, chromosomal
aberrations, and altered patterns of gene expres-
sion (Damm et al. 2001). In a mouse xenograft
model, pretreatment of tumor cells with this
inhibitor led to telomerase inhibition, telomere
shortening, and to a marked reduction in tumori-
genic potential. It should be noted, however, that
the IC50 of BIBR1532 have recently been reported
to be considerably higher (lM range) in cell ex-
tracts than those previously reported with purified
telomerase (Barma et al. 2003).

The screening of chemical libraries allowed the
identification of various molecules as potent
inhibitors of telomerase. One of these compounds,
3-(3,5-dichlorophenoxy)-nitrostyrene (DPNS), is a
mixed-type noncompetitive inhibitor (IC50 <
1lM; Kim et al. 2003b). Extensive propagation of
cancer cells in the presence of DPNS resulted in
progressive telomere erosion followed by the
induction of a senescence phenotype. The same
group also reported 2,3,7-trichloro-5-nitroqui-
noxaline (TNQX) as a potent and specific inhibitor
of telomerase, of the noncompetitive mixed type
(IC50=1.4 lM; Kim et al. 2003a). Long-term
cultivation of breast cancer cell line MCF7 with a
TNQX concentration that did not cause acute
cytotoxicity resulted in progressive telomere attri-
tion followed by an increased incidence of chro-
mosome abnormalities as well as the induction of a
senescence phenotype. An independent screen led
to the identification of isothiazolone derivatives
(IC50=1 lM for TMPI; Hayakawa et al. 1999).
Inhibition of telomerase by TMPI was quenched
by dithiothreitol or glutathione, suggesting that
these inhibitors act on a cysteine residue. Finally,
bisindole derivatives with IC50 values in the sub-
micromolar range were also described (Sasaki et
al. 2001).

Telomere-interacting drugs

G-quartets ligands

The 3¢-telomeric overhang found at the end of all
telomeres can form a unique structure termed a G-
quadruplex. A unique feature of G-quadruplexes

is the association of four DNA strands held to-
gether by the hydrophobic stacking of large, pla-
nar and hydrogen-bonded G-quartets coordinated
by a monovalent cation (Williamson et al. 1989;
Figure 3A). A G-quartet (alternatively termed G-
tetrad) involves four guanines. Self-association is
favored by self-complementary hydrogen bond
donors and acceptors present on both sides of the
base, leading to the formation of a cyclic
arrangement held by eight hydrogen bonds per
quartet. The presence of a central cation helps
maintain the stability of the structure. However,
not all cations are equivalent for G-quadruplex
stabilization; their stabilizing capabilities being
ranked as followed: K+>Rb+>Na+>Cs+

>Li+. Cation size and hydration energy might
explain these differences (Hud et al. 1996). It is
interesting to note that potassium, which is very
abundant in the intracellular medium, is highly
favorable to G-quadruplex formation.

A G-quadruplex consists of at least two layers
of G-quartets. The distance between two consec-
utive G-quartets is similar to the distance between
two base pairs in a B-duplex (3.3 Å). Different G-
quadruplex structures exist, depending on the
orientation of the DNA strands and the syn/anti
conformation of the guanines (Williamson 1994).
Despite relying on a single building block (the G-
quartet), G-quadruplexes are highly polymorphic
and can give rise to a large number of different
structures. For example, a human telomeric DNA
strand carrying four blocks of consecutive gua-
nines may fold into at least two different intra-
molecular G-quadruplexes structures, each
consisting of three adjacent G-quartets (Wang and
Patel 1993; Parkinson et al. 2002; Figure 3a).
These intramolecular telomeric G-quadruplexes
are fairly stable under physiological conditions.
Thanks to the presence of a 3¢ terminal G-rich
telomeric overhang, telomeric quadruplex forma-
tion does not necessitate the separation of the two
strands of duplex DNA, which would otherwise be
energetically unfavorable (Phan and Mergny 2002)
with the exception of specific circumstances (Li
et al. 2003; Miyoshi et al. 2004).

Optimal telomerase activity requires an
unfolded single-stranded substrate, such that
G-quadruplex formation directly inhibits telo-
merase elongation in vitro (Zahler et al. 1991).
Therefore, ligands that selectively bind and stabi-
lize G-quadruplex structures may inhibit
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telomerase activity. In recent years, many such li-
gands have been identified through diverse bio-
chemical and biophysical methods, including the
TRAP or TRAP-G4 assay (Kim et al. 1994; Kim
and Wu 1997; Gomez et al. 2002), Taq polymerase
stop assay (Han et al. 1999), and fluorescence
melting experiments (Mergny et al. 2001; Darby
et al. 2002; Guyen et al. 2004). Overall, a good
correlation was found between G-quadruplex sta-
bilization and telomerase inhibition among hun-
dreds of derivatives tested so far.

The number of G-quadruplex ligands has
grown rapidly over recent years, resulting in a
range of molecules that inhibit telomerase
through their direct contact with its substrate, the

3¢-telomeric overhang (Sun et al. 1997; Fedoroff
et al. 1998; Wheelhouse et al. 1998; Harrison et al.
1999b; Perry et al. 1999; Caprio et al. 2000;
Neidle et al. 2000; Gowan et al. 2001, 2002;
Koeppel et al. 2001; Mergny et al. 2001; Read et al.
2001; Shi et al. 2001; Alberti et al. 2002b;
Heald et al. 2002; Kim et al. 2002; Rossetti et al.
2002; Harrison et al. 2003; Maraval et al. 2003;
Guyen et al. 2004). For some of these ligands,
combinatorial chemistry could successfully be
employed as a mean of improving their telomer-
ase inhibitory potential (Schouten et al. 2003;
Whitney et al. 2004). Examples of G-quadruplex
ligands are shown in Figure 3b. The discovery of
these new ligands is of the utmost importance for

Figure 3. Structure of a G-quadruplex, and chemical formula of telomere-interfering agents. (a) Structure of a quartet involving four

coplanar guanines (center) and two possible conformations of the intramolecular G-quadruplexes formed by human telomeric DNA

(left and right). (b) Chemical formula of some G-quadruplex ligands.
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the more comprehensive understanding of the
biological role of G-quadruplexes and for the
design of new drugs with enhanced telomerase
inhibitory activity and reduced toxicity. Features
shared by these ligands include a large flat aro-
matic surface, presence of cationic charges, and
ability to adopt a terminal stacking mode. The
surface of a G-quartet is much larger than that
displayed by a base pair, explaining in part how a
large aromatic molecule may have a preference
for G-quadruplex because of favorable stacking
interactions. In most cases, distinct binding sites
are available for external stacking at both ends of
a G-quadruplex. This does not necessarily implies
that a maximum of two drug molecules are
bound per G-quadruplex, as several drugs may
stack on the same G-quartet. Daunomycin, for
example, binds G-quadruplexes as a trimer (Clark
et al. 2003). Some compounds may suffer from
insufficient preference of G-quadruplexes over
duplex DNA (Alberti et al. 2002a). Currently,
telomestatin (see Figure 3b) may be considered as
one of the most potent and selective G-quadru-
plex ligands described so far since its quadruplex-
stabilizing activities can resist up to a 3000-fold
molar excess of duplex DNA (Gomez et al. 2004b
and Guittat et al. unpublished observations).

Until recently, few structural data were avail-
able on the mode of interaction of these molecules
with G-quadruplex DNA. An NMR-based model
of the drug PIPER bound to a parallel G-quad-
ruplex was published in 1998 (Fedoroff et al.
1998). A complex between an amidoanthraqui-
none ligand and a parallel G-quadruplex formed
by TGGGGT repeats was reported in 2000 (Read
and Neidle 2000). Fortunately, several high-reso-
lution crystal and NMR structures of G-quadru-
plex ligands have recently been published
(Gavathiotis et al. 2001, 2003; Clark et al. 2003;
Cocco et al. 2003; Haider et al. 2003). With the
possible – and controversial – exception of a cat-
ionic porphyrin (Haq et al. 1999), all ligands
interact with G-quadruplexes by external stacking
of a terminal G-quartet. Telomeric G-quadruplex
DNA structure polymorphism (Parkinson et al.
2002; Neidle and Parkinson 2003; Phan and Patel
2003) also leads to uncertainties in the rational
design of compounds that target these G-quadru-
plexes, making the rational design of these telo-
mere-specific drugs more difficult. Few molecules
actually distinguish between the various classes of

G-quadruplexes (intra- or inter-molecular, parallel
or antiparallel). In order to achieve specific telo-
merase inhibition, it might be interesting to iden-
tify compounds that would only interact with the
telomeric G-quadruplexes (Alberti et al. 2003). As
none of the current ligands fulfill this condition,
nonspecific and undesired cellular effects are ex-
pected to occur.

Other types of telomere ligands

Minor groove binders may also be used to target
double-stranded telomeric repeats (Maeshima
et al. 2001). A hairpin polyamide-cyclopropane-
pyrroloindole (CPI) conjugate alkylates its target
adenine in the telomere repeats, 5¢-CCCTAA-3¢,
and inhibits the growth of a variety of cancer cell
lines (Takahashi et al. 2003). The anti-cancer
drug cisplatin, aside from its possible recognition
of G-quadruplexes (see above), may also recog-
nize duplex telomeric DNA, as these long
tandem repeats are potential targets for cisplatin
and other platinum compounds. Telomeres in
cisplatin-treated HeLa cells are markedly short-
ened and degraded (Ishibashi and Lippard 1998).
In contrast, long-term cultivation of colorectal
carcinoma cells with cisplatin or 5-FU select for
cells that display drug resistance and telomere
elongation (Kuranaga et al. 2001). Platinum
derivatives, including 2,3-dibromosuccinato
[2-(methylaminomethyl)pyridine]platinum (II)
(Furuta et al. 2003) or cis-dichloropyridine-
5-isoquinolinesulfonic acid Pt(II) (Colangelo
et al. 2003), have been found to represent
strong telomerase inhibitors, with IC50 in the lM
range.

Shammas et al. (2004) described PNAs designed
to hybridize and target to the G-rich 3¢-telomeric
overhang that caps the ends of telomeres. In
transformed human fibroblasts, these PNA oligo-
mers did not inhibit telomerase activity in vitro but
elicited cell death by apoptosis and caused signif-
icant reductions in colony size. Combining these
anti-telomere PNAs with anti-hTR PNAs capable
of inhibiting telomerase resulted in marked
reductions of telomere length, induction of apop-
tosis, and a near-complete inhibition of colony
growth. These effects were greater than those
evoked by either agent alone (Shammas et al.
2004).
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Anti-telomere vs. anti-telomerase agents

There are fundamental differences between the
targeting of telomeres and the targeting of the
telomerase subunits (hTR, hTERT or associated
factors). According to the initial paradigm, anti-
telomerase agents should lead to progressive telo-
mere shortening without evidence of acute toxicity,
and should only decrease proliferation once telo-
meres have reached a critically short length
(Herbert et al. 1999; Shammas et al. 1999; Damm
et al. 2001). This paradigm has been verified by
several key experiments that were intended for
target validation purposes (Damm et al. 2001).
Anti-telomere agents, on the other hand, could
potentially kill cancer cells after short-term expo-
sure and without delays, but may also have detri-
mental effects on normal telomerase-negative cells.
Indeed, telomeres exist in the absence of telomer-
ase activity and play a fundamental role in telo-
merase-negative cells: the capping and protection
of chromosome ends. Thus, agents that stabilize
telomeric G-quadruplexes could not only inhibit
telomerase, but may also alter telomere function
and produce short-term toxicity in both normal
and cancer cells. However, differences in telomere
capping between normal and cancer cells (causing
genomic instability and telomere alterations in
cancer cells) could provide telomere-disrupting
agents with a therapeutic index and support their
clinical use for the treatment of cancer patients.

Long- vs. short-term toxicity of G-quadruplex

ligands

Depending on the agent, the exposure of cancer
cells to G-quadruplex ligands can produce a
response that can either be immediate (short-term
toxicity) or delayed (long-term toxicity). In
lymphomas and myelomas, the highly potent tel-
omerase inhibitor telomestatin (IC50=5 nM) in-
duced a shortening of the telomeres that preceded
a delayed wave of apoptosis (Nakajima et al. 2003;
Shammas et al. 2003). Delays were also noted in
the apoptotic response induced by telomestatin in
leukemia cell lines (Tauchi et al. 2003). Similarly,
the long-term exposure of lung adenocarcinoma
cells (A549) to G-quadruplex ligands of the tri-
azine series (Riou et al. 2002) led to delayed
growth arrest response, which was associated with

the appearance of a senescent-like phenotype
(large and flat morphology; expression of senes-
cence-associated b-galactosidase activity). How-
ever, G-quadruplex ligands can also trigger an
immediate response in the absence of telomere
shortening. Thus, subtoxic concentrations of the
acridine G-quadruplex ligands RHPS4 or
BRACO19 could trigger growth arrest in tumor
cells after just 15 days of exposure, before any
detectable telomere shortening (Gowan et al. 2001,
2002). Likewise, the cationic porphyrin TmPyP4
could induce growth arrest in ALT cells (Kim et al.
2003c) and promote the incidence of anaphase
bridges in sea-urchin embryos (Izbicka et al. 1999).
Short- and/or long-term antiproliferative effects
on ALT cells have also been observed with other
G-quadruplex ligands, such as RHPS4 and 12459.
Although telomestatin seems to remain specific to
telomerase-positive cells (Riou et al. 2002; Kim
et al. 2003c; Shammas et al. 2003), these results
suggest that the direct target of most of these
ligands is the telomere rather than telomerase.

Increasing evidence indicates that the capping
of the single-stranded 3¢-telomeric overhang
might be important in controlling senescence
(Karlseder et al. 2002; Stewart et al. 2003).
Therefore, the hypothesis that these ligands
provoke uncapping of the telomeric overhang has
emerged but needs to be experimentally validated.
Our group now generated evidence that
G-quadruplex ligands, including telomestatin and
2,6 pyridine-dicarboxylate derivatives, can effi-
ciently impair the single-stranded conformation of
the 3¢-telomeric G-rich overhang (Figure 4).
Telomestatin and the 3¢-telomeric overhangs can
form strong and specific interactions that
are compatible with the formation of stable
G-quadruplexes. Moreover, prolonged treatment
of tumor cells with telomestatin results in marked
decreases in the amount of G-rich overhangs that
correlate with the onset of senescence, thus
suggesting that the actual target of the biological
action of this molecule might in fact be the
3¢-telomeric G-rich overhang (Gomez et al.
2004b). A recent report indicates that TRF2 is
required to protect the 3¢-telomeric overhangs
from the action of the excision repair nuclease
ERCC1/XPF, which participates in overhang
removal (Zhu et al. 2003). The alteration of the
conformation of the 3¢-telomeric overhangs by
G-quadruplex ligands is therefore proposed to
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alter the capping of telomeres by essential factors,
such as TRF2, thus provoking the immediate re-
moval of the 3¢-telomeric overhangs followed by
subsequent cell cycle arrest or apoptosis.

Resistance to G-quadruplex ligands

Recent experiments have demonstrated that it is
possible to select cancer cells that can resist short-
or long-term exposure to a G-quadruplex ligand,
the triazine derivative 12459 (Gomez et al. 2003a,
b, 2004a). In selected clones, resistance was asso-
ciated with increased telomerase activity, increased
telomere length, overexpression of hTERT,
and alteration in the splicing pattern of hTERT
(Gomez et al. 2003b). Resistance to long-term
exposure was unrelated to the classical resistance
mechanisms, such as the involvement of the ABC
transporters. Cross-resistance to telomestatin, a
G-quadruplex ligand of a different series, could be
observed in cells selected for their resistance to
12459 (Gomez et al. 2003b). These results provide
evidence that telomerase and telomere length are
key cellular determinants of the resistance to a
G-quadruplex ligands. Other unrelated observa-
tions suggest that telomerase overexpression may
modulate the apoptotic pathway and play a role in
other resistance phenotypes as well (Oh et al.
2001). It is interesting to note that resistance of
HCT116 human colon carcinoma cells to flavo-
piridol (a cyclin-dependent kinases inhibitor
currently in phase II) was correlated with increases
in hTERT expression and telomere length. More-
over, a treatment of flavopiridol-resistant cells
with a quadruplex ligand (BRACO-19, as shown
in Figure 3b) led to a rapid inhibition of cell
growth, which could not be observed in the
parental line (Incles et al. 2003).

Conclusions

There are several potential – or verified – prob-
lems with the anti-telomerase approach to the
treatment of cancer. First, germ cells and many
essential somatic cells do possess an active telo-
merase, and telomerase inhibitors are expected to
act on these cells as well. Second, some tumor cells
(up to 15%) lack telomerase activity and can
maintain telomeres through telomerase-indepen-
dent mechanism (Bryan et al. 1995, 1997; Dunham
et al. 2000; Hoare et al. 2001; Reddel 2003).
Finally, telomerase-dependent cells would be
expected to spontaneously become indepen-
dent of telomerase if an anti-telomerase agent

Figure 4. Model for the action of a G-quadruplex ligand at the

3¢-telomeric single-stranded overhang. Interaction of telomest-

atin with the 3¢-telomeric single-stranded overhang (G-over-

hang) impairs the formation of the T-loop and results in the

ERCC1/XPF-mediated degradation of the G-rich overhang

leading to the formation of an uncapped telomere. (a) Capped

telomere forming a T-loop before DNA replication. (b) During

replication, the T-loop structure is unfolded and telomerase

extends the overhang. (c) The addition of telomestatin blocks

telomerase activity and modifies the single-stranded confor-

mation of the G-rich overhang, promoting the formation of G-

quadruplexes onto the overhang. This modification results in a

failure to reform the T-loop following DNA replication, leading

to the exposure of the 3¢-telomeric G-rich overhang and its

possible cleavage by the endonucleolytic activity of ERCC1/

XPF. (d) Loss of the G-rich overhang results in an uncapped

telomere structure that leads to telomere fusions and to either

senescence or apoptosis depending on cell background.
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exerts a strong selection pressure. However, we
did not observe such a conversion with G-quad-
ruplex ligands: resistance occurred through an
even higher expression of telomerase. According to
the initial paradigm for telomerase inhibitors,
these agents should not initially affect growth rate
but should induce progressive telomere shortening
and lead to decreased proliferation once telomeres
have reached a critically short length. Accordingly,
the time period needed to reach this critical point
and produce anti-proliferative effects should
depend on initial telomere length. This paradigm
has been verified by several key experiments that
were used for target validation purposes (Zhang
et al. 1999). In some cases, this period might be too
long to halt proliferation before the tumor reaches
a life-threatening stage (Damm et al. 2001).
Nevertheless, as shown above, recent experiments
suggest that anti-telomere agents can also have
immediate anti-proliferative effects, which may as
well be selective towards the destruction of cancer
cells.

Besides the specific problems discussed above,
the development of anti-telomere and anti-telo-
merase agents will necessarily have to overcome
the same standard obstacles as those faced by
any new pharmacological agent and dictated by
their pharmacokinetic properties, including cel-
lular uptake and localization, binding to other
intra- or extra-cellular components, biodistribu-
tion, metabolism, acute toxicity, half-life and so
forth. Despite all of these potential pitfalls, it is
likely that some telomerase inhibitors will soon
be tested in humans. Clinical trials should pro-
vide a definitive answer to the feasibility of this
approach.
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