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A model for the origin of biological catalysis
(evolution/genetic code/computer modeling/origin of life/prebiotic)

D. L. STEIN AND P. W. ANDERSON

ABSTRACT We propose a mathematical model for the
next stage in the origin of life after that treated in our earlier
work. At this stage we introduce the possibility of the modifi-
cation of the environment by the information-containing enti-
ties and feedback between the environment and the population
of macromolecules and hence provide a model for the develop-
ment of the Eigen hypercycle.

In earlier work (refs. 1 and 2; unpublished results), a mathe-
matical model of the origin of biological information was pro-
posed and studied using computer simulations. We confined
ourselves to the simplest situation, which we anticipated be-
longed to the "universality class" of all such models: given
an initial random "soup" of two types of monomer, A and B,
in the presence of a large energy flux, how can the system
give rise to information-carrying macromolecules (i.e., long
strings of As and Bs with information content)? Information
content here can be specified in the simple, standard way
(see, for example, ref. 3): assuming a priori that either A or B
is equally probable at any site on a polymer, then if W0 is the
total number of possible strings of length N and W1 is the
number of different kinds of realized outcomes, then the in-
formation content of the soup of strings of length N is

I = 1092(wo [1]

Information content of a soup of strings of length N is then
maximized if the following two conditions are met (2):

(i) Diversity. If only a handful of outcomes is likely, the
information content of the system is of 0(1) rather than O(N).
That is, we must not be able to predict at initial times what
the resulting strings will look like. This is one reason why
transitions like the convective instability in fluids are proba-
bly poor analogies for the origin of life (4-6). Kolmogorov
and Chaitin (see, for example, ref. 7) have given a more so-
phisticated treatment of problems of complexity and infor-
mation content. They point out that a good measure of the
true "randomness" or "information contained" in a number
(or a string of symbols such as a polymer) is the log2 of the
length of the program necessary to specify it. Thus, a string
like (A-A-A . . .)N contains no information to order N be-
cause it can be specified by a 2- or 3-bit program while a
truly random number of length N contains N bits. [C. Ben-
nett's (personal communication) version of "complexity" of
an object is also important in biological questions: the time
required to construct it from its minimal program. Both of
these measures are large for truly living systems.]

(ii) Selection and Stability. If 0(2N) outcomes are possible
and 0(2N) outcomes actually appear, again I - 0(1). We re-
quire a macroscopic occupation of only a few possible
"states" (i.e., polymers) at the end and further require that
these final "states" remain macroscopically occupied over
many generations: the living system must reproduce itself.

If both diversity and stability are present, it is then reason-
able to conclude that we have "broken symmetry in informa-
tion space." These two requirements have a natural analogy
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in the spin glass (2), where a system of localized spins with
random interactions below a temperature Tf freezes into a
random configuration that is highly metastable but is only
one of a number of possible final configurations that di-
verges with the number of spins in the system. Just as the
free energy surface in configuration space of a spin glass
therefore has many peaks and valleys, it is expected that the
complex requirements of RNA chemistry and interactions
with the external world should result in a survival probability
function that likewise has many peaks and valleys in the
space of all polymers. One may therefore map the original
problem onto an Ising spin-glass chain (A -* +1, B -- -1)
with long-range random interactions (2).
A crucial point is that the method of string replication (ef-

fected by "temperature cycling"; ref. 1) ensures in the ab-
sence of copying errors exact symmetry between A and B at
every site in detail. Therefore, a given string S and its in-
verse -S (e.g., A-B-B-A-A-B and B-A-A-B-B-A) must have
the same survival probability. The simplest possible "death
function" DN(S) that determines the survival probability of a
given string S of length N is (2)

N

DN(S) = Z iissi,
i>j=1

[2]

where the Jijs are fixed and random, taking on the values ± 1
with equal probability. The higher the value of DN(S), the
less likely the survival of string S. Note that our requirement
of inversion symmetry precludes a term 7,ihiSi in DN(S), SO
that the model resembles a spin glass as opposed to a ran-
dom-field magnet.
Computer runs (unpublished results) of the model showed

that it indeed satisfied the requirements of diversity and se-
lection; in every run (lasting about 800 cycles or genera-
tions), several hundred species (families of related polymers)
were created out of which a few (5-10 or so) comprised of
order 40-60% of the soup, depending on the run. We there-
fore see selection and stability. With the same parameters
(e.g., Jo) in different runs, different polymers were selected;
hence, diversity. Other interesting properties exhibited by
the model, such as adaptation, hysteresis, and memory ef-
fects, will be discussed elsewhere. We therefore concluded
that the proposed model does indeed contain some of the
essential properties needed in a model of the transition to
biological information. [Incidentally, the results strongly re-
semble experiments of Biebricher et al. (8, 9) on "de novo"
replication and may explain those.]
We would now like to carry the model a step further. So

far we have succeeded in generating RNA-like (and presum-
ably by extension protein, clay, and such) "quasi species" in
the sense of Eigen (7) on the one hand and on the other in
producing a possible general framework for the much later
evolution of species. We would also like to ask whether simi-
lar considerations, or an extension of the model at hand, can
be used to understand (in the same general way) how a ge-
netic code could come about, in the sense of a macromolecu-
lar "blueprint" [DNA mostly today but early on probably
RNA (10)] assembling other macromolecules (in our case,
enzymes) that then serve to catalyze the formation of a new
blueprint. We now wish to understand two problems: (i)
How may one initiate such a closed, self-perpetuating loop?
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and (it) Why should such a code be universal? Eigen (8) has
dealt with question ii in his theory of catalytic hypercycles,
but as far as we can determine, no general model yet exists
that sheds light on question i.
The primary modification to the previous model that we

shall make is to note that the Jus are no longer fixed and
external but should now be partially determined by the se-
quences of monomers (i.e., the Sis) on the strings them-
selves. (The associative memory model of J. J. Hopfield fol-
lows a similar procedure in this respect.) This requirement
models a feedback loop mechanism that is meant to simu-
late, in the simplest possible manner, the feedback loop cou-
pling the genetic code to protein synthesis.
Taking a cue from biology, we note that we need to go

beyond specific single-site recognition and feedback. It is
the spatial folding of a protein (polymer) that is most impor-
tant in determining its catalytic abilities, not its sequence per
se (although, of course, the latter helps to determine the for-
mer). In determining how the Sis determine the Jjs, we
therefore need to consider the sequences of monomers over
each entire polymer and over all polymers present in the
soup.

It would also be surprising if a successful feedback loop
were to be established in every run. Because of the delicate
interplay needed among a number of factors, it is reasonable
to expect that a given population in some soup has a high
probability of dying out before a successful loop can be es-
tablished. On the early earth, one can imagine many at-
tempts at life in many different regions before success oc-
curred. We want a model in which success is not preor-
dained in any given try, though the probability of a success
over many tries approaches one.
We see every reason to believe that RNA molecules them-

selves may possess catalytic activity as a consequence of
their rather random ternary structure. It may be that the first
hypercycles did not involve proteins per se and that polypep-
tides were brought in only later as "passengers" of some sort
on the RNA catalysts. The mechanism described below is
neutral on this point.
With these considerations in mind, we propose the follow-

ing model. (i) We start out as before with a death function
N

DN()()= J(1)Ssj [3]
i>j=1 ij

where the J~s)5 are fixed. This determines which strands are
likely to survive because of their internal chemistry and in-
teractions with the environment, as before (ref. 2; unpub-
lished results).

(it) Some sequences will be better able to act as templates
for the synthesis of proteins or catalytic RNA than others.
To keep things simple, we assume there are two amino acids
(C and D) and describe the configuration of the proteins by a
spin vector Mi, with C = +1 and D = -1. Because of such
complexities in RNA chemistry as chains folding back on
themselves, self-entanglement, and so on (2), not all chains
can act as templates for protein synthesis. Once again, we
can only take these factors into account in a random, statisti-
cal fashion. We introduce a second set of couplings, j(2)
independent of the first, such that the number

M N

PN(S, M) = ES J(,)SrMj [4]i=lj=tfa i

determines the probability of a given chain giving rise to a
polypeptide by template synthesis.
The rule for generating catalytic sequences is similar to

that for determining surviving species in step i. The probabil-
ity per unit cycle of a given RNA chain Sa) giving rise to a

catalytic chain M(a) (or of acting as a catalyst itself) is given
by

e[PN(S~a)+ IL(N)l
d(a) - ____eNS______N _

1 + eP()+() [5]

where we have introduced a "chemical potential" p(N) de-
termining the overall likelihood of a chain of length N giving
rise to catalysis (this will be different from a similar chemical
potential used in step i and in fact we will adjust au to make
catalysts relatively rare. In each cycle, d(a) determines the
probability of a chain M(a) arising. After each cycle, we will
then find some collection of M(aZs.

(iii) We now consider the assembly of enzymes formed in
a given cycle acting back to catalyze formation of new nucle-
ic acids. Once again, there should be randomicity in cata-
lysts acting back on templates, and so we introduce a third
set of fixed random couplings P). Let a denote an entire
protein. (Si denotes the nucleotides A or B.) We then pro-
pose a second death function

DN(2) = EjEJ)M(a)Mja)SiS
ii a i I S [6]

for nucleic acids. Note that JT implies that an enzyme syn-
thesized by a given RNA strand may catalyze all strands in
different ways. The sum over a implies that all enzymes cre-
ated are involved in catalysis, to the benefit of some nucleic
acids and the detriment of others. There is a high degree of
frustration (in the spin-glass sense) present in the feedback.
Moreover, the effective couplings in DN(2)

jPff) = ZJfi)M~a)M(a) [7]

are not constant but evolve in time according to changes in
the population of the nucleotide soup.
The algorithm we propose is similar to that to be used else-

where with the addition of a slow generation of "enzymes"
according to the probability (3) and the application of DN(2)
to the soup at the end of every cycle (so that DN(1) is applied
first). DN(1) governs which species are suitable for replica-
tion at all, as discussed in ref. 2. DN(2) then further selects
among surviving strands, corresponding to the fact that
some species are catalyzed more efficiently by the protein
soup than others.
There is still some choice to be made about the order of

events in this picture. One possibility is to use the algorithm
described here from the beginning. A second is to use our
unpublished algorithm for a hundred generations or so until
some RNA quasi species are built up and then apply the new
algorithm. A third possibility is to have a noninteracting coe-
volution of nucleic acids and proteins using our unpublished
scheme for both (with different Jus for each, of course) and
then turn on interactions in the manner prescribed here.
Since so little is known about the order of appearance of
nucleic acids and enzymes, all three possibilities should be
examined on the computer.
The model presented here has complicated feedback prop-

erties and surely contains cooperativity as well as competi-
tion. Further, if DN(1) and DN 2) do not overlap, all species
will die out. In the model presented here, the minima ofDN(2)
need to find and evolve toward the minima of DN('). Overlap
can be difficult to find. If this evolution cannot take place
sufficiently quickly, the entire population in the soup will die
out. We therefore can adjust parameters so that only a small
percentage (depending on the parameters used) of runs suc-
ceed in establishing stable species coupled in a closed loop.
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