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ABSTRACT A one-locus two-allele deterministic model of
frequency-dependent selection is analyzed, where genotypic
fitnesses [wi(q)] are assumed to be nth-degree polynomial
functions of allelic frequency (q). The model encompasses
many modes of selection, including intraspecies competitive in-
teraction, brood selection, meiotic drive, cyclical selection,
and mixed models. Allelic frequencies converge monotonically
to locally stable equilibria provided that Idw,(q)/dql is not
large. There exists a function T(q) that is nondecreasing and
locally maximized at locally stable equilibria. The rate of
change of T(q) per generation is approximately equal to the
additive genetic variance in fitness. T(q) is a simple function of
the average effect of an allelic substitution and is-closely relat-
ed to Wright's "fitness function." These results define "evolu-
tionary landscapes" for some complex selection processes and
enlarge the scope of the classical methods embodied in
Wright's "mean fitness principle" and Fisher's "fundamental
theorem."

MATHEMATICAL ANALYSIS
The Model. Assume large population size, discrete genera-

tions, random mating, Mendelian segregation, and negligible
mutation and immigration rates. In the parental generation,
autosomal alleles Al and A2 have relative frequencies p and q
respectively, where p + q = 1. Viability, the relative proba-
bility of survival from zygote to adult stage, is an nth-order
function of allelic frequency:

n

wi(q) = > aijqj,
j=O

[1]

where i = 1, 2, and 3, corresponding to genotypes A1Aj,
A1A2, and A2A2, respectively. The aij are constrained such
that wi(q) , 0 for all q on (0,1). Denoting allelic frequencies
in the offspring generation after selection by p' and q', trans-
formation equations are

Many ecological observations suggest that genotypic fitness
parameters in natural populations are not invariant but are
instead dependent on the genetic composition of the popula-
tion (1). A general advantage of rareness, a tendency for sim-
ilar organisms to compete most intensely for limited re-
sources, and an occurrence of genotype-specific behavioral
interactions are three of the many possible factors that can
cause fitness to vary with allelic or genotypic frequencies.
Deterministic models that incorporate frequency variables in
the fitness parameters do not generally conform to Wright's
"mean fitness principle," invalidating the concept of "evolu-
tionary landscape" (2). Although some particular frequency-
dependent selection models can be analyzed on a case-by-
case basis, there is no known general principle that governs
the dynamics of frequency dependence. Thus, the subject of
frequency-dependent selection has a high ratio of experi-
mental interest to theoretical understanding.
A rather general class of one-locus two-allele deterministic

frequency-dependent selection models is investigated here.
Genotypic fitnesses are assumed to be nth-order polynomial
functions of allelic frequency. This parameterization encom-
passes many modes of selection, including pairwise and
higher-order organismal interaction, brood selection, repro-
ductive compensation, aposematic selection, altruism to-
wards sibs, selection under constant inbreeding, meiotic
drive, gametic selection, cyclical selection, the classical case
of constant viability selection coefficients, and mixed mod-
els incorporating constant and variable fitness components
(3-9). It is shown that there are two principles that govern
the model dynamics, one related to Wright's "mean fitness
principle" and one related to Fisher's "fundamental theo-
rem."

W(q)q' = q2w3(q) + pqw2(q)

and

p' = 1 -q' [2]

where W(q) = p2w,(q) + 2pqw2(q) + q2w3(q) is the average
zygotic viability or "mean fitness." By suppressing the argu-
ment of the wi(q) and W(q), the change in frequency from
parental to offspring generation is Aq = q' - q:

W&q = pq[q(w1 - 2W2 + W3) + W2 - W1]. [3]

Equilibria qc = 0 and qc = 1 always exist. In addition, there
may exist from 0 to n + 1 equilibria of the form:

W1-W2
W- 2w2 + W3

[4]

The local stability of a particular equilibrium qcO depends
on the sign and magnitude of dAq/dq, evaluated at q'O. There
are in general six possibilities: (i) If dAq/dq > 0, then qO is
unstable. After a perturbation, q diverges monotonically
from qO. (ii) If dAq/dq = 0, then Do is neutrally stable. (iii) If
-1 - dAq/dq < 0, then qO is stable. After a perturbation, q
converges monotonically to qcO. (iv) If -2 < dAq/dq < -1,
then qO is stable. After a perturbation, q converges to qO by
damped oscillations. (v) If dAq/dq = -2, then q exhibits sta-
ble oscillations about qO. (vi) If dAq/dq < -2, then q exhibits
increasing oscillations about q'O.

It can be shown that dAq/dq - -1 for an interesting class
of models, indicating that convergence is monotonic. The
proof follows. Let wi =wi(q) and Awi wi(q') - wi(q).
Then, by evaluating at equilibrium and suppressing allelic
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frequency arguments,
dAq pq X
dq W

d(w1 - 2w2 + W3) d(w2 - wOlr
[wl-2w2 + W3q dq + dq [5]

For dAq/dq < -1, it is necessary that

PW1 - P dwl + W3 + q

+ p2wi+qw3+pq p-q)-2<0° [6]
dq

However, Eq. 6 cannot be satisfied if w*i, Idwi/dqj, meaning
that the frequency-dependent component of fitness cannot
change rapidly relative to net genotypic fitness. Under this
condition the term in brackets in Eq. 6 is nonnegative. There
are four conditions under which the last term of Eq. 6 can be
negative:

(i) If w'I - 2w'2 + W3 > 0, w3> wj, and dw2/dq < 0, then
iw'l > w2 and w1 + dw2/dq > 0. Thus, Z p +
4(dw2/dq)] > 0.

(ii) If wv1 - 2w2 + W3 >0,OW3 < *i, and dw2/dq > 0, then
W3 > W2 and W3 - dw2/dq > 0. Thus, Z 142[w3 -
P(dw2/dq)] > 0.

(iii) If w1 - 2w2 + W3 < 0, W3 > wi, and dw2/dq > 0, then
W2 > W3. Z > 154[i 3 + (ji - 4)dw2/dq]j pq[w3 + (j3 - 0~2]
= p( - w2)(w1 + 43)/(i'1 - 2 2 + W3) > 0.

(iv) If iiw1 - 2w2 + W3 < 0, W3 < w1, and dw2/dq < 0, then
W2> W1i. Z > i34[kj + (fi - 4)dw2/dq] - 51c['l - (3 -
= p4(W1-w2)(w1 + w3)/(w1 - 2 2 + W3) > 0.
Thus Z > 0, dAq/dq - -1, and convergence is monotonic

near locally stable equilibria.
It is important to note that there exist polynomial frequen-

cy-dependent viability functions that generate oscillatory
convergence to stable equilibria, but such functions violate
the condition on dwi/dq. For instance, if w1 = q3, W2 = 1,
and w3 = (1 - q)3, then there is a stable polymorphic equilib-
rium at q = 0.5, where dAq/dq < -1. Functions that gener-
ate oscillatory behavior are characterized by a large change
in wi over small frequency changes; these may be of biologi-
cal interest but are excluded from the present analysis. A
peculiarity of this restriction is that the model behavior is
sensitive to linear changes in the wi. If, for instance, we add
a constant equal to unity to each wi above, then the mono-
tonic convergence is restored. This situation contrasts
sharply with the usual observation that model behavior is
qualitatively invariant under linear transformation of the ge-
notypic fitnesses.
A Maximization Function. Under the present assumptions,

the wi are "weights" as defined by Lewontin (4). That is,
given allelic frequencies p and q in the parental generation,
there exist U, such that genotypic frequencies in the off-
spring generation after selection are proportional to p2U1,
2pqU2, and q2U3. For models in which the weights can be
defined, there may exist a maximization function " T(q)" (10)
provided that Eq. 7 is integrable:

T(q) 2f[q(Ul - 2U2 + U3) + U2 - U1]dq. [7]
The maximization function consists of an "additive" and a
"dominance" effect of the allele A2. For frequency-depen-
dent viability selection as specified in Eq. 1,

n

T(q) = 2

plus a constant of integration. For the special case of con-
stant viability selection coefficients, T(q) differs from Wby a
constant of integration. Note that, from Eqs. 7 and 3,

Aq =
pq dT(q)
2W dq

Eq. 9 shows that there is a one-to-one correspondence be-
tween critical points of T(q), which is continuous, and poly-
morphic equilibria. Differentiating Eq. 9 shows that the con-
dition for local stability of an equilibrium implies d2T(q)/dq2
< 0. Thus, locally stable polymorphic equilibria occur at lo-
cal maxima of T(q), and unstable equilibria occur at local
minima of T(q). Given the additional fact that allelic frequen-
cies converge monotonically, it follows that T(q) is nonde-
creasing through time.
A "Fundamental Theorem." For the classical model of

constant viability selection coefficients, the average effect
of allele "i," denoted aj, is defined as the difference between
two quantities: the average viability of the population and
the average viability of a subset that receives allele "i" from
one parent, the other gamete being drawn at random (11, 12).
This definition can be extended to frequency-dependent via-
bility selection as defined in Eq. 1:

a, = pw1 + qW2 - W
n

= E [(alj - a2,j)qj+1 - (aij - 2a2,j + a3 j)qj+2], [l0a]

a2 = pw2 + qw3 - W
n

= E [(a2,j - al,j)qj + (2a,,j - 3a2j + a3,j)qj+
1=0

- (al,j - 2a2,j + a3,j)qj+2]. [lOb]

Now define the average effect of an allelic substitution a
a2 - a1, and the additive genetic variance, Va 2pqa2.
The change in T(q) from generation to generation is AT =

T(q') - T(q):
n 1

T
=
2 + (a21- alj)(q-

J+ (alj 2a2,j + a3,j)(q'2 - qj

- 2pqa2
w

where
n j+2

El==II
j=O k=2

L1 +
pq (E + E2)],
w

[(aj - 2a2,j + a3,j) (-+2)x

(1+ 2

k

and
n j+l

E2= I>L
-1 k=2

j=Q

[+___ 1+.j +2l1 (a2,1i - a l,j)qj+1 + (a+2 1 ---2a2,-+a3'~i+ 8j+1 j + 2 -' la'-' 8

[(a2,j -

) (Aq)k2(qj+2

al,() 1 )

(1j + 1) (Aq)k-2(qj+1k)] [11]
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For the case of con tant selection coefficients, Eq. 11 is
identical to the exprK sion for AW given by Crow and Ki-
mura (13). Provided that selection is not very intense, the
quantity in brackets is =1, hence AT VaIW for many
cases.
The parameterization in terms of average effects makes it

possible to simplify T(q) as defined in Eq. 8:

T(q) = 2fa dq. [12]

Thus, the maximization function is a simple function of the
average effect of an allelic substitution.

DISCUSSION
Wright (14) showed that there exists a function that is maxi-
mized at equilibrium for certain frequency-dependent selec-
tion models. The major result of this study is that the class of
nth-degree polynomial frequency-dependent selection mod-
els is "well-behaved" in a dynamic sense: one can define a
maximization (Lyapunov) function that is nondecreasing and
that changes at a rate approximately proportional to the ad-
ditive genetic variance. The proof consists of demonstrating
that local maxima of T(q) correspond to locally stable equi-
libria, that local minima of T(q) correspond to unstable equi-
libria, and that allelic frequencies converge monotonically; it
follows that the change in T(q) associated with nonzero Aq is
positive within the domain of a locally stable equilibrium.
Knowledge of the maximization function allows one to de-
termine the number, location, and stability of all equilibria
and to predict allelic frequency trajectories. Thus, there ex-
ist "evolutionary landscapes" for a special but biologically
significant class of models that subsumes the classical case
of constant selection coefficients.
The critical feature that allows this generality is that selec-

tive coefficients for many modes of selection are "weight-
able"-i.e., given allelic frequencies p and q in the parental
generation, there exist Ui such that postselection progeny
genotypic frequencies are proportional to p2U1, 2pqU2, and
q2U3. Many modes of selection involving organismal interac-
tions fall into the "weightable" category, but there are obvi-
ous exceptions, such as fertility selection. The analytical
method developed here has some generality, but is it not uni-
versal. The convergence proof is subject to the limitations of
local equilibrium analysis. A further limitation of the meth-

od, discussed elsewhere (10), is its restriction to one-locus
two-allele models.
The maximization function T(q) includes as a special case

the usual mean fitness function W, but it is not similarly in-
terpretable as a measure of zygotic fitness, except for the
special case of constant selection coefficients. T(q) is most
concisely defined as a function of the average effect of an
allelic substitution, as shown in Eq. 12. Templeton (15) has
noted that many of the classical formulae for Aq, derived for
various modes of natural selection, can be regarded as spe-
cial cases of a general formulation that includes an average
excess parameter. Average effect, closely related to average
excess, appears to play a similar role in generalizing the for-
mulation of maximization functions. Whether there exists
some other intuitively appealing interpretation of the func-
tion remains to be determined and is in any case of second-
ary importance to the issue of generality. Intuition evolves
under the influence of theoretical advances.
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