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The preprocessing of 3-dimensional (3D) MRI data 
constitutes a bottleneck in the process of visualizing 
the brain surface with voiume rendering. As a fast way 
to achieve this preprocessing, the authors propose a 
simple pipeline based on an algorithm of seed- 
growing type, for approximate segmentation of the 
intradural space in Tl-weighted 3D MRI data. Except 
for the setting of a seed and four parameters, this 
pipeline proceeds in an unsupervised manner; no 
interactive intermediate step is involved. It was tested 
with 15 datasets from normal adults. The result was 
reproducible in that as Iong as the seed was Iocated 
within the cerebral white matter, identical segmenta- 
tion was achieved for each dataset. Although the 
pipeline ran with gross segmentation error along the 
floor of the cranial cavity, it performed well along the 
cranial vault so that subsequent volume rendering 
permitted the observation of the sulco-gyral pattern 
over cerebral convexities. Use of this pipeline fol- 
Iowed by volume rendering is a handy approach to the 
visualization of the brain surface from 3D MRI data. 
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V OLUME RENDERING is a relatively new 
approach to visualization of 3-dimensional 

(3D) data, but since its inception, one of its major 
application fields has been medical imaging. 1 The 
power of volume rendering a s a  tool for creating 
brain surface views from MRI data has long been 
recognized. 2 On the other hand, because of its 
computational burden, volume rendering has not 
been used as widely as traditional surface render- 
ing. However, the situation is changing; the current 
trend toward larger rnemories and faster processors 
at lower cost is making volume rendering acces- 
sible to an increasing number of computer users. 

Volume rendering does not require precise seg- 
mentation of the object of interest. When the target 
of visualization is the brain surface, the preprocess- 
ing of 3D MRI data only involves removal of 
voxels that ate neither the brain nor the cerebrospi- 
nal ¡ (CSF). Here it is not necessary to segment 
the intradural space exactly; pure CSF voxels may 
be removed to a variable extent without affecting 
the quality of rendering. In contrast, if brain surface 
views are to be created with surface rendering, 
brain volume must be segmented accurately; any 

segmentation error is carried through to subsequent 
rendering. However, accurate segmentation of brain 
volume is difficult because a typical 3D MRI 
dataset usually is single-valued (Tl-weighted in 
most cases) and precludes use of the pattern 
recognition approach in multidimensional feature 
space. 3 Although various solutions to this problem 
have been proposed, 4-9 they have one or more of the 
following drawbacks: (1) the possibility of inter- 
and intra-operator variability, 4-7 (2) the necessity of 
continuous operator supervision and interven- 
tion, s,6 and (3) the assumption of prior correction of 
intensity nonuniformity over the imaging vol- 
ume.7 9 Considering the relative ease of preprocess- 
ing, volume rendering is more attractive a s a  
technique for visualizing the brain surface from 3D 
MRI data. 

Nevertheless, the preprocessing of 3D MRI data 
for volume rendering constitutes a bottleneck in the 
process of visualization of the brain surface. The 
methods for this step used in previous works 
involve continuous supervision by the operator, 
and thus are labo¡ and time-consuming. 2,1~ 
With this knowledge, we developed a simple and 
fast pipeline that prepares Tl-weighted 3D MRI 
data for the creation of brain surface views with 
volume rende¡ Below it is desc¡ in detail, 
and an evaluation of its performance is presented. 

METHODS 

Overview of the Pipeline 

F o r a  given Tl-weighted 3D MRI dataset, the 
pipeline produces a mask that approximately cov- 
ers the intradural space. Ir exploits one of the basic 
properties of Tl-weighted MRI data: if the data is 
examined locally and no artifact is present, signal 
intensity decreases in the order of white matter, 
grey matter, and CSE 
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The pipeline consists of  three steps: noise reduc- 
tion, region growing from a seed, and postprocess- 
ing. As will be detailed herein, the pipeline has 4 
parameters to adjust in advance, but does not 
demand operator interaction except for the setting 
of  a seed voxel. 

Noise Reduction 

The goal of this preparatory step is to make the 
data less noisy without blurring the edges. Thus, 
anisotropic diffusion filtering, 1~ is employed. The 
formula of anisotropic diffusion filtering used here is 

I(t + At) = I(t) + At* ~(exp (--(~7I/K)2)*~7I) 

where t is the process ordering parameter, I i s  the 
signal intensity at a voxel, and VI is the local 
intensity gradient. The summation (Y0 applies to 
the neighborhood of a voxel, and the parameter K 
must be adjusted based on noise in the data. In our 
implementation, the system of 6-connected neigh- 
borhood is adopted, and the number of  iteration is 
fixed at 2. 

Region Growing From a Seed 

This step is central to the pipeline and consists of 
2 phases. The algorithm below is common to both 
phases. Note that any 3D mask can be represented 
equivalently by the corresponding set of  voxels. 

Min 

Mout 

M , N  

{} 
S(v) 

{vi 
1. M = Mm 
2. N={} 
3. for every voxel v in M 

3.1 for every voxel v' in the 6-connected 
neighborhood of  v 
i f (v '  ~ M and v' ~ N) and (S(v') fulfills a 
criterion) then N = N •/v ' )  

4. if (Ni{  }), then M = M U N, and go to 2; else 
Mout = M 

When Min is comprised of  a single voxel, the 
algorithm can be called seed-growing. In the first 
phase, this mode of operation is employed. Namely, 
a seed voxel is selected interactively by the opera- 

= the input set of  voxels 

= the output set of  voxels 

= temporary sets 

= the empty set 

= signal intensity of  a voxel v 

= the set whose sole member is v 

tor in the cerebral white matter. And the explicit 
form of the criterion in step 3.1 is: 

I S ( v ' )  - S ( v )  l _- < D i  

(Dl = a non-negative constant) 

Note that this algorithm is equivalent to that 
described by Cline et al 7 when the criterion be- 
comes 

Th _--< S(v') (Th = a positive constant) 

When D1 is sufficiently small, the first phase 
yields a mask that covers a volume within which 
signal intensity varŸ smoothly. Because the seed 
voxel is placed in the cerebral white matter, the 
resulting mask extends into every region of the 
brain mainly along the white matter, but does not 
include CSF owing to the contrast between the 
brain and CSF. 

In the second phase, Mout of  the first phase is 
used as Min. This time the criterion is 

S(v ' )  -- S(v) ~ D 2 

iD  2 = a non-negative constant) 

If D 2 is zero, region-growing occurs only where 
signal intensity decreases in the direction of region- 
growing. Because signal intensity decreases locally 
in the order of  white matter, grey matter, and CSF, 
the input mask (the output of the first phase) is 
expected to grow until the resulting mask covers 
the entire brain while minimally including non- 
brain and non-CSF voxels. 

In practice, we use the following criteria for the 
second phase: 

S(v') - S(v) -< D 2 

S(v') ~ TcutoŸ 

Here D 2 is not zero but takes a small positive value 
to accommodate the effect of  residual noise. Tcutoft- 
is set so as to prevent the mask to incorporate 
voxels whose signal intensities are at background 
level, and thereby to reduce computation time. 

Postprocessr 

In general, many small "holes" are present in the 
mask at this point (Fig 1), but they can be removed 
easily. First, the mask is converted to a stack of 
2-dimensional (2D) masks. We can assume that the 
comer- and border-pixels are zero in each 2D mask. 
Then the "holes" correspond to the zeros in each 
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Fig 1. An intermediate mask after the second step of the 
pipeline with many "holes." This example is from the data 
used in the ne~t figure, and is shown in the same coronal 
planeas in the bottom row of Fig 2. 

2D mask that are isolated from the zeros along the 
corners and borders, and can be eliminated by 
applying slice-by-slice the f ollowing algorithm, 
which has the same structure as the previous one. 
Again, note that any 2D mask has the equivalent set 
of pixels. 

Man = the set of all pixels in a given slice 

Min = the input set of pixels 

Mou t = the output set of pixels 

M, N = temporary sets 

M = the complement of M defined by M U M 

= M~lt and M 71 M = {} 

q = one of the comer pixels 

1. M = {q} 
2. N={} 
3. for every pixel p in M 

3.1 for every pixel p '  in the 4-connected 
neighborhood ofp 
if(p '  ~ M andp '  ~ N andp '  ~ Min) then 
N = N U ~ o  '} 

4. i f  (N v~ [}), then M = M U N, and go to 2; else 
M o u  t = M 

The 3D extension of this algo¡ is straightfor- 
ward, but not used here because some of "holes" 
ate not isolated in three dimensions. 

Experiment 
Fifteen datasets of healthy volunteers (age range, 

20 to 50 years) were obtained with a 1.5-T unit 
(Horizon; General Electric Medical Systems, Mil- 
waukee, WI). The sequence used was 3D spoiled- 
gradient recalled echo (3D-SPGR) in the coronal 
orientation, with the following parameters: slice 
thickness = 1.5 mm, number of slices = 124, TE = 
3 ms, TR = 30 ms, flip angle = 30 o, acquisition 
matrix = 192 (phase) • 256 (frequency), NEX = 
1, and FOV = 20 cm. 

These datasets were subjected to the proposed 
pipeline that was implemented on a workstation 
(Ultral; Sun Microsystems, Inc, Mountain View, 
CA) using C programming language and MATLAB 
(The MathWorks Inc, Natick, MA). On an empiri- 
cal basis, the 4 parameters were fixedly linked to 
the standard deviation of noise (Nstd) that was 
determined in the background region12: K, Dl, D2, 
and Tcutoff w e r e  set (respectively) to 2 * Nstd, 0.3 * 
Nstd, 0.3 * Nstd, and 5 * Nstd. Because the result 
can depend on the location of the seed, the region- 
growing step was repeated 20 times for each 
dataset, with the seed being chosen randomly each 
time. Each mask produced by the pipeline was 
multiplied by the original 3D data, and volume- 
rendered. Volume rende¡ was done using AVS 
(Advanced Visual Systems Inc, Waltham, MA), 
and views from 4 angles (¡ left, superior, and 
infe¡ were assessed by visual inspection. 

RESULTS 
Figure 2 illustrates how the pipeline proceeds. 

The processing time for one dataset was about 10 
minutes. The pipeline reached the identical segmen- 
tation for each dataset, in'espective of the location 
of the seed. The final mask was confined within the 
intradural space for the most part, but partially 
included the dural venous sinuses. It was com- 
monly observed that, owing to the blood flow, the 
voxels thus included demonstrated signal intensi- 
ties close to those of brain voxels, leading to the 
obscuration of the brain surface after volume 
rendš Because of their anatomic locations, 
however, these voxels in the dural venous sinuses 
interfered little with the observation of the cerebral 
sulco-gyral pattern. Problematic was the presence 
of many brain voxels near the brain surface that 
failed to be included in the mask. Grossly apparent 
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Fig 2. Progression of the pipeline as seen in an axial plane (top row) and coronal planes (middle and bottom rows). Left column: 
Data filtered with anisotropic diffusion; Middle column: intermediate mask after the f irst phase of the second step, multiplied by 
unsegmented data; Right column: final mask multiplied by unsegmented data. The segmentation is as good as intended for the 
most part, but imperfect at the dural venous sinuses (arrowheads) and along the f loor of the cranial cavity (arrow). 

imperfections in volume-rendered views resulted 
from this error. Using a specially developed soft- 
ware tool, the voxels contributing to the error were 
identified interactively, and the number of  these 
voxels was counted. The counting was done sepa- 
rately along the following subdivisions of  the inner 
surface of  the cranial cavity: (1) the anterior and 
middle cranial fossae, (2) the posterior cranial 
fossa, and (3) along the cranial vault. Table 1 shows 
elementary statistics of  the error. On average, the 
error was 2.87 cm 3, with 88.5% occurring in the 
anterior and middle cranial fossae. It was obvious 
that the majority of  error was caused by artifacts in 
the vicinity of  the paranasal sinuses or mastoid air 

cells. The amount of error along the cranial vault 
was negligible. Accordingly, in all datasets, error 
was most apparent on the volume-rendered inferior 
view; the other three views had quality sufficient 

Table 1. Volume of Brain Voxels That the Pipeline 
Failed to Include 

Anterior and 
Middle Cranial Posterior Cranial 

Fossae Fossa Vault Total 

2.54 • 0.38 0.25 _+ 0.10 0.08 -+ 0.07 2.87 _+ 0.44 
88.5 8.7 2.8 100 

NOTE. In the top row, values are expressed in cm 3 as mean -+ 
standard deviation. In the bottom row, mean values are 
expressed asa percentage of the total. 
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for depicfing the sulco-gyral pattem over the cere- 
bral convexities. The sites of error in the posterior 
crania] fossa were not salient on volume-rendered 
views. Figure 3 shows examples of the brain 
surface views obtained. 

DISCUSSION 

The presented pipeline is built on the algorithm 
of seed-growing type, and thus is easy to imple- 
ment and fast to execute. Furthermore, because its 
central step is steered by the comparison of signal 
intensities of neigbbofing voxels, the pipeline is 
immune to signal intensity variation of low spatial 
frequency. Although it is commonly held that 
robust segmentation is difficult to obtain with the 
algorithm of seed-growing t ype ,  13 ou r  results show 
that this is not necessarily the case, especially when 
the apparent signal-to-noise ratio of the data is 
increased by appropriate filte¡ such as aniso- 
tropic diffusion. 

The utmost merit of this pipeline is that it needs 
n¢ operator interaction in the middle of processing. 

Before the pipeline begins, the operator must tune 
the 4 parameters (K, D l, D2, and Tcutoff ) and supply 
the seed. But the processing itself proceeds auto- 
matically. Because the location of the seed does not 
affect the course of processing, as long as it is in the 
cerebral white matter, the final segmentation fo r a  
particular dataset is determined solely by the param- 
eter tuning and is reproducible. In our expe¡ 
any dataset acquired with the same imaging param- 
eters can be processed stably with the same tuning. 
Therefore, after the pipeline's parameters are appro- 
priately set, unsupervised processing of multiple 
datasets is possible once the seed voxel is selected 
for each dataset. 

The pipeline assnmes that white matter, grey 
matter, and CSF show the signal intensities decreas- 
ing in this order. Asa  consequence of this assump- 
tion, it has the following obvious limitations: (1) it 
falls where data ate corrupted by arfifacts, and (2) it 
is not suited to data from patients with gross brain 
pathology. The first limitation is manifested by the 
pipeline's lowered performance along the floor of 
the cranial cavity, where a sudden change in 

Fig 3. Typica! volume-rendered 
brain surface views. The inferior sur- 
faces of the frontal and temporal 
Iobes appear partly effaced because 
of segmentation error. The unsharp 
appearance of the cerebral longitudi- 
nal fissure on the superior view is 
caused by partial inclusion of the 
superior sagittal sinus. The overall 
sulco-gyral pattern of the cerebral 
convexities is well visualized. 
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magnetic susceptibility at the air-bone interfaces 
gives rise to irreparable artifacts. This drawback is 
insignificant ir one is concerned only with visualiza- 
tion of the cerebral convexities. The second limita- 
tion detracts from the general utility of the pipeline. 
However, recent literature indicates that, as the 
acquisition of 3D MRI data of the brain becomes 
a common practice, there is renewed interest 
in developmental variability of the human cere- 
bral sulco-gyral pattern. ~4-~7 The proposed pipeline 

should be helpful for further MRI-based research 
on this subject, especially if the number of datasets 
to be processed is large. 

To summarize, we have presented a simple and 
fast pipeline to approximately segment the intradu- 
ral space in Tl-weighted 3D MR! data in a repro- 
ducible and virtually unsupervised manner. The use 
of this pipeline, followed by volume rendering, is a 
handy way to visualize the brain surface from 3D 
MRI data. 
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