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ABSTRACT We announce the construction of an irreduc-
ible graded module V for an "affine" commutative nonassocia-
tive algebra S. This algebra is an "affinization" of a slight
variant R of the conMnutative nonassociative algebra B de-
fined by Griess in his construction of the Monster sporadic
group F1. The character of V is given by the modular function
J(q) _ q' + 0 + 196884q + .... We obtain a natural action of
the Monster on V compatible with the action of R, thus con-
ceptually explaining a major part of the numerical observa-
tions known as Monstrous Moonshine. Our construction starts
from ideas in the theory of the basic representations of affine
Lie algebras and develops further the cadculus of vertex opera-
tors. In particular, the homogeneous and principal representa-
tions of the simplest affine Lie algebra AV') and the relation
between them play an important role in our construction. As a
corollary we deduce Griess's results, obtained previously by
direct calculation, about the algebra structure of B and the
action of F1 on it. In this work, the Monster, a finite group, is
defined and studied by means of a canonical infinite-dimen-
sional representation.

1. Introduction

Amazing discoveries about the simple group F1, the Fisch-
er-Griess Monster, appeared before the group was actually
born. Most pf these results were based on the postulated ex-
istence of a 196883-dimensional irreducible representation of
F1. Starting from McKay's observation that 196883 + I is a
coefficient of the modular function J(q) = q-7 + 0 + 196884q
+ ..., Thompson (1) found further numerology suggesting
that there should be a natural graded Fl-module V =
UII,,-lV, with character J(q). In particular, V1 would be the
direct sum of the trivial and 196883-dimensional irreducible
modules.

Collecting and enriching these discoveries, Conway and
Norton (2) associated "Thompson series"

Tg(q) = > Hn(g)qn, q = e2lriT, IMT> 0

to each conjugacy class g of F1, with the property that each
Tg(q) is the normalized generator of a genus 0 function field
corresponding to a discrete subgroup of SL(2,R). In particu-
lar, Tl(q) = J(q), the field generator corresponding to the
modular group SL(2,Z). Conway and Norton conjectured
that each H. is a character of F1, and Atkin, Fong, and Smith
proved that the Hn are generalized characters and gave over-
whelming evidence that they are characters (3).

In a tremendous piece of work, Griess (4) constructed the
desired 196883-dimensional representation of F1, giving birth
to the largest sporadic group, thereby showing that the

strange discoveries could make sense. However, instead of
illuminating the mysteries, he added a new one, by con-
structing a peculiar commutative nonassociative algebra B
and proving directly that its automorphism group contains
F1.
The present work started as an attempt to explain the ap-

pearance of J(q) as well as the structure of B. Our under-
standing of these phenomena has now led us to conceptual
constructions of several objects: V; a variant a of B; an "af-
finization" 9a of@a; and F1, which appears as a group of oper-
ators on V and at the sajne time as a group of algebra auto-
morphisms ofR and of 9a. While we were heavily influenced
by Griess's constructions, the present infinite-dimensional
theory, an extension of the theory of vertex operator con-
structions of the basic modules of affine Lie algebras, is
completely self-coptained. Moreover, it predicts from the
start the six arbitrary parameters in Griess's approach, and it
produces an algebra with an identity element.
A significant portion of sporadic group theory is now

brought'into the realm of Lie algebras and their representa-
tions. A uniform theory of all the finite simple groups may
now be on the horizon.
These results were presented at the November 1983 work-

shop on Vertex Operators in Mathematics and Physics at the
Mathematical Sciences Research Institute. The details will
appear elsewhere.

2. Vertex Operators and the Space V

By a lattice (L, (, )) we shall understand a free abelian group
L together with a symmetric bilinear form (, ) on L such that
(a,,8) E (1/r) Z and (a, a) E (2/r) Z for all a, 13 E L. Here r is
a positive integer. Note that rL is an even lattice.

Let L be a lattice and consider a 2-cocycle Eo on L with
values in Z/sZ for a positive integer s. (In this paper we shall
need the cases r = 1, 2 and s = 2, 4.) To 6o is associated a
central extension L = {eaK"' Ia E L, m E Z/sZ} of the group
L, the product in L being determined by the conditions KS =
1, K central, and ea,,e1 = +}ieo~"'3). We have an exact se-
quence 1 -l (K) -* L + L -- 1, where e. = a.

Let F be a field of characteristic 0 containing a primitive
sth root of unity w. Denote by {eala E L} the basis of the
group'algebra F[L] consisting of group elements, and let L
act on F[L] via eaves =e(a, p)ea+P, Kee = we , where E(a,

) - OeQ(°. Also, let T be any L-module such that K acts as
multiplication by w. (We shall usually take T finite-dimen-
sional.)
We next associate to L two infinite-dimensional Lie alge-

bras. Set t = L 0 z F and extend (, ) to a symmetric bilinear
form on l. For Z = Z or Z + 1/2 consider

bZ = 1) 0) F L Ft' @ Fc, c # 0,
nEZ

a 1/2Z-graded vector space via deg b 0 t0 = n, deg Fc = 0.
We shall view HnEz Ft' as a subspace of the algebra F[t½v2,

3256

The publication costs of this article were defrayed in part by page charge
payment. This article must therefore be hereby marked "advertisement"
in accordance with 18 U.S.C. §1734 solely to indicate this fact.



Proc. NatL. Acad. Sci USA 81 (1984) 3257

tF½1 of Laurent polynomials in an indeterminate t½2. The for-
mulas [c, bz] = 0, [x 0o tm, y 0 tn] = (x, y) m 'm+nO c for x, y
Eib, m, n E Z make bz a '/2Z-graded Lie algebra. Consider
the abelian subalgebras

b =Hbjj tn F c,
nEZ
naO

bz =1
nGZ
n<O

Make F a b-module by taking (li 0 t') F = 0 and letting c act
by 1. We identify the induced lz-module S(li) = U(lz) 0
u(b)F with the indicated symmetric algebra.jThis space has a
natural '/2Z-grading, and is in fact a graded bz-module. For n
E Z, let a(n) denote the operator a 0 0 on S(li).
We can now introduce the vertex operators X(a, I) in the

two cases. First (for Z = Z) set

VL = S(li) 0) FF[L], [1]

X(a, A)

exp a(-n)t -/n)exp a (n)Cn/n)
n0e n>O

($9 e c- ct-(a,a)/2 [2]

for a E L, so that X(a, A) is an operator from VL to VL{J} =

{lvinJ, EC VL} where by definition (-'a.e3 -= ( eOforp
E L. Here ;1/2r is viewed as a formal variable; all powers of 4
occurring will be integral powers of 11/2r. View VL as a grad-
ed vector space by setting deg(S(lji), 0) et) = n - (a, a)/2,
the subscript denoting homogeneous degree. Then the ho-
mogeneous components xa(n) defined by X(a, A) = xxa(n) An
are well-defined operators on VL, homogeneous of degree n.
(Note that for r = 1, n E Z and for r =2, n C /2Z.) The Lie
algebra bz also acts on VL by a 0 0 a(n) 0 1 [which we
shall also call a(n)] for a E l , n E Z\{0}; c 4 1; and a = a 0)
to l1 0 a, where area = (a, /3) e1for E/3C L. Then VL is a
graded bz-module. The space VL together with the operators
xa(n) and the action of lz is called the homogeneous repre-
sentation or picture (see refs. 5 and 6).
For a sublattice M of L and a coset M1 ofM in L, we set

F[M11= LI FeP C F[L],
f3EM1

VM, = S(lz) 0 FF[Ml],

call Vj together with the operators xa(n) and the action of
lz+½ the twisted representation or picture.
The rank L = 1 case of the twisted picture arose in the first

differential operator construction of an affine Lie algebra
(7). The general case was studied in ref. 8.
We shall later consider the direct sum WL = VL E VL (see

Eqs. 1 and 3). Let X(a, I) also denote the operator X(a, ,) D
X(a, t) from WL to WL{J} (see Eqs. 2 and 4). The same con-
vention shall also apply to other operators introduced later.

It will be convenient to take a(n) = 0 when n E Z + 1/2 in
the homogeneous picture and to take a(n) = 0 when n E Z in
the twisted picture. For h E l set h(4) = LEZe2h(n)(n in ei-
ther picture. For a E L and n E (1/2r)Z define X+(a, C) and
x4&'(n) by X-(a, a) = X(a, a) ± X(-a, ,) and X+(a, A) =

+'(n);n.
Physicists have introduced a procedure:: called normal

ordering. We shall need the generating series of operators
:a()X-(/3, t): and :h1(t)h2(0): for a, hl, h2 E l and /3 E L
defined by

:a(t)X-(/, 4):

= (flE2a(n);n + I/2a(0)) X (/3, 4) + X(X3,G)nEZ/2
n<O

* a(n)gn + ½/2a(O))
nEZ/2
n>O

:hj(t)h2(0: = Z ( :h1(k)h2(n - k):);
nEZ kEZ/2

where :h1(m)h2(n): = h1(m)h2(n) if m - n and :h1(m)h2(n): =
h2(n)h1(m) if n - m. Set h1h2(Q) = :h1(t)h2(0): in the homoge-
neous picture and h1h2(W) = :h1(t)h2(0): + 'A8(h1, h2) in the
twisted picture. Also let :a(Q)X-(,, t):, and hjh2(n) be the
coefficients of An in the generating series :a(t)X-(/3, t): and
h1h2(Q), respectively.
THEOREM 1. (See ref. 8.) Assume that the lattice L is

even; that s = 2; that E(a + /3, y) = E(a, 'y)e(/3, y), e(a, ,/ +
y) = E(a, /3E)(a, y), E(a, a) (-j)(a'a)/2for all a, /3, y E L;
and that the module (T, ir) satisfies the condition fr(e2,) = 1
for all a E L. Then in either the homogeneous or the twisted
picture we have

[x+(m), x4(n)] =

0 if(a,/3)=0

by abuse of notation. We also view X(a, I) and xa(n) for all a
E M and all n as operators on Vm,
We also set (taking Z = Z + '/2)

V= S(liZ+,I/) C) T, [3]

X(a, t)

- exp(E a(-n)V-/nl)exp(- Z a(n)tn/n)
nE=z+ It nEZ+ I/t
n>O n>O

0 ea 2-(aa) [4]

for a E L, an operator from V1 to Vj{f}. (Here it is assumed
that F contains 2 (a a).) We view V1 as a graded vector space
by (Va)n = S(lZ+I+)n 0 T. The components xa(n) given by
X(a, t) = Ixa(n)gn (where n E '/2Z) are again well-defined
operators on VL, homogeneous of degree n. The Lie algebra
lz+½ acts on V1 by a 0t - a(n) 0 1 = a(n) for a E li nE
Z + 1/2; and c '-* 1. This makes VL a graded lz+ ½-module. We

E(a, /3)x7+p(m + n) if(a,,/)= -1

E(a, ,8) (mx+,A(m + n) + :a(t)X-(a + /3, t):m+n)
if (a, /3) = -2

/2(m - n) a2(m + n) + '3(m3 - m)8m+no
if/3 =-a and (a, a) = 4

for a, /3 E L, m, n E Z.
We now consider the special case L = A, the Leech lattice

(9), which by ref. 10 is the unique positive definite even uni-
modular lattice of rank 24 that has no vectors with norm
square 2. In this case, if a, 83 E A and (a, a) = (,/, /3) = 4,
then (a, /3) E {0, ±1,+2, +4}. We may and do assume the
conditions imposed in Theorem I and also that T is irreduc-
ible (and therefore uniquely determined up to isomorphism
and of dimension 212). In this case we shall write TA for T.

Let 6 be the involution of VA E VA preserving VA and VA
and uniquely determined by the conditions 0(1 0 ea) = 1 0)
e- a, 6(1 v) = 10 v and Oa(n)t-1 = -a(n) for a E A, v E
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TA, and n E 1/2Z. Then Oea-l = e-_ and OX(a, t)0-1 =
X(-a, C), so that each x4+(n) (n E= Z) preserves the + 1-eigen-
spaces of 0 on VA and on VA. We denote these eigenspaces
by VA and VA+, respectively. We set

V = VA+ VA . [5]

This will be our Fl-module (see Section 4). Motivated by
consideration of modular functions, we translate the grada-
tions of VA and VA so that deg(1 0) 1) = 1 and deg(1 09 TA) =
-1/2. Then V = n Vn. (The indices n are the negatives of
those used in Section 1.)

Write chqV = In dim V-nqn, q an indeterminate.
THEOREM 2. We have chqV = J(q) = q-1 + 0 + 196884q1

+ ... the modular function J.
Following ref. 4 (cf. ref. 2), we define a group C as fol-

lows: For a E Aut(A), let d be the corresponding.automorph-
ism of A. Recall that iX is the representation of A on TA. Set
CO = {a E Aut(A)J& E Aut(A, (, )) = 0}. Then CO induces a
group C1 of automorphisms of the extraspecial group ir(A)
since CO preserves Ker ir. Let 4::Co -- C1 be the correspond-
ing homomorphism. For b E GL(TA) writeint(b) for copjuga-
tion by b. Let C. = {aT E GL(TA)IaT(IT(A))a1 = ir(A) and
int(aT)I,(-) E C1}. Denote by CT the commutator subgroup
of C*, and define the following subgroup, of CO x CT: C
= {(a, aT) E CO X CTI4(a) = int(aT) on ir(A)}.
We now determine an action of C on WA = VA ED VA (cf.

ref. 11) by requiring that (i) ga(n)g-1 = (aa)(n), (ii) geag-1 =
a(ea), (iii) g: 1 0 1 ~-+ 1 0 1, and (iv) g911T = 1 09 aT for g =

(a, aT) E C, a E A, n E 1/2Z. Let C be the quotient ofC acting
faithfully on V. Then C has structure 21+24(.1) and C is iso-
morphic to the group denoted C in ref. 4.
For g E C, define the series

Tg(q) = Z (tr gJv_n)qf.
n2-1

THEOREM 3. Let g = (a, aT) e C. Then

Tg(q) =

1 ((Oa(c) + Oa(q) + tr(aT)715(q) tr+-aT)r7_a(q)
2 na (q) q7--(q) n i(q 1/2) + n j(q1/2) J

where %a(q) = Ik n1(qk)Pk if a has characteristic polynomial
HI(1 -xk)Pk (k > 0, Pk E Z), l(q)= q Hn>O(l qf),

O (q) = > s(a)q(a a)!2
aa= +a

and s(a) = (-1)So(a) where a(ea) = KSO(a)e.a
These formulas are different from those discovered by

Conway and Norton (2) for the action of C on the conjec-
tured infinite-dimensional Fl-module. The Conway-Norton
formulas were used by Kac (11) to construct an infinite-di-
mensional C-module V whose subspace VO was a 24 212-di-
mensional nontrivial C-module that had to be divided out.
Attempts to extend this C-module V/Vo to F1 have not been
successful.

3. Triality

involutive automorphism of !I(2, F) such that 'o:Y1 + Y2, Y3
_Y3, i~e., ao: ia

x, XI+a+ -Xa~
We shall now consider certain homogeneous and twisted

representations based on the rank 1 lattice L generated by a,
where we suppose that (a, a) = 2, so that L C 1 = Fa. As-
sume that the cocycle e satisfies E(a, -a) = 1. We take the
homogeneous module to be S(ljj) 0 F[Za + a/4] and the
twisted module to be S(tOi+½) 0 T+, where T+ = Fe' is 1-
dimensional and ee+ = (±i)e+. The components of the
vertex operators X(±a, () generate the Lie algebra

Mf(2, F)A = LIFa(m) 11Fx+(n) (D HFx-(p) E F1,
m n p

where m E Z, n, p E Z + /2 in the homogeneous case and p
e Z, m, n E Z + 1/2 in the twisted case.
THEOREM 4. There is a unique linear isomorphism oi:

S(tj) 0 F[Za ± a/4] -> S(fz+ ½ ) 0 T ± such that (i) oj o x(k)
= (crx)(k)forx E {a, '}, k e 1/2Z and (ii) o-1:l 80 -a/4

1 0) e+.
This theorem underlies our general "triality" results and

our extra automorphism oa in F1.
From now on we shall consider only a certain class of lat-

tices L associated to "codes." Let fQ be a finite set with n
elements, n E 4Z. Let IC be a subspace of P(Nf), the power
set, which is an F2-vector space under symmetric difference.
Assume that (i) ICI e 4Z for all C E (C (so that IC1 n C21 E 2Z
for all C1, C2 E IC, (ii) fQ E (. Let f be an F-vector space
(soon to be viewed as the F-span of a certain lattice L) with a
basis {akIk E fQ}, and consider the symmetric bilinear form (-,
) on b such that (ak,al) = 28k,i. For C C Q set ac = IkEc ak,
and let Ec denote the automorphism of b given by Ec:ak
-ak for k E C, EC:ak ;- ak for k E fI\C.
Define the following lattices and cosets:

Q = L Zak, Lo = (EZ'/2ac) + Q,kEfl ceI

L, = Lo + '/4an, L = Lo U L1. [6]

For the lattice L, we take r = 2, s = 4 and (0 = i (see Section
2).

There exist lattices 'P such that (i) L D 'P D 2L', (ii)
L/2L1 = Q/2L'1 E T/2L', and (iii) (a, /3) E 2Z for all a, A3 E
T n Lo, where L' = {a E bI(a, L) C Z}; fix such a lattice T.
Let fTQ and rT denote the projections with respect to the
decomposition ii and define the 2-cocycle Eo:L X L -- Z/4Z,
where Eo(a, B3) = 2(ITQ(a + 2L'), ITq(,( + 2L')) + 4Z. Then
E(a, ,B) = ieo(a°). With this choice of cocycle we define an L-
module TL = F[L/Q] = HJ6+QeL/QFe9+Q by ea-eO+Q = E(a,
/3)ea+P+Q, K-eO+Q = ie+Q, for a, 8 E L.

Consider the space WL = YL E VL = H0o-j<a3Wj where WO
= S(tj) 09 F[LO], Wl = S(tj) 0 F[L1], W2 = S(bz+½) 0
F[Lo/Q], W3 = S(bi+i½) 09 F[L1/Q]. The components of the
operators X(+ak, (), for k E fQ, generate the affine Lie alge-
bra (0f(2, F)n)A, acting on each W.. Using Theorem 4, we
obtain the following result, which serves to define a map a2
on WL:
THEOREM 5. There is a unique involutive linear auto-

morphism (72: WL -* WL such that

(i) Or2WO = WO, o2W1 = W3, 0r2W2 = W2

Let {axa,x-a} be the standard basis of Q1(2,F). Set x4;' = Xa +

X-a y = ia, Y2 = xa I and y3 = ix4+, where i = \f-i. In the
basis {Yk} the commutation relations are [Y1, Y21 = 2y3 and its
cyclic permutations, so that there are "manifest" automor-
phisms permuting the three pairs {±Yk}. We denote by oo the

(ii) or2iak(C)a2-' = X-(ak, O)
and o-2X+(ak, 072-1 = -X+(ak, ()for K E Qi

(iii) o,2:1 0 eac/2 4 2-ICI/2 I (-i)ITI 1 0 eETac/2
TCC

3258 Mathematics: Frenkel et aL
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(72:1 0 eacl2+Q 4 () )IC1/4 1 0 eac+n/2+Q
o,2:1 0 eect/4 *- 1 0 eEcan/4+Qfor C C (.

Equating the characters of W1 and W3 gives:
COROLLARY. We have okl(q)/*7(q)f = I|n(q)f/n(qlI2),

where 6L (q) = <aEL1 q(aQa)/2 and r7(q) = q1/24 limO(1 - qm).
Remark. Condition ii in Theorem 5 simply states that oa2

carries the natural action of (Qf(2, F)')A on WL to its "ao-
transform."
Remark. Over C, o21W0 is the action of diag (2-1/2[I -1]) C

SL(2, C)".
Remark. The involution o-2 is part of the action of a sym-

metric group l3 on WL that preserves W0 and permutes the
elements of {W1, W2, W3} and of {y(kl(n), y k)(n), y kl(n)} for
k E fQ, n C '/2Z, where y k(n) = iak(n), y(2k)(n) = -Qz) and
y~)()= ixa+4(n). 2 a(f)k n
THEOREM 6. On WL, conjugation by o-2 transforms

X(ESI/2ac, 4) into a linear combination of the operators
X(eT'/2ac, () for T C C; more precisely,

(r(-i) SIX(ES'/2aca2

/2 > 1) snTi(_i)1TX(ET1/2aC,')
TCC

for all S C C, CC IC.
Now take n = 24 and let % be the binary Golay code. This

is characterized among the subspaces of P(fQ) by the proper-
ties: (i) IC is self-dual-i.e., '6 = {C C il IC nl cii 2Z for all
C1 E T}, (ii) ClCE 4Z for all C E I, and (iii) ICJ #6 4 for all C
E IC. In this case the lattice L contains the following standard
realization of the Leech lattice A as a sublattice of index 2: A
= Z-span{ak + a1, 1/2zac, /4an - ak 1k, 1 E fQ, C E %}.
We shall assume that the lattice '1 is chosen to satisfy the

conditions (i) A D T D 2A, (ii) '/4an - asP. (iii) (a, a) E
4Z for all a E T in addition to the earlier requirements; this
is in fact possible. Here oo denotes any fixed element of fQ.
The 2'3-dimensional module TL contains the 212-dimensional
module TA = {v E TL~ea12-2a. *V = V}, which is (isomorphic
to) the module called TA in Section 2. Hence the space WL
contains our proposed F1-module V (see Section 2), but o,2
does not leave V invariant. To remedy this we define o': WL
-*WL by

0-IW = 0-2 ° (-1)a, oiw1 = -iea, 0 02, [7]

alw2= -io2 Q ea, 0iW3 = -1i2 o ea.

Here (-1)a. is the operator on W0 which takes p 0 eO to
1)1"a- ") p 0 eR for p E S(Ljj), ,B C Lo. Theorem 6 and the

definition of a immediately give:
THEOREM 7. (1) The linear automorphism (7 leaves V in-

variant.
(2) We have

0J(-1)lS1/2X+(ES,/2aC 4)(T-1

(1)iCn{-}2-I iCI/2 Z (1)ISlnTI(-1)TI/2X+(ETi/2aC,,)
TCC
ITIE2Z

for all S C C, |SCE 2Z, CC .
Remark. Theorem 2 follpws from the Golay code case of

the corollary to Theorem 5 together with the fact that
CJ(VL nA) = VLO.

It is convenient to define

(see Section 2). Then the automorphisms c and r of V gener-
ate a copy of the symmetric group ~3.
We qow give our definition of the group F1:

F1 = (C, a) = (C, Y3) C GL(V). [9]

4. The (Fl9)-Module V.

Let a be a commutative nonassociative algebra, with mul-
tiplication denoted x, over the field F, Suppose that a is
equipped with a symmetric bilinear form (, ), associative in
the sense that (x x y, z) = (x, y, x z) for all x, y, z E a. Set

a = a FF[t, t-1] and d = f DFe, [10]

where t is an indeterminate and e :& 0. Proyide d with the
commutative nonassociative product x determined by:

x 0 tm X y 0& tn = (x x y) (0 tm n + (x, y)m28+n,0e
e x e = e x (x 0 ti) = 0 [11]

for all x, y E a and m, n E Z. Also define a symmetric bilin-
ear form (-, -) on a by

(x 0 t0, y 0t0) = (x, Y)8m+nO,
(e, e) = (e, x 0 t n) = 0 [12]

for all x, y E a and m, n E Z. Then (, ) is an associative form
with respect to x on d.
Let A be an associative or Lie algebra. Givep two se-

qqences x = (x(m))mez, y = (Y(n))nEz of elements of A, de-
fine the function

[x x y]: Z x Z - A

[x x y](m, n) = '/2([x(m + 1), y(t, - 1)]

+ [y(n + 1), x(m - 1)]). [13]

By abuse of notation, we shall sometimes write this expres-
sion [x(m) x y(n)].
The syn,,ol [ x *] is read "cross bracket" or "cross" for

short, blecause it is made up of two brackets that "cross."
The significance of this operation is that, in interesting cas-
es, [x(m) x y(n)] can be expressed in terms of a singly in-
dexed sequence (z(p))pEz of elements of A. As explained in
ref. 8, the cross bracket is an example of a product defined
by "correction factors" (cf. Section I of ref. 12).
By a graded d-module we mean a Z-graded vector space V

= lnEZVntogether with a linear map 7r. d -+ End V such
that ir(x 0 tm) is homogeneous of degree m for all x E a, mn '
Z and such that

if(x0 t x y ) t') = [(x 9 tm) X ir(y 0 t )] [14]

for all x, y E a and m, n E Z, where on the right-hand side we
are considering the cross bracket of the two sequences (ir(x
0 tm)),-z and (7r(y 0 tn))neZ (see formula 13).
Let (V, ir) be a graded d-module, apd suppose that G is a

group that acts as linear automorphisms of a and V, preserv-
ing V, for all n E Z. Then we call (V, ir) a graded (G, d)-
module if

grr(x 0 t')g'1 = ir(g-x 0 t') [15]

[8] forallg E G,x E a, and n E Z.
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Our first example of a cross-bracket algebra comes from
Section 2 (Theorem 1).
THEOREM 8.'(See ref. 8.) The sequences (h2(n))nEzfor h E

) and (x+(n))nEzfor a E A with (a, a) = 4 "span an algebra
which is closed under cross-bracket." More precisely, set

f = S2(b) ( I Fx, [16]
aEA

(a,a)=4

where each x + 0, and we impose the relations x+ = X+
and no others. Then there is a commutative ponassociative
algebra structure x and a nonsingular symmetric bilinear
form (-, -) on f such that V (see formula 5) is a graded f-
module (see Eqs. 11, 12, and 14) under the action wr:!-- End
V defined by

ir: h2 0& tn Adh2(n) , X40 tn| + x4(n), e ~-4 1 [17]

for all h E I, n E Z, and a E A with (a, a) = 4. [Recall that
S2(b) is spanned by the squares of the elements of f.] The
bilinear maps x and (, ) are uniquely determined by the
requirement that (V, ir) be a graded f-module.
Remark. The actual computation of X and (-, -) is immedi-

ate from Theorem 1. The result is written in detail in ref. 8,
except that our present form (, *) is ½/2 the form used in ref. 8.
Formula 5 gives the decomposition of V into irreducible

components for f. We now apply the results of Section 3 in
order to extend f to a larger algebra a, which will act irre-
ducibly on V. The extra operators will be "the Z3-conjugates
of the sequences (ir(x 0 t0)) for x E f." (Recall that 3 = (o,
i), where oa, T are defined in Eqs. 7 and 8.) One convenient
way of making this precise is the following:
The degree -1 subspace V-1 of V equals 52(f(- 1)) E YF(1

0 ea + 1 0 ea) e t(-/2) 0 T) where the sum ranges over
all a E A with (a, a) = 4. Motivated by this decomposition,
we define the F-vector space

gad= fEE(tb T), [18]

with f as in formula 16, and we identify 9a with V-1 via the
linear map

L- V-1 [19]

such that x t--r(xX t-2)1 0 1 forx E f and hO v ~-+ h(-1/2)
0 v for h E f, v E T. Give a the Fl-module structure which
makes £ an F1-isomorphism (see formula 9). Define the vec-
tor space 9a from a as in formula 10.
To extend ir (see formula 17) from f to Ia, write

f = f ED PI, [2Q]

f= 52(t) >E FX4, [21]
aELonA

=>= : Fx+, [22]
aELInfA

2= aP1, P3 = TctsI [23]

(See Eqs. 6.) Then

L0T = P2eP3 [24]
Define the operators (oqp1)(n) =o* o iT(p1 0 o cr-1,
(iopj)(n) = TO,0T(p1 09 t0) o (crT)- for p1 E pl, n E Z. Ex-
tend ir from f to a linear map 7r:2 -+ End V by setting 7r(pj0
O) = pj(n) for pj E Pj (j = 2, 3) and n E Z. Then

C(x) = ir(x 0 t-2).1 0 1

for all x E E (see formulas 18 and 19). We are now ready to
state:
THEOREM 9. The sequences (h2(n))nEz for h E f and

(x4(n))nez for a E A with (a, a) = 4, together with their
transforms by the symmetric group 3 = (C-, T) "span an al-
gebra which is closed under cross-bracket." More precisely,
there is a commutative nonassociative algebra structure x
and a nonsingular associative symmetric bilinear form (, )
on R such that (V, T) is a graded (F1, Oa)-module in the
above sense, irreducible under R. The bilinear maps x and
(, ) are uniquely determined by the requirement that (V, rr)
be a graded J-module.
From the definition of cross bracket, we now have:
COROLLARY. The group F1 preserves x and (-, -) on R.
Precise formulas for x and (., -) on a may be computed in

a straightforward way via the following theorem. As a result,
we obtain the algebra and bilinear form designated Ya, x, (.,.)
in ref. 8, except that our present form (, ) is 1/2 the form used
in ref. 8.
THEOREM 10. The space V-1 is the "adjoint representa-

tion" ofOJ in the sense that wr(x 0 to) 4(y) = (x x y)for all x,
y E OA. In addition, w(x 0 t2).*(y) = 2(x, y)l 1 for all x, y
E .
To compare 3 with the algebra B of Griess (4), let 9 be

the orthogonal complement of FXkenai in a and let irso:
gao be the orthogonal projection. Define a nonassociative al-
gebra structure * on R by x y = 7ro(r0x x roy) for all x, y E
I. Observe that F1, and in particular C and a-, act as auto-
morphisms of (C, -). The action of a- on B = V_1 is explicitly
described on f (see Eqs. 20 and 21) by Theorem 7, and on Pi
D h 0 T (see Eq. 22) by the identifications 23 and 24.
THEOREM 11. (See ref. 8). There is an algebra isomor-

phism between (Q, -) and B. This isomorphism is an isometry
up to a scalar multiple, and it transforms C to the group of
automorphisms of B denoted C in ref. 4, and a- to the auto-
morphism of B denoted o, in ref. 4.

Since 91 acts irreducibly on V and the action of F1 is com-
patible with the action of 1 on V as in formula 15 (see Theo-
rem 9), F1 acts faithfully on 91. Theorem 11 then shows that
F1 is the group studied by Griess. His result (4) thus gives:
THEOREM 12. The group F1 is a finite simple group of

"Monster type."
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