Abstract
Oxidation of Low Density Lipoprotein (LDL) is regarded as a key event in the development of atherosclerosis. The aim of this study was to investigate effect of various copper concentrations on LDL oxidation kinetic profile as a mechanism in atherosclerosis process. LDL was isolated from plasma and its oxidation with copper was investigated by monitoring the formation of conjugated dienes. Based on time course of the formation of conjugated diene was observed at concentrations of 0.5 to 10 µM copper, represented the conventional kinetics of LDL oxidation with an inhibition period followed by a propagation phase. In contrast, at concentrations of 20 to 50 µM copper, LDL oxidation proceeded after a negligibly short lag-time followed by a distinct propagation phase. At lower copper concentrations of about 0.5 µM, LDL oxidation can be combined in 4 consecutive oxidation phase. The increasing copper concentration (to 10 µM) lowered the first propagation and shortened the seconded inhibition period until they melted into one apparent kinetic phase. But in copper concentrations of about 20 to 50 µM, increasing copper concentration increased the first propagation and the second inhibition but lowered the second propagation phase. The results of this investigation on the copper dependence of the oxidation kinetics suggest that LDL contains two different copper binding sites. Copper bound to the low affinity binding sites with molar ratio of 200 to 500 of copper / LDL. These ions bound to the high affinity binding sites with molar ratio of copper / LDL of 5 to 100.
Key Words: Kinetic profile, LDL oxidation, Atherosclerosis, Copper
Full Text
The Full Text of this article is available as a PDF (289.2 KB).
References
- 1.Nakajima K., Nakano T., Tanaka A. The oxidative modification hypothesis of atherosclerosis: the comparison of atherogenic effects on oxidized LDL and remnant lipoproteins in plasma. Clin Chim Acta. 2006;367:36–47. doi: 10.1016/j.cca.2005.12.013. [DOI] [PubMed] [Google Scholar]
- 2.Kleinveld H.A., Hak-Lemmers H.L., Stalenhoef A.F., Demacker P.N. Improved measurement of low density lipoprotein susceptibility to copper induced oxidation: application of a short procedure for isolating low density lipoprotein. Clin Chem. 1992;38:2066–2072. [PubMed] [Google Scholar]
- 3.Witting P.K., Bowry V.W., Stocker R. Inverse deuterium kinetic isotope effect for peroxidation in human low density lipoprotein (LDL): a simple test for tocopherol mediated peroxidation of LDL lipids. FEBS Lett. 1995;375:45–49. doi: 10.1016/0014-5793(95)01172-B. [DOI] [PubMed] [Google Scholar]
- 4.Xing X.Y., Baffic J., Sparrow C.P. LDL oxidation by activated monocytes: characterization of the oxidized LDL and requirement for transition metal ions. J Lipid Res. 1998;39:2201–2208. [PubMed] [Google Scholar]
- 5.Esterbauer H., Gebicke J., Puhl H., Jurgens G. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med. 1992;13:341–390. doi: 10.1016/0891-5849(92)90181-F. [DOI] [PubMed] [Google Scholar]
- 6.Gaetke L.M., Chow C.K. Copper toxicity, oxidative stress and antioxidant nutrients. Toxicol. 2003;189:147–163. doi: 10.1016/S0300-483X(03)00159-8. [DOI] [PubMed] [Google Scholar]
- 7.Gieseg S.P., Esterbauer H. Low density lipoprotein is saturable by pro-oxidant copper. FEBS. 1994;343:188–194. doi: 10.1016/0014-5793(94)80553-9. [DOI] [PubMed] [Google Scholar]
- 8.Lowry O.H., Rosebrough N.J., Farr A., Randall R.J. Protein measurement using the folin phenol reagent. J Biol Chem. 1951;193:265–275. [PubMed] [Google Scholar]
- 9.Noble R.P. Electrophoretic separation of plasma lipoproteins in agarose gel. J Lipid Res. 1968;9:963–701. [PubMed] [Google Scholar]
- 10.Puhl H., Waeg G., Estebauer H. Methods to determine oxidation of low density lipoproteins. Enzymol. 1994;233:425–441. doi: 10.1016/S0076-6879(94)33049-2. [DOI] [PubMed] [Google Scholar]
- 11.Moshtaghie A.A., Ghaffari M.A. Study of the binding of iron and indium to human serum apo-transferrin. Iran Biomed J. 2003;7:73–77. [Google Scholar]
- 12.Abujua P.M., Albertini R. Methods for monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins. Clin Chim Acta. 2001;306:1–17. doi: 10.1016/S0009-8981(01)00393-X. [DOI] [PubMed] [Google Scholar]
- 13.Ramos P., Gieseg S.P., Schuster B., Esterbauer H. Effect of temperature and phase transition on oxidation resistance of low density lipoprotein. J Lipid Res. 1995;36:2113–2129. [PubMed] [Google Scholar]
- 14.CallegoNicasio J., Lopez-Rodriques G., Martinez R., Tarancon M.J., Fraile M.V., Carmona P. Structural changes of low density lipoprotein with Cu+2 and glucose induced oxidation. Biopolymers. 2003;72:514–520. doi: 10.1002/bip.10486. [DOI] [PubMed] [Google Scholar]
- 15.Esterbauer H., Striegl G., Puhl H., Rotheneder M. Continuous monitoring if in vitro oxidation of human low density lipoprotein. Free Rad Res Comms. 1989;6:67–75. doi: 10.3109/10715768909073429. [DOI] [PubMed] [Google Scholar]
- 16.Lass A., Belkner J., Esterbauer H., Kuhn H. Lipoxygenase treatment renders low density lipoprotein susceptible to Cu+2 catalyzed oxidation. Biochem J. 1996;314:577–585. doi: 10.1042/bj3140577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Kuzuya M., Yamada K., Hayashi T., Funaki C., Naito M., Asai K., Kuzuya F. Role of lipoprotein copper complex in copper catalyzed peroxidation of low density lipoprotein. Biochim Biophys Acta. 1992;1123:334–341. doi: 10.1016/0005-2760(92)90015-n. [DOI] [PubMed] [Google Scholar]
- 18.Patel R.P., Svistunenko D., Wilson M.T., Darley-Usmar V.M. Reduction of Cu (II) by lipid hydroperoxides: Implication for the copper dependent oxidation of low density lipoprotein. Biochem J. 1997;322:425–433. doi: 10.1042/bj3220425. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Gie-Bauf A., Steier E., Esterbauer H. Early destruction of tryptophan residues of apolipoprotein B is a vitamin E independent process during copper mediated oxidation of LDL. Biochim Biophys Acta. 1995;1256:221–232. doi: 10.1016/0005-2760(95)00024-7. [DOI] [PubMed] [Google Scholar]
- 20.Gie-Bauf A., Van-Wickern B., Simat T., Steinhart T., Esterbauer H. Formation of N-formylkynurenine suggests the involvement of apolipoprotein B-100 centered tryptophan radicals in the initiation of LDL lipid peroxidation. FEBS Lett. 1996;389:136–140. doi: 10.1016/0014-5793(96)00546-7. [DOI] [PubMed] [Google Scholar]
- 21.Neuzil J., Thomas S.R., Stocker R. Requirement for promotion or inhibition by α-tocopherol of radical induced initiation of plasma lipoprotein lipid peroxidation. Free Radical Biol Med. 1997;22:57–71. doi: 10.1016/S0891-5849(96)00224-9. [DOI] [PubMed] [Google Scholar]
- 22.Bowry V.W., Stocker R. Tocopherol mediated peroxidation. The peroxidant effect of vitamin E on the radical initiated oxidation of human low density lipoprotein. J Am Chem Soc. 1993;115:6019–6045. doi: 10.1021/ja00067a019. [DOI] [Google Scholar]
- 23.Ziouzenkova O., Gieseg S.P., Ramos P., Esterbauer H. Factors affecting resistance of low density lipoprotein to oxidation. Lipids. 1996;31:S71–S76. doi: 10.1007/BF02637054. [DOI] [PubMed] [Google Scholar]
