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ABSTRACT A model for the evolution of the probabilities
of genetic identity within and between loci of a multigene fam-
ily in a finite population is formulated and investigated. Unbi-
ased interchromosomal gene conversion, equal crossing-over
between tandemly repeated genes, random genetic drift, and
mutation to new alleles are incorporated. Generations are dis-
crete and nonoverlapping; the diploid, monoecious population
mates at random. Formulae for the equilibrium values of the
probabilities of identity and for the rate of convergence are
deduced. At equilibrium, the amount of intralocus homology,
f, always exceeds the amount of interlocus homology, g. The
equilibrium homologies f and g and the characteristic conver-
gence time T are independent of the crossover rate. As the
population size and the number of repeats increase, f and 8
decrease and T increases; as the rate of gene conversion in-
creases, f and T decrease whereas k increases. The time T can
be sufficiently short to imply that interchromosomal gene con-
version may be an important mechanism for maintaining se-
quence homogeneity among repeated genes.

There has been a great deal of recent interest in the evolution
of multigene families under intrachromosomal gene conver-
sion; Brgedgere (1), Nagylaki (2), and Ohta (3) discuss the
earlier literature, the relevant data, and the biological back-
ground and importance of this problem. In the absence of
mutation, intrachromosomal gene conversion leads to se-
quence homogeneity among tandemly repeated genes in a
finite population (ref. 2 and refs. cited therein). Interchromo-
somal gene conversion produces the same result, and this
motivates the investigation of the latter process and its com-
parison with intrachromosomal conversion.

Here, we shall study the evolution of a multigene family
under the joint action of unbiased interchromosomal gene
conversion, equal crossing-over between tandemly repeated
genes, random genetic drift, and mutation to new alleles.
Our formulation and analyses parallel those in ref. 2. Sec-
tions 1, 2, 3, and 4 comprise the formulation of our problem,
the examination of the amount and pattern of homology at
equilibrium, the investigation of the rate of convergence, and
the discussion of our results, respectively.

1. Formulation

Generations are discrete and nonoverlapping; the diploid,
monoecious population mates at random. The life cycle
starts with infinitely many gametes; n represents the number
of repeats, which are arranged in tandem. We use three
probabilities of identity to summarize the genetic structure
of the population; these provide much important biological
information but do not fully specify the state of the popula-
tion. The term "identity" must be interpreted in accordance

with the type of data available: at the most detailed level, it
refers to identity of the DNA sequences of two genes; if less
information is available, it can signify coincidence of restric-
tion sites or the ability to hybridize. We assume that the n
loci are exchangeable (i.e., equivalent). Let f, denote the
probability that two genes at the same locus, chosen at ran-
dom from distinct gametes just before fertilization in genera-
tion t (= 0, 1, 2, ...), are identical. Then f represents the
expected homozygosity immediately after fertilization; h = 1
- f, the expected heterozygosity, is a measure of intralocus
genetic variability in the population. Let g, denote the proba-
bility that two distinct genes on the same gamete, chosen at
random just before fertilization in generation t, are identical.
Clearly, g is an index of homology between repeats within a
chromosome. Finally, let 1, denote the probability that two
genes at different loci and on different gametes, chosen at
random just before fertilization in generation t, are identical.
Thus, 1 incorporates both intralocus and interlocus variation.
We posit the life cycle shown below; x designates the vector
of the probabilities of identity, and the prime signifies the
next generation. The population number is infinite, except
immediately after population regulation, when it is N.

gametes - zygotes - adults
fertilization mutation

A0,x oAx OO,x*

chromosome duplication
oo,x*

conversion
oo,x**

- adults ) gametes
regulation gametogenesis

Nx** xo,x'

We neglect the dependence of the probabilities of identity
on the positions of the genes sampled. This dependence is
actually absent if and only if there are only two repeats or
there is no crossing-over. Consult ref. 2 for detailed discus-
sion of this simplifying assumption.

Since gametes fuse wholly at random, a proportion 1/N of
zygotes are produced by self-fertilization and the corre-
sponding probabilities of identity within and between zy-
gotes are equal.
We suppose that every allele mutates to a new allele at

rate u (0 - u - 1). This model of "infinite alleles" was pro-
posed by Malecot (4, 5) for identity by descent and by
Wright (6) and Kimura and Crow (7) for identity in state.
After mutation, we have

f* =vf, g*=vg, 1*=Vl, [1]

where v = (1 - u)2.
To incorporate gene conversion, we posit the following:

(i) An interaction between two alleles cannot produce a third
allele. (ii) Each interaction involves the formation of hetero-
duplexes between two repeated genes or double-strand-
break repair (8). The heteroduplexes may be either symmet-
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ric (9) or asymmetric (10). (iii) Interactions occur between
repeats on homologous chromosomes, after chromosome
duplication. (iv) There is at most one interaction per individ-
ual per generation. If an interaction occurs, it does so be-
tween two randomly chosen genes. (v) All mismatches are
repaired. (vi) Parity obtains in the initiation of asymmetric
heteroduplex formation, the repair of mismatches, and the
occurrence of double-strand breaks. (vii) If symmetric
heteroduplexes are formed, the direction of correction of
one heteroduplex is independent of that of the other. (viii)
Crossing-over is not associated with gene conversion. Con-
sult refs. 2, 11, and 12 for discussion of these assumptions.
We introduce now the basic parameters that describe gene

conversion and we derive some simple preliminary relations.
Let ,u designate the probability per individual per generation
that an interaction occurs. We denote by Ib the event that
gene b interacts with some gene at a nonhomologous locus.
Similarly, Ibe represents the event that genes b and c interact
with each other. Clearly,

P(Ib) = (1)(2n- 2) = (n 2' [2]

2n=(2 = 4. [3]

In ref. 2, only conversion events between nonidentical
genes were considered, because only these are detectable.
By generalizing the definition of conversion to include iden-
tical genes, however, Walsh has found a shorter proof of the
recursion relations established for intrachromatid conver-
sion in section 1 of ref. 2 (J. B. Walsh, personal communica-
tion). All the other recursion relations in ref. 2 can be de-
duced by his method, which we apply to our problem in this
section.

Solely for the purpose of our derivation, we shall say that
a gene is converted if its DNA is replaced by DNA from
another gene or by DNA synthesized from that of another
gene. We adhere to the convention that each strand of a ho-
moduplex formed by two identical genes is "corrected" with
probability 1/2. Let b -* c and b +# c denote the events that b
is converted to c and that it is not, respectively. If y, oa, and 8
(y + o- + 8 = 1) represent the respective probabilities of
asymmetric heteroduplexes, symmetric heteroduplexes, and
double-strand-break repair, then (2)

p = P(b--clIb,) = 1/4(2 - y),

q = P(b-*c,c-blIbc) = '/4(1 + 8).

[4]

[5]

From [3], [4], and [5] we obtain the unconditional probabili-
ties

P(b-*c) = pli/(4n2),

P(b-oc,c-,b) = qix/(4n2).

[6]

[7]

If b interacts with a gene at a nonhomologous locus, define d
as the gene with which it does so. In this case, [2] and [4]
yield

P(b-+d) = (n - 1)pA/(2n2). [8]

The probability ,u should increase at least linearly with n
and may increase as fast as quadratically (11). Hence, the
conversion rates

a = ppu/n2, X = pAt/(2n)

should depend more weakly on n than A does. Let tb desig-
nate the event that b is not converted. We write b = c to
signify the identity of the alleles b and c.
We are now prepared to evaluate the effect of conversion

on (f*, g*, 1*). After conversion, the interchromosomal ho-
mologies within individuals, f** and 1**, will differ from the
corresponding probabilities between individuals, F** and
L**. In Fig. 1, d, e, i, and k denote genes a, b, c, and h after
conversion, respectively. We choose e and i at random, sub-
ject only to the restriction that they be on the same chroma-
tid at distinct loci; m, a, b, and h are at homologous loci.
To calculate f**, if b interacts with a gene at a nonhomolo-

gous locus, call that genej. Bearing in mind that there is at
most one interaction per individual per generation and ap-
pealing to [6], [7], and [8], we deduce

= P(d=e)

= P(d=eI1a,4b; or a-+b,b-- a)P(¢ab; or a- b,b--+a)

+ 2P(d=elb--a,a-/b)P(b--*a,a-#b)
+ 2P(d=elb--m)P(b--*m) + 2P(d=elb--+j)P(b--j)

= P(a=b)[1 - 2P(b-*a,a-#b) - 2P(b- m) - 2P(b--j)]

+ 2P(b-*a,a-b) + 2P(b-+m) + 2P(a=j)P(b--j)

=(p + q)At+( [(2n - 1)p + q]tLf

+(n - 1)p ,i *
+ V 2 Jg

[loa]

To evaluate g**, if c interacts with a gene other than a or
m, define that gene as j. We invoke [6] and [8]:

g** = P(e=i)

= PRe= ilGb,(tc)RG(b,()
+ 4P(e=ilc--3a)P(c-*a) + 2P(e=ilc-*j)P(c--*j)

= P(b=c)[1 - 4P(c-*a) - 2P(c-*j)]

+ 4P(a=b)P(c-*a) + 2P(b=j)P(c- j)

- (n2)f* + (1 - n£)g* + (( n2 )1* [lOb]

ff

h**

d' e k

FIG. 1. Probabilities of identity before and after gene conver-
[9] sion.
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Definingj as for the computation of g**, from [6], [7], and
[8], we find

l** = P(d=i)

= P(d=iICa,4c; or a--c,c-*a)P(fCa,4c; or a-*c,c--a)

+ 2P(d=ilc-+a,a-ic)P(c-+a,a-#c)
+ 2P(d=ilc--m)P(c--m) + 2P(d=ilc-*j)P(c->j)

= P(a=c)[1 - 2P(c--a,a-#c) - 2P(c--m) - 2P(c-*j)]

+ 2P(c-*a,a--#c) + 2P(c--m) + 2P(a=j)P(c-*j)

(p + q) + ((n - )g*

+ 1 - [(2n - )p +ql*. [lOc]

In calculating F** and L**, we disregard the second-order
probability that conversion has occurred in both individuals
examined. If b (h) interacts with a gene at a nonhomologous
locus, call that gene j (w). Using [8], we have

F** = P(e=k)

= P(e=klb-Aj,h-#w)P(b-Aj,h-Aw)
+ 2P(e=kjb-*j)P(b--*j)

= P(b=h)[1 - 2P(b--j)] + 2P(h=j)P(b-*j)

[1Od]= 1_ (n - 1)pu f* + ((n - 1)Pp91*.
Lasty fmn26 w inn2f

Lastly, from [6] we infer

L** = P(i=k)

= P(i=klc-#a,c-#m,h7y,h-#z)P(c-a,c-#m,h-#y,h-#z)
+ 4P(i=klc--a)P(c--)a)

= P(c=h)[1 - 4P(c-*a)] + 4P(a=h)P(c--a)

((el)f*± (1 )iP.

ference or, more likely, if (n - 1)p3 << 1. As a function of 1,
r is given by r = (n + 1),8/3 (2, 14).

Substituting [10] into [11] and then [1] into the result leads
to the "exact" recursion relations for our model. This system
depends on the order of the evolutionary forces in the life
cycle. However, our assumptions concerning recombination
are plausible only if both crossing-over and gene conversion
have low probabilities, and we lose no biological generality
by positing weak mutation and random drift. If u, na (or A), 6
(or 1/N), and r (or n13) are all much less than unity, we ob-
tain

f' = + [1 -2u - - (n -1)a]f + (n -1)al, [12a]

g' = af + (1 - 2u - na - r)g + [(n - 1)a + r]I, [12b]

I' = af + Og + (1 - 2u - 6- a)I. [12c]

Here and below, we simplify writing by not indicating explic-
itly that [12] and all subsequent equations are approximate.
In the approximate system [12], the evolutionary forces are
additive, and this system is independent of the order of these
forces. Note that [12] involves five parameters: u, 6 (or N),
n, a (or X), and r (or 13). According to [4] and [9], the conver-
sion rate a depends on molecular details only through the
proportion of asymmetric heteroduplexes, y. Observe that
[12a] and [12c] are the same as for sister-chromatid conver-
sion but [12b] is not (2).

Put x = g - 1; subtracting [12c] from [12b] yields

x' = 6X, 60 = 1-2u- - na-r. [13]

Therefore,

x(t) = x(O)V x(O)exp[-(2u + 6 + na + r)t], [14]
which converges to zero as t -- m.

2. Equilibrium

By dint of [14], at equilibrium k = I. Hence, we conclude that
[12] converges to the unique equilibrium

f=(2u + a)/D, g=i= a/D, [15a]

where
[1Oe]

D = 2u + a + 4Nu(2u + na). [15b]

To evaluate (f ', g', 1'), we neglect second-order terms that
arise because sister chromatids may differ after conversion.
If 6= 1/(2N) and r denotes the frequency of equal reciprocal
recombination between two distinct loci chosen at random,
then (cf. refs. 4, 5, 13)

f' = 6(1 + f**) + (1 - 20)F**, [la]

= (1 - r)g** + rl**, [1ib]

1' = 0(g** + l**) + (1 - 20)L**. [lic]

The crossover probability r will generally be an increasing
function of the number of repeats, n, whereas the probability
of equal crossing-over between two adjacent loci, 13, should
not depend on n. We assume that at most one cross-over
occurs per generation in the entire multigene family. This is a
reasonable approximation if there is complete positive inter-

Notice that, in contrast to the equilibrium homologies for
intrachromosomal conversion (2, 15), f and R are indepen-
dent of the crossover frequency r; in fact, they depend only
on the number of repeats, n, and the scaled mutation and
conversion rates uo = Nu and ao = Na.

Since both conversion and random drift act between chro-
mosomes, one expects f > g, as is indeed obvious from
[15a]. Replacing n by 1 in [15] informs us that

f < fo = 1/(1 + 4Nu). [16]

Thus, interchromosomal conversion lowers the mean homo-
zygosity below the value for the balance between mutation
and random drift (4, 5, 7), as does intrachromosomal con-
verison (2). The limiting results f 1 andg-* 1 as u 0, f

fo and 0 as a--c0, and f0 and g0 as N are
all expected from the biology of our model. The qualitative
dependence on the parameters is also intuitively reasonable:
simple rearrangements of [15] establish that both f and g de-
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crease as u, N, or n (with a or X fixed) increases; f decreases
and g increases as a increases.
Some numerical examples are given in Table 1. Unless

otherwise specified, the parameters in set 1 are X = 5 x
10-6, U = 10 -8, n = 50, and N = 5 x 104; the default values
in set 2 read X = 10-3, U = 10-6, n = 50, and N = 5 x 104.

Table 1. Probabilities of identity at equilibrium

Set 1

Parameter

103x
0.01
1

100

107u
0.1
1

10

10-4N
0.1
1

10

n
10

100
1000

Set 2

f k f g

0.913 0.869
0.909 0.909
0.909 0.909

0.353 0.059
0.095 0.090
0.091 0.091

0.917 0.833 0.909
0.662 0.331 0.501
0.478 0.043 0.095

0.998 0.907
0.982 0.893
0.846 0.769

0.981
0.857
0.600

0.909
0.499
0.090

0.840 0.800
0.344 0.328
0.050 0.047

0.962 0.335
0.714 0.052
0.200 0.010

0.332
0.047
0.005

3. Convergence

It suffices to study convergence for u = 0: if u > 0, the eigen-
values and the characteristic convergence time may be im-
mediately calculated from those with u = 0 as in ref. 2. Elim-
inating I from [12a] and [12b], we find that = 1 - f and q =

1 - g satisfy

l' = [1 - - (n - 1)ahf + (n - 1)af + (n - 1)ax, [17a]

0' = a + (1- a)+i + [(n - 1)a + r]x, [17b]

where x is given by [14]. Let f signify the eigenvalues that
control convergence to genetic homogeneity and put E = 1 -
g. From [13], EO = + na + r; the homogeneous part of [17]
yields the other two eigenvalues:

E+ =={6 + na + [(0 + na)2 - 4a611/2}. [18]

It is easy to show that Eo > En > E_ > 0; therefore, the
characteristic convergence time is (2, 14)

T = 2/E_. [19]

In contrast to the characteristic time for intrachromosomal
conversion (2, 14), T is independent of r; the scaled conver-
gence time r = TIN depends only on n and a0. Elementary
manipulation of [18] and [19] leads to the lower bound

T > max(2/a,4nN). [20]

This bound is approached in two extreme cases:

2/a, 2nNa << 1, [21a]
4nN, 2nNa >> 1. [21b]

Thus, if conversion is much weaker than random drift, so
that the intralocus variability disappears much faster than
the interlocus variability, the convergence time is approxi-
mately that for a single chromosome lineage (2, 11, 14). If
conversion is much stronger than random drift, T is close to
the characteristic convergence time for 2nN genes (4, 5, 13,
16). From [18] and [19] we can prove the intuitively reason-
able results that T increases as N or n (with a or X fixed)
increases and T decreases as a increases. Table 2 gives val-
ues of r for some values of n and Ko = NX.

Table 2. Scaled convergence time

o\ n 2 5 10 20 30 40

0.1 24.8 67.0 137 277 417 557
0.2 15.4 42.7 87.7 178 268 358
0.5 10.5 28.6 58.6 119 179 239
1.0 9.12 24.2 49.2 99.2 149 199
2.0 8.53 22.0 44.6 89.6 135 180
3.0 8.35 21.4 43.0 86.4 130 173
4.0 8.26 21.0 42.3 84.8 127 170
5.0 8.20 20.8 41.8 83.8 126 168

4. Discussion

We have formulated and investigated a model for the evolu-
tion of the probabilities of genetic identity within and be-
tween loci of a multigene family in a finite population. The
model incorporates unbiased interchromosomal gene con-
version, equal crossing-over between tandemly repeated
genes, random genetic drift, and mutation to new alleles.
The probabilities of identity converge globally to an equilib-
rium, which corresponds to complete homology within and
between loci if and only if there is no mutation. The amount
of homology at equilibrium and the characteristic conver-
gence time are independent of the crossover frequency. In
many cases, if mutation is negligible, essentially total se-
quence and population homogeneity will be attained in an
evolutionarily short time.

It is interesting to compare the evolutionary consequences
of interchromosomal conversion with those of intrachromo-
somal conversion. The easiest way of doing this is to equate
values of X, u, N, and n; the results for intrachromatid con-
version, which we use for comparison, also depend on the
crossover rate and the molecular details of the conversion
process (2). Limiting cases and numerical results (2, 15) indi-
cate that the equilibrium homologies for interchromosomal
conversion may be close to or significantly less than the cor-
responding homologies for intrachromatid conversion. Oc-
casionally, the homology within loci for interchromosomal
conversion exceeds the corresponding homology for intra-
chromatid conversion, but no such reversal was observed
for the homology between loci. Limiting cases and numerical
results (2, 14) also suggest that the typical convergence time
for interchromosomal conversion always exceeds the corre-
sponding time for intrachromatid conversion; it appears that
the former greatly exceeds the latter if conversion is much
stronger than crossing-over and random drift (X >> r,1/N)
and the number of repeats is large (n >> 1).

If there is no mutation, the probability that a repeat of a
particular type is fixed is equal to its initial frequency
(regardless of position) in the population (cf. ref. 2).

If the population does not reproduce in the ideal manner of
our model (i.e., by sampling from an infinite gametic pool),
we must replace everywhere the actual population number,
N, by the inbreeding effective population number (17), Ne.
Thus, 0 = 1/(2Ne).
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