Skip to main content
Indian Journal of Clinical Biochemistry logoLink to Indian Journal of Clinical Biochemistry
. 2004 Jan;19(1):1–5. doi: 10.1007/BF02872379

Dietary restriction (DR) and its advantages

M N Astagimath 1,, Shrinivas B Rao 1,
PMCID: PMC3453894  PMID: 23105416

Abstract

Dietary restriction (DR) also called dietary control or calorie restriction is reported to have many advantages with regard to human health. It leads to suppression of obesity, mitigates free radicals and increases available antioxidants which are accounted for extending the life span of individuals. DR is also reported to induce synthesis of heat shock proteins in animals as a control mechanism against stress. Further, it is known to play a significant role in decreasing toxicity and lethality due to a variety of toxic chemicals and drugs by stimulating tissue repair damaged by the toxicants leading to restoration of intact organ and its functions. Moreover, extensive work done on animals indicate DR has an important role in suppressing certain types of cancer. In this review an effort is made to highlight the various advantages of DR from the point of human health perspective.

Key Words: Calorie restriction, hepatocellular regeneration, obesity, cancer, reactive oxygen species, dietary restriction, aging, toxicity

Full Text

The Full Text of this article is available as a PDF (411.3 KB).

References

  • 1.Masaro E.E. Food restriction in rodents: An evaluation of its role in the study of aging. J. Gerontol. 1988;43:59–64. doi: 10.1093/geronj/43.3.b59. [DOI] [PubMed] [Google Scholar]
  • 2.Kari F.W., Dunn S.E., French J.E., Barrett J.C. Roles for insulin-like growth factor-1 in mediating the anti-carcinogenic effects of caloric restriction. J. Nutr. Health Aging. 1999;3:92–101. [PubMed] [Google Scholar]
  • 3.Skillman, T.G. and Tzagournis, M. (1978) Diabetes mellitus. College of Medicine, Ohio State Uni. Upjohn publishers.
  • 4.Flier J.S. In: Obesity in Harrison’s principles of internal medicine. 15th Ed. Braunwald E., Fauci A.S., Kasper D.L., Hauser S.L., Longo D.L., Jameson J.L., editors. Hill N. York: Mc Graw; 2001. pp. 479–490. [Google Scholar]
  • 5.Lissner L., Heitmann B.L. Dietary fat and obesity. Evidence from Epidemiology. Eur. J. Clin. Nutr. 1995;49:79–85. [PubMed] [Google Scholar]
  • 6.Vasudevan D.M., Shreekumari S. Textbook of Biochemistry. 3rd Ed. New Delhi: Jaypee Brothers Medical publishers Ltd.; 2001. pp. 95–102. [Google Scholar]
  • 7.Kovach M.K., Hermann M., Winick M. The psychological ramnification of weight management. J. Women’s Health, Gender Based Medicine. 1999;8:477–482. doi: 10.1089/jwh.1.1999.8.477. [DOI] [PubMed] [Google Scholar]
  • 8.Zachwieja J.J. Exercise as treatment for obesity. Endocrinol. Metab. Clin. North Am. 1996;25:965–988. doi: 10.1016/S0889-8529(05)70365-0. [DOI] [PubMed] [Google Scholar]
  • 9.Kennedy E.T., Bowman S.A., Spence J.T., Freedman M., King J. Popular diets: correlation to health, nutrition and obesity. J. Am. Diet. Assoc. 2001;101:411–420. doi: 10.1016/S0002-8223(01)00108-0. [DOI] [PubMed] [Google Scholar]
  • 10.Cowburn G., Hillsdon M., Hankey C.R. Obesity management by life style strategies. Br. Med. Bull. 1997;53:389–408. doi: 10.1093/oxfordjournals.bmb.a011619. [DOI] [PubMed] [Google Scholar]
  • 11.Narasimhaswamy K.N., Ramaswamy C., Rao S.B., Vasudev R. Anorexigenic effect of fecal extract from ventro medial hypothalamic lesioned rats on normal rats. Indian J. Expt. Biol. 1995;33:101–104. [PubMed] [Google Scholar]
  • 12.Barzilai N., Gabriely I. The role of fat depletion in the biological benefits of caloric restriction. J. Nutr. 2001;131:903–906. doi: 10.1093/jn/131.3.903S. [DOI] [PubMed] [Google Scholar]
  • 13.Lindsay D.G. Diet and Aging: The possible relation to reactive oxygen species. J. Nutr. Health Aging. 1999;3:77–83. [PubMed] [Google Scholar]
  • 14.Nicolas A.S., Lanzmann-Petithory D., Vellas B. Caloric restriction and aging. J. Nutr. Health Aging. 1999;3:77–83. [PubMed] [Google Scholar]
  • 15.Landsberg L. Weight reduction and obesity. Clin. Exp. Hyperten. 1999;21:763–768. doi: 10.3109/10641969909061006. [DOI] [PubMed] [Google Scholar]
  • 16.Scacchi M., Pincelli A.J., Cavagni F. Growth hormone in obesity. Int. J. Obes. Related Metab. Disorders. 1999;23:260–271. doi: 10.1038/sj.ijo.0800807. [DOI] [PubMed] [Google Scholar]
  • 17.Shephard R.J., Sherk P.N. Associations between physical activity and susceptibility to cancer, possible mechanisms. Sports. Med. 1998;26:293–315. doi: 10.2165/00007256-199826050-00002. [DOI] [PubMed] [Google Scholar]
  • 18.Levin B.E. The Obesity epidemic: Metabolic imprinting on genetically susceptible neural circuits. Obes. Res. 2000;8:342–347. doi: 10.1038/oby.2000.41. [DOI] [PubMed] [Google Scholar]
  • 19.Hermansen K. Diet, blood pressure and hypertension. Br. J. Nutr. 2000;83:113–119. doi: 10.1017/S0007114500001045. [DOI] [PubMed] [Google Scholar]
  • 20.Ramaiah S.K., Apte U., Mehendale H.M. Diet restriction as a protective mechanism in non-cancer toxicity outcomes: A review. Int. J. Toxicol. 2000;19:413–424. doi: 10.1080/109158100750058776. [DOI] [Google Scholar]
  • 21.Kari F., Hatch G., Slade R., Crissman K., Simeonova P.P., Luster M. Dietary restriction mitigates ozone induced lung inflammation in rats: A Role for endogenous antioxidants. Am. J. Respir. Cell Mol. Biol. 1997;17:740–747. doi: 10.1165/ajrcmb.17.6.2844. [DOI] [PubMed] [Google Scholar]
  • 22.Feners R.J., Duffy P.H., Leykey J.E.A., Turlutto A., Mittelmaedi R.A., Hari R.W. Effects of chronic caloric restriction on hepatic enzyme of intermediary metabolism in the male F344 rat. Mech. Ageing Dev. 1989;48:179–189. doi: 10.1016/0047-6374(89)90049-3. [DOI] [PubMed] [Google Scholar]
  • 23.Leakey J.E.A., Seng J.E., Barnas C.R., Baker V.M., Hart R.W. A mechanistic basis for the beneficial effects of dietary restriction on longevity and disease. Consequences for the interpretation of rodent toxicity studies. Int. J. Toxicol. 1998;17:5–56. [Google Scholar]
  • 24.Duffy P.H., Feuers R.J., Pipkin J.L., Berg J.F., Leakey J.E.A., Turturro A., Hart R.W. In: The effects of dietary restriction and aging on the physiological response of rodents to drugs. In dietary restriction: Implications for the design and interpretation of toxicity and carcinogenecity studies. Hart RW, Neumann DA, Robertson RT, editors. Washington DC: ILSI Press; 1995. pp. 127–140. [Google Scholar]
  • 25.Aly K.B., Pipkin J.L., Hinson W.G., Feuers R.J., Duffy P.H., Lyn Cook L., Hart R.W. Chronic caloric restriction induces stress proteins in the hypothalamus of rat. Mech. Aging Dev. 1994;76:11–23. doi: 10.1016/0047-6374(94)90003-5. [DOI] [PubMed] [Google Scholar]
  • 26.Berg T.F., Breen P.J., Feuers R.J., Oriaku E.T., Chen F.X., Hart R.W. Acute toxicity of ganciclovir, effects of dietary restriction and chronobiology. Food Chem. Toxicol. 1994;32:45–50. doi: 10.1016/0278-6915(84)90035-8. [DOI] [PubMed] [Google Scholar]
  • 27.Soll A.H., Weinstein W.M., Kurata J., McCarthy D. Nonsteroidal anti inflammatory drugs and peptic ulcer disease. Ann. Intern. Med. 1991;114:307–319. doi: 10.7326/0003-4819-114-4-307. [DOI] [PubMed] [Google Scholar]
  • 28.Kauffman G. Aspirin induced gastric mucosal injury: Lessons learned from animal models. Gastroenterology. 1989;96:606–614. doi: 10.1016/s0016-5085(89)80056-3. [DOI] [PubMed] [Google Scholar]
  • 29.Lee M., Devi B.G. Effects of dietary restriction on experimental gastric mucosal injury in Fischer 344 rats. Mech. Aging Dev. 1996;89:11–20. doi: 10.1016/0047-6374(96)01731-9. [DOI] [PubMed] [Google Scholar]
  • 30.Rao S.B., Young R.A., Mehendale H.M. Hepatic polyamines and related enzymes following chlordecone potentiated enzymes following chlordecone potentiated CC14 toxicity in rats. J. Biochem. Toxicol. 1989;4:55–63. doi: 10.1002/jbt.2570040110. [DOI] [PubMed] [Google Scholar]
  • 31.Rao S.B., Mehendale H.M. Protective role of fructose 1,6-bisphosphate during CC14 hepatotoxicity in rats. Biochem. J. 1989;262:721–725. doi: 10.1042/bj2620721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Rao S.B., Mehendale H.M. Protection from chlordecone(kepone)-potentiated CC14 hepatotoxicity in rats by fructose 1,6-diphosphate. Int. J. Biochem. 1989;21:949–954. doi: 10.1016/0020-711X(89)90225-5. [DOI] [PubMed] [Google Scholar]
  • 33.Dajani O.F., Refsnes M., Guren T.K., Horn R.S., Thoresen G.H., Christoffersen T. Elevated glucose concentrations inhibit DNA synthesis and expression of C-myc in cultured hepatocytes. Biochem. Biophys. Res. Commun. 1994;202:1476–1482. doi: 10.1006/bbrc.1994.2097. [DOI] [PubMed] [Google Scholar]
  • 34.Mehendale H.M. Role of hepatocellular regeneration and hepatolobular healing in the final outcome of liver injury. A two stage model of hepatotoxicity. Biochem. Pharmacol. 1991;42:1155–1162. doi: 10.1016/0006-2952(91)90249-5. [DOI] [PubMed] [Google Scholar]
  • 35.Soni M.G., Mehendale H.M. Role of tissue repair in toxicological interaction among hepatologic organics. Environ. Health Perspect. 1998;106:1307–1317. doi: 10.1289/ehp.98106s61307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Calabrese E.J., Mehendale H.M. A review of the role of tissue repair as an adaptive strategy: Why low doses are often non-toxic and high doses are fatal. Food Chem. Toxicol. 1996;34:301–311. doi: 10.1016/0278-6915(95)00101-8. [DOI] [PubMed] [Google Scholar]
  • 37.Mehendale H.M. Amplified interactive toxicity of chemicals at non toxic levels: mechanistic considerations and implications to public health. Environ. Health Perspect. 1994;10:139–149. doi: 10.1289/ehp.94102s9139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Ramaiah S.K., Soni M.G., Seng J., Leakey J.E.A., Mehendale H.M. Molecular players in increased thioacetamide hepatic injury and decreased mortality following diet restriction. Toxicol. Sci. 1999;48:164–171. [Google Scholar]
  • 39.Ramaiah S.K., Warbritton A., Bucci T.J., Soni M.G., Mehendale H.M. Temporal changes in tissue repair response permit survival of diet restricted rats from an acute lethal dose of thioacetamide. Mechanism of survival. Toxicol. Sci. 1998;45:233–241. doi: 10.1006/toxs.1998.2511. [DOI] [PubMed] [Google Scholar]
  • 40.Soni M.G., Ramaiah S.K., Mumtaz M.M., Clewell H., Mehendale H.M. Toxicant inflicted injury and stimulated tissue repair are opposing toxicodynamic forces in predictive toxicology. Regul. Phamacol. Toxicol. 1999;29:165–174. doi: 10.1006/rtph.1998.1280. [DOI] [PubMed] [Google Scholar]
  • 41.Hart R.W., Leakey J., Duffy P.H., Feuers R.J., Turturro A. The effects of dietary restriction on drug testing and toxicity. Exp. Toxicol. Pathol. 1996;48:121–127. doi: 10.1016/S0940-2993(96)80032-7. [DOI] [PubMed] [Google Scholar]
  • 42.Barrett J.C. Molecular and environmental causes of cancer. Drug Metab. Rev. 2000;32:139–142. doi: 10.1081/DMR-100100567. [DOI] [PubMed] [Google Scholar]
  • 43.Klaunig J.E., Kamendulis L.M. Mechanism of cancer chemoprevention in hepatic carcinogenesis: modulation of focal lesion growth in mice. Toxicol. Sci. 1999;52:101–106. doi: 10.1093/toxsci/52.2.101. [DOI] [PubMed] [Google Scholar]
  • 44.Hikita H., Vaughan J., Babcock K., Pitot H.C. Short term fasting and the reversal of the stage of promotion in rat hepatocarcinogenesis: role of cell replication, apoptosis and gene expression. Toxicol. Sci. 1999;52:17–23. doi: 10.1093/toxsci/52.2.17. [DOI] [PubMed] [Google Scholar]
  • 45.Kritchevsky D. Caloric restriction and experimental mammary carcinogenesis. Breast Cancer Res. Treat. 1999;46:161–167. doi: 10.1023/A:1005960410225. [DOI] [PubMed] [Google Scholar]
  • 46.Kritchevsky D. Caloric restriction and experimental mammary carcinogenesis. Breast Cancer Res. Treat. 1997;46:161–167. doi: 10.1023/A:1005960410225. [DOI] [PubMed] [Google Scholar]
  • 47.Yoshida K., Inoue T., Nojima K., Hirabayashi Y., Sado T. Caloric restriction reduces the incidence of myeloid leukemia induced by a single whole body radiation in C3H/He mice. Proc. Nat. Acad. Sci. 1997;94:2615–2619. doi: 10.1073/pnas.94.6.2615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.James S.J., Muskhellshvili L. Rates of apoptosis and proliferation vary with caloric intake and may influence incidence of spontaneous hepatoma in C57BL/6xc3HFI mice. Cancer Res. 1994;54:5508–5510. [PubMed] [Google Scholar]
  • 49.Steinbach G., Heymsfield S., Olansen N.E., Tighe A., Holt P.R. Effect of caloric restriction on colonic proliferation in obese persons: Implications for colon cancer prevention. Cancer Res. 1994;54:1194–1197. [PubMed] [Google Scholar]
  • 50.Roebuck B.D., Baumgartner K.J., MacMillan D.L. Caloric restriction and intervention in pancreatic carcinogenesis in the rat. Cancer Res. 1993;53:46–52. [PubMed] [Google Scholar]
  • 51.Weindruch R., Sohal R.S. Caloric intake and aging. N Engl. J. Med. 1997;337:986–994. doi: 10.1056/NEJM199710023371407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Duffy P.H., Feuers R.J., Leakey J.E.A., Nakamura K., Turturro A., Hart R.W. Effect of chronic caloric restriction on physiological variables that modulate energy metbolism in the male Fischer-344 rat. Mech. Aging Dev. 1989;48:117–133. doi: 10.1016/0047-6374(89)90044-4. [DOI] [PubMed] [Google Scholar]
  • 53.Youngman L.D. Protein restriction (PR) and caloric restriction (CR) compared: Effects of DNA damage, carcinogenesis and oxidative damage. Mutat. Res. 1993;295:165–179. doi: 10.1016/0921-8734(93)90018-x. [DOI] [PubMed] [Google Scholar]
  • 54.Rogers A.E., Zeisel S.H., Groopman J. Diet and carcinogenesis. Carcinogenesis. 1993;14:2205–2217. doi: 10.1093/carcin/14.11.2205. [DOI] [PubMed] [Google Scholar]
  • 55.Weindruch R., Albanes B., Kritchevsky D. The role of calories and caloric restriction in carcinogenesis. Hematol. Oncol. Clin. North Am. 1991;5:79–89. [PubMed] [Google Scholar]
  • 56.Krishnaswamy K., Polasa K. Non-nutrients and cancer prevention. ICMR Bull. 2001;31:1–9. [Google Scholar]

Articles from Indian Journal of Clinical Biochemistry are provided here courtesy of Springer

RESOURCES