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Abstract

Background: A number of case-control studies were conducted to investigate the association of common type 2 diabetes
(T2D) risk gene polymorphisms with gestational diabetes mellitus (GDM). However, these studies have yielded contradictory
results. We therefore performed a meta-analysis to derive a more precise estimation of the association between these
polymorphisms and GDM, hence achieve a better understanding to the relationship between T2D and GDM.

Methods: PubMed, EMBASE, ISI web of science and the Chinese National Knowledge Infrastructure databases were
systematically searched to identify relevant studies. Data were abstracted independently by two reviewers. A meta-analysis
was performed to examine the association between 9 polymorphisms from 8 genes and susceptibility to GDM. Odds ratios
(ORs) and 95% confidence intervals (95% CIs) were calculated. Heterogeneity among articles and their publication bias were
also tested.

Results: We identified 22 eligible studies including a total of 10,336 GDM cases and 17,445 controls. We found 8 genetic
polymorphisms were significantly associated with GDM in a random-effects meta-analysis. These polymorphisms were in or
near the following genes: TCF7L2 (rs7903146), MTNR1B (rs10830963), IGF2BP2 (rs4402960), KCNJ11 (rs5219), CDKAL1
(rs7754840), KCNQ1 (rs2237892 and rs2237895) and GCK (rs4607517); while no association was found for PPARG with GDM
risk. Similar results were also observed under dominant genetic model for these polymorphisms.

Conclusions: This meta-analysis found 8 genetic variants associated with GDM. The relative contribution and relevance of
the identified genes in the pathogenesis of GDM should be the focus of future studies.
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Introduction

Gestational diabetes mellitus (GDM) is defined as glucose

intolerance that is first detected during pregnancy [1]. It is

characterized by impaired insulin secretion and action [2,3].

Gestational diabetes complicates about 1–3% of all pregnancies in

the western world [4], whereas 5–10% among of Asian women

[5]. Although its exact etiology is unknown, accumulating

evidence recognizes GDM as a quintessential multifactorial disease

in which environmental triggers interact with genetic variants [6].

Given the fact that women with a history of GDM are at an

increased risk of developing type 2 diabetes (T2D) later in their

lives [7] and women with a family history of diabetes may be

predisposed to an increased risk of GDM [8], it is plausible to

hypothesize that GMD may share the same risk factors and

genetic susceptibilities with T2D. However, knowledge regarding

the genetics of GDM is very limited so far [9].

Recently, spectacular advance was made in identifying suscep-

tible genes involved in T2D through genome-wide association

strategy (GWAS) [10,11]. Consequently, a number of novel

genetic variants (PPARG, KCNJ11, IGF2BP2, KCNQ1, TCF7L2,

CDKAL1, and MTNR1B) were shown to increase the risk of T2D in

reproducible studies. Therefore, several studies have examined the

association of these newly identified loci using a candidate gene

approach for GDM. It has been reported that the pathophysio-

logical changes of GDM are similar to those observed in T2D,

which is characterized by peripheral insulin resistance accompa-

nied by an insulin secretory defect [12,13]. Functional studies

showed that these new diabetogenic genes took part in many steps

of the process, for instance, impaired b-cell function (CDKAL1,

IGF2BP2, KCNQ1, KCNJ11, MTNR1B), insulin resistance (PPARG,

TCF7L2), and abnormal utilization of glucose (GCK) [14–23].

Genetic association studies can be problematic to reproduce due

to inadequate statistical power, multiple hypothesis testing,

population stratification, publication bias, and phenotypic hetero-
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geneity. Considering the lack of sufficient evidence about the effect

of candidate genes of T2D on GDM and the conflicting results

reported, we therefore performed a meta-analysis to assess the

association between the most commonly studied polymorphisms in

the PPARG, CDKAL1, KCNQ1, IGF2BP2, TCF7L2, KCNJ11,

MTNR1B, GCK genes and GDM risk.

Materials and Methods

Literature search strategy
Genetic association studies polymorphism and GDM risk

published up to April, 2012 were identified through systematic

searches in PubMed, EMBASE, ISI Web of Science and the

Chinese National Knowledge Infrastructure (CNKI) databases.

No language restrictions were applied. The search strategy

consisted of multiple queries combining: ‘gestational diabetes

mellitus’ and ‘variations’ or ‘polymorphisms’. In addition, the

names of specific genes and polymorphisms were combined with

the topic ‘gestational diabetes mellitus’. All reference lists from the

main reports and relevant reviews were hand searched for

additional eligible studies.

Eligible studies and data extraction
Eligible studies had to meet all the following criteria: (1) original

papers containing independent data, (2) identification of gesta-

tional diabetes mellitus cases was confirmed pathologically, (3)

case–control or cohort studies and (4) genotype distribution

information in cases and controls or odds ratio (OR) with its

95% confidence interval (CI) and P-value. The major reasons for

exclusion of studies were (1) overlapping data; (2) case-only studies,

family based studies, and review articles.

Data extraction was performed independently by two reviewers.

Review reports from the two were than compared to identify any

inconsistency, and differences were resolved by further discussion

among all authors. For each included study, the following

information was extracted from each report according to a fixed

protocol: first author’s surname, publication year, definition and

numbers of cases and controls, frequency of genotypes, Hardy–

Weinberg equilibrium status, source of controls, mean age of cases

and controls, body mass index (BMI), ethnicity, and genotyping

method.

Statistical methods
The strength of association between the genetic polymorphism

and GDM was accessed by calculating odds ratio (OR) with 95%

confidence interval (CI). For single nucleotide polymorphisms

(SNPs), the frequency of the risk allele was compared between

diabetic cases and non-diabetic controls. Additional pooled

estimates were also given with corresponding results under

dominant genetic model.

Cochran’s chi-square-based Q statistic test was performed in

order to assess possible heterogeneity between the individual

studies and thus to ensure that each group of studies was suitable

for meta-analysis [24]. ORs were pooled according to the method

of DerSimonian and Laird that takes into account the variation

between studies, and 95% CI were constructed using Woolf’s

method [25,26]. The Z test was used to determine the significance

of the pooled OR. Pre-specified stratified analyses were performed

to explain heterogeneity or investigate whether the reported

association was present in a subgroup. Stratified analysis was

performed for ethnicity (Caucasian vs East Asian origin).

Funnel plots was used to provide diagnosis of the potential

publication bias. Egger’s regression test was also conducted to

identify small study effects [27]. Chi-square test was used to check

if there was significant deviation from Hardy–Weinberg equilib-

rium (HWE) among the control subjects in each study. All

statistical analyses were carried out with the Stata software version

10.0 (Stata Corporation, College Station, TX). The type I error

rate was set at 0.05. All the p-values were for two-sided analysis.

Results

Characteristics of studies
In all, we included 22 studies in this meta-analysis, with a total

of 10,336 cases and 17,445 controls concerning 9 genetic variants

in or near 8 genes. The detailed characteristics of the studies

included were shown in Table 1. The study selection process is

shown in Figure 1. These polymorphisms were found to occur in

frequencies consistent with Hardy–Weinberg equilibrium in the

control populations of the vast majority of the published studies.

Details of analyses of all assessed genetic variants are provided in

Table 2.

Genetic variants involved in b-cell function
Six genetic variants in five genes thought to be related to b-cell

function were reproducibly associated with GDM. rs4402960 of

IGF2BP2 was associated with GDM (OR = 1.21, 95% CI = 1.08–

1.36, P = 0.001; Supplementary figure 1) in four studies

(n = 8,732), also in the subgroup among East Asian diabetes

mellitus patients (OR = 1.24, 95% CI = 1.07–1.44, P = 0.004). The

rs10830963 in MTNR1B were studied in five studies concerning

diabetic patients form East Asian population. The overall OR of

the G allele for GDM was 1.34 (95% CI = 1.18–1.52, P,1025;

Supplementary figure 2). CDKAL1 rs7754840 polymorphism was

studied in four studies and was associated with GDM in the meta-

analysis (OR = 1.43, 95% CI = 1.20–1.71, P,1024; Supplemen-

tary figure 3). All four studies contained diabetic patients of East

Asian descent. For KCNJ11 rs5219, our meta-analysis gave an

overall OR of 1.15 (95% CI = 1.06–1.24, P = 0.0004; Supplemen-

tary figure 4) without statistically significant between-study

heterogeneity. Significantly increased GDM risks were also found

for Caucasian and East Asian populations when stratified by

ethnicity. Significantly increased GDM risks were found for

rs2237892 and rs2237895 of KCNQ1 with per-allele OR of 1.20

(95% CI = 1.09–1.31, P,1024; Supplementary figure 5) and 1.20

(95% CI = 1.09–1.31, P = 0.0001; Supplementary figure 6) respec-

tively. In addition, statistically significant results were also

observed for these polymorphisms under dominant genetic model.

After adjusting for multiple testing using Bonferroni correction, all

significant associations for these polymorphisms under the allelic

comparison and dominant genetic model remained.

Genetic variants involved in insulin resistance
A variant in PPARG, rs1801282, was the most studied

polymorphism in GDM, with 11 data sets resulting in a pooled

odds ratio of 1.01 (95% CI = 0.96–1.06, P = 0.80, Supplementary

figure 7). Subsidiary analyses of ethnicity yielded a per-allele OR

for East Asians of 1.02 (95% CI: 0.93–1.11, P = 0.70) and for

Caucasians of 1.00 (95% CI: 0.94–1.06, P = 0.98). Similar results

were also detected under dominant genetic model.

rs7903146 of TCF7L2, which is an important component in

Wnt signaling pathway involved in development of the pancreas

and islets, was associated with GDM (C allele: OR = 1.51, 95%

CI = 1.39–1.65, P,1025, Supplementary figure 8; dominant

model: OR = 1.69, 95% CI = 1.51–1.89, P,1025). Stratification

by ethnicity indicated that the polymorphism was significantly

associated with GDM for East Asians and Caucasians in all genetic
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models. After Bonferroni correction, significant associations still

maintained for the polymorphism.

Genetic variants involved in glucose utilization
rs4607517 of GCK, which is first rate-limiting step in the

glycolysis pathway, was significantly associated with GDM in the

meta-analysis (OR = 1.12, 95% CI = 1.02–1.23, P = 0.01, Supple-

mentary figure 9). Similar results were also found using dominant

genetic model with OR of 1.15 (95% CI = 1.01–1.30, P = 0.04).

However, for GCK rs4607517 association was no longer

statistically significant using dominant genetic model after

Bonferroni correction.

Publication bias
Begger’s funnel plot and Egger’s test were used to identify the

potential publication biases of the literature, the shapes of the

funnel plots appeared to be symmetrical (Supplementary figure

10–18) for polymorphisms in PPARG, TCF7L2, MTNR1B,

IGF2BP2, KCNJ11, CDKAL1, KCNQ1 and GCK, suggesting that

there was no obvious publication bias. Egger’s test was used to

provide further statistical evidence; similarly, the results showed no

significant publication bias in this meta-analysis for these

polymorphisms (P.0.05 for all polymorphisms).

Discussion

Large sample and unbiased epidemiological studies of predis-

position genes polymorphisms could provide insight into the in

vivo relationship between candidate genes and complex diseases.

In this meta-analysis, 8 genetic variants were found to be

associated with increased GDM susceptibility. Genetic studies of

several T2D associated variants in relation to GDM has been

performed previously, but this is the first complete overview

assessing for these genetic variants that are reproducibly associated

with the presence of GDM. This information could lead to

improved insight into underlying pathogenetic mechanisms and

the relationship between GDM and T2D. These results support a

role for the following in the pathogenesis of GDM: impaired b-cell

function, insulin resistance and abnormal utilization of glucose.

During pregnancy, women are faced with increased adiposity and

increased insulin resistance. The insulin resistance that develops

Figure 1. The flow chart of the included studies.
doi:10.1371/journal.pone.0045882.g001
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during pregnancy is explained in part by the increased production

of human placental lactogen, estrogen, and prolactin [48–50].

Those who have limited b-cell capacity for the compensation of

insulin resistance are likely to develop GDM [9]. Women with

GDM are assumed to have decreased b-cell insulin secretory

function similar to T2D [9]. After parturition, nearly one-half of

these women progress to T2D within 5 years [51–53]. Therefore,

GDM is often regarded as a herald of type 2 diabetes in later life.

Functional studies remain to be performed to establish the precise

roles of these variants and pathways.

The identification of GDM susceptibility variants can lead to

novel biological insights and improved measures of individual

etiological processes, as indicated previously [54]. Individual

etiological processes could allow preventive and therapeutic

interventions in complex disease to be tailored to individuals on

the basis of their genetic profiles. From prediction studies with

genetic variants for T2D, it has been shown that 20 established

genetic variants in T2D have an AUC of 0.54 (0.5 means no

predictive value, 1.0 is perfect prediction), in contrast to the

Framingham offspring and Cambridge risk scores (AUC of 0.78

and 0.72, respectively). Interestingly, addition of genetic informa-

tion to phenotype-based risk models did not improve prediction

[55]. It is also possible that for GDM the genotypic risk does not

exceed the risk contributed by conventional risk factors (e.g. BMI,

age, term of pregnancies), which means that the predictive value of

risk variants for GDM would be limited [56]. Although genetic

prediction and use of personalized medicine in GDM remains a

new undertaking, prediction is likely to improve as additional

disease variants are detected and replicated [57].

Novel biological insights may lead to development of new

therapeutic targets, biomarkers and opportunities for disease

prevention. Hypothesis-free approaches, such as GWAS, are most

promising in this respect. At present, it seems wise to focus on

assessing the relevance of previously detected genetic variants. As

common SNPs associated with GDM and detected by GWAS may

represent rare genetic variants with large effects, sequencing the

regions surrounding highly significant and replicated genomic

regions to detect rare variants appears to be reasonable. Follow-up

in vitro and in vivo studies could then assess the functional

relevance of these variants in GDM.

In interpreting the results, some limitations of this meta-analysis

should be addressed. Publication bias is a concern in all meta-

analyses even though the use of a statistical test did not show it.

Negative studies are less likely to be published, potentially leading

to an overestimation of effects. Moreover, non-significant genetic

associations might have been underreported in published articles.

Therefore, the effect estimates of the present study should be

interpreted with caution, especially in cases where associations

were based on small numbers of studies and/or small sample

numbers. Second, in the subgroup analysis by ethnicity, the

number of studies and subjects analyzed was small, and the

statistical power was so low that caution should be taken in

interpreting these results. Finally, the overall outcomes were based

on individual unadjusted ORs, while a more precise evaluation

should be adjusted by other potentially suspected factors including

age, BMI, and environmental factors.

To the best of our knowledge, this study was the first

comprehensive meta-analysis to assess the relationship between

the T2D related gene polymorphisms and GDM susceptibility.

Table 2. Results of the pooled data analyses for the 9 studied polymorphisms and gestational diabetes mellitus risk.

Variants per
gene

Risk
allele Total/subgroup

No. data
sets

No. of case/
control Risk allele Dominant model

OR (95%CI) P(Z) P(Q) OR (95%CI) P(Z) P(Q)

PPARG
rs1801282

C Total 11 2908/6940 1.01 (0.96–1.06) 0.80 1.00 1.14 (0.68–1.91) 0.63 0.45

Caucasian 5 1559/5721 1.00 (0.94–1.06) 0.98 0.99 1.01 (0.58–1.76) 0.98 0.44

East Asian 4 1149/1035 1.02 (0.93–1.11) 0.70 0.99 2.43 (0.38–15.43) 0.35 0.27

TCF7L2
rs7903146

T Total 6 3148/6550 1.51 (1.39–1.65) ,1025 0.77 1.69 (1.51–1.89) ,1025 0.51

Caucasian 4 1812/4681 1.51 (1.38–1.65) ,1025 0.48 1.71 (1.49–1.96) ,1025 0.28

East Asian 2 1336/1869 1.55 (1.16–2.09) 0.004 0.90 1.56 (1.24–2.22) 0.001 0.75

MTNR1B
rs10830963

G Total 5 3094/4111 1.34 (1.18–1.52) ,1025 0.02 1.46 (1.25–1.72) ,1025 0.11

IGF2BP2
rs4402960

T Total 4 2304/5228 1.21 (1.08–1.36) 0.001 0.09 1.25 (1.07–1.49) 0.003 0.06

East Asian 3 2030/2894 1.24 (1.07–1.44) 0.004 0.07 1.27 (1.12–1.43) 0.0002 0.81

KCNJ11 rs5219 T Total 5 2305/5569 1.15 (1.06–1.24) 0.0004 0.99 1.25 (1.10–1.42) 0.001 0.88

Caucasian 3 991/3698 1.17 (1.05–1.30) 0.005 0.98 1.25 (1.07–1.46) 0.006 0.72

East Asian 2 1314/1871 1.13 (1.02–1.26) 0.03 0.93 1.11 (1.03–1.20) 0.02 0.29

CDKAL1
rs7754840

C Total 4 2959/3675 1.43 (1.20–1.71) ,1024 0.0003 1.51 (1.33–1.82) ,1024 0.008

KCNQ1
rs2237892

C Total 3 2285/2168 1.20 (1.09–1.31) ,1024 0.70 1.42 (1.18–1.71) 0.0002 0.97

KCNQ1
rs2237895

C Total 3 2286/2168 1.20 (1.09–1.31) 0.0001 0.75 1.31 (1.16–1.48) ,1024 0.54

GCK rs4607517 A Total 5 2135/4193 1.12 (1.02–1.23) 0.01 0.41 1.15 (1.01–1.30) 0.04 0.43

doi:10.1371/journal.pone.0045882.t002
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Our meta-analysis identified 8 genetic variants associated with

GDM. As studies among other populations are currently limited,

further studies including a wider spectrum of subjects should be

carried to investigate the role of those variants in other

populations, which should lead to better, comprehensive under-

standing of the association between the genetic polymorphism and

GDM. For future studies, gene–gene and gene–environment

interactions should also be considered.
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