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Abstract

An analytical model based on the statistical properties of Open Reading Frames (ORFs) of eubacterial genomes such as
codon composition and sequence length of all reading frames was developed. This new model predicts the average length,
maximum length as well as the length distribution of the ORFs of 70 species with GC contents varying between 21% and
74%. Furthermore, the number of annotated genes is predicted with high accordance. However, the ORF length distribution
in the five alternative reading frames shows interesting deviations from the predicted distribution. In particular, long ORFs
appear more often than expected statistically. The unexpected depletion of stop codons in these alternative open reading
frames cannot completely be explained by a biased codon usage in the +1 frame. While it is unknown if the stop codon
depletion has a biological function, it could be due to a protein coding capacity of alternative ORFs exerting a selection
pressure which prevents the fixation of stop codon mutations. The comparison of the analytical model with bacterial
genomes, therefore, leads to a hypothesis suggesting novel gene candidates which can now be investigated in subsequent
wet lab experiments.
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Introduction

The physical basis for heredity is the DNA double helix.

Proteins are encoded in Open Reading Frames (ORFs) delimited

by a start and stop codon. In prokaryotes, genes act as a basic

organizational unit at the genome level, since the coding density of

bacterial genomes is quite high compared to eukaryotes [1]. The

genome of a typical bacterium is somewhere in the range of 106 to

107 base pairs (bp), containing about 103 to 104 annotated genes.

However, the total number of possible ORFs is usually in the order

of 104 to 105. Although the number and the typical length of

ORFs may vary, bacteria share common characteristics of their

open reading frame length distribution, which is correlated to their

GC-content. Most ORFs are rather short. Investigating the

statistical properties of a genome with GC-content 21.4%, we

observe that 75% of all ORFs are shorter than 15 codons. On the

other hand, only 0.1% of all ORFs have lengths larger than

779 codons. The same tendency holds for a genome with a high

GC-content of 75:9%, in this case 75% of all ORFs are shorter

than 195 codons and a minority of 0:1% are larger than

1854 codons (own data). It is a well-known fact that the

distribution of the overall ORF lengths correlates with the GC-

content of a genome, simply because stop codons being AT-rich.

The GC-content of a genome also governs overall codon usage in

a genome [2,3]. Oliver et al. [2] calculated a theoretical stop codon

probability depending on the GC-content, and the expected

distribution of ORF lengths in a random model of independent

and identically (IID) chosen nucleotides. They found for the latter

that the probability to observe an ORF comprising more than

200 codons is rather small, despite varying the GC-content from

30% to 70%. However, their considerations are overly simplistic,

since the genetic code does not allow an IID behavior of the

nucleotides (Figure 1, IID nt). Since most parts of bacterial

genomes are covered by genes, the general statistical behavior of

bacterial genomes is expected to be determined by the codon

usage.

Distributions of ORF lengths in bacterial genomes have been

studied by Li [4] in some detail. An example of such a length

distribution is shown in Figure 1 for the genome of Escherichia coli

O157:H7 Sakai (EHEC, accession NC_002695).

Li [4] proposed a piece-wise exponential model for bacterial

ORF length distributions. The length L of a single ORF is

described using the probability density function

fL(l)~

A1e{l1l if 0vlvl0

A2e
{l2l

if l0vlvl1

0 else

8>>><
>>>:

,

for rates 0vl2vl1 and positive normalizing constants A1 and A2.

In the region of shorter ORFs (lvl0), the exponential distribution

decays faster, whereas the region of longer ORFs depicts a slower

decay rate. The parameter denotes the transition point between

the two exponential functions and parameter l1 is determined by

the maximal ORF length of a given genome. The length

distributions of four archaeal, 13 eubacterial, and one eukaryotic

genome have been studied by this author. Interestingly, the author

concluded that l0 is ,400 base pairs, irrespective for the organism
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studied. However, the equation proposed by Li [4] is empirical

only, and gives no mathematical explanation why such a transition

point l0 exists.

In a more recent study, McCoy et al. [5] proposed a different

model describing the natural ORF lengths as a mixture model of

two distributions

fL(l)~ple{llz(1{p)f (l), ð1Þ

for rate lw0, where p denotes a weighting factor and f (l)
represents the density function of either a lognormal or a gamma

distribution, depending on the organism investigated. The decision

which distribution is chosen was based on Akaike’s Information

Criterion. The authors noted that the exponential part of

Equation (1) is connected to random IID models of nucleotides.

Their choice of f (l) was motivated by the fact that the length

distribution of the annotated proteins is empirically described

either by a lognormal or a gamma distribution [6] with only minor

differences in 297 completely sequenced bacterial and 14

eukaryotic genomes. For short ORFs, McCoy et al. [5] predict a

one-to-one correspondence between l, which is estimated based

on the observed size distribution of ORFs and the stop codon

probability [2]. This is due to the fact that the length of random

sequences between successive occurrences of stop codons follows a

geometric distribution [7], which is approximated by an

exponential distribution in [5]. Note that the same holds for the

length distribution between a start and a stop codon. According to

Oliver et al. [2] the parameter of the exponential distribution is the

probability that a nucleotide triplet is a stop codon.

In this work, a random IID sequence, called Rcodon, based solely

on the codon usage of the bacterial genome and the genome

length is investigated. Additionally, we derived a theoretical

model, called mixture model, which is an approximation of the

artificial genome Rcodon, using average case analyses and

stationarity assumptions (see Materials and Methods). We used Rcodon

to verify the predictions of our analytical mixture model. Several

global properties of the underlying bacterial genome, such as the

total number of ORFs, the ratio of coding to non-coding ORFs

and the global ORF length distribution itself are predicted by the

model. We calculate the maximal ORF length that can be derived

from the model for each individual reading frame. Furthermore,

the influence of the GC-content and the sequence length on the

number of ORFs and the average ORF length directly follows

from the model. Thus, many over-all aspects of bacterial genomes

are attributable to codon usage statistics. Since our model is based

on statistical and not on empirical properties, deviations between

the model and bacterial genomes are a powerful predictor of

evolutionary constraints, which is in contrast to former proposals.

The interest of this paper lies in the statistical properties of

ORFs in order to investigate the potential existence of overlapping

genes. This term refers to a DNA locus encoding two proteins in

two different reading frames. Arrangements of such overlapping

genes have long been acknowledged in viruses. For instance, the

first completely sequenced genome, bacteriophage WX174,

displays a number of such overlapping genes [8]. However,

viruses are thought to be special cases due to genome size

restrictions caused by space limitations of the capsid volume [9].

For the most part, overlapping ORFs in alternative reading frames

are omitted in bacterial genome annotations [10–12] due to

obvious information content constraints [13]. Since bacterial

genomes are non-random strings of nucleotides, we hypothesize

that – if protein coding genes exist in alternative, overlapping

reading frames – the statistical parameters in overlapping frames

should be different from random expectation. Already in 1994,

Merino et al. [14], suggested that long ORFs in antisense (thus,

alternative reading frames 21 to 23) are a frequent, non-random

phenomenon in all organisms, primarily caused by codon usage.

They also hypothesized that especially the long ORFs in frame 21

could relate to an ancient genetic translation system preferring

certain codons [14]. However, most authors tended to reject

overlapping genes due to a so called ‘‘information content

constrains’’ as the major argument in later years (e.g.,

[10,11,13]). This constraint should limit evolution, since two

genes are interlocked. Despite, several overlapping genes have

been described in recent years, both from eukaryotes [15] and

bacteria, to which our study is limited. Jensen et al. [16] re-

annotated the genome of a Chlamydia species using a new gene-

finder program. Fifteen novel genes have been predicted

overlapping to already annotated genes. Transcription and other

circumventive evidence let the authors conclude that at least seven

of those are protein coding. The overlapping gene pair htgA/yaaW

from E. coli was considered to be overlapping, but htgA has been

removed from the annotated genome due to conflicting data

[17,18]. However, a plasmid-encoded gene from E. coli, tnpA,

forms a transposase-like protein and contains astA, a heat stable

enterotoxin [19,20]. In a close relative to E. coli, Shigella flexneri, the

overlapping gene pair pic/setAB had been identified. pic encodes a

mucinase which digests intestinal mucus and the genes setAB an

enterotoxin [21]. A series of publications about Pseudomonas

fluorescens identified several overlapping genes in this organism

(e.g., [22,23]). For some of the overlapping genes the protein-

products have been identified using mass spectrometry [24]. Last

but not least, Tunca et al. [25] used nicely designed strand specific

knock-out mutants to demonstrate a phenotype for both genes of

the overlapping gene pair dmdR1/adm. The former is a homolog of

a well-known class of iron regulators, the latter turned out to be

involved in the control of secondary metabolites. Both genes

overlap except a few base pairs in antiparallel fashion and are

about 700 bp in length [25]. Thus, increasing evidence as cited

above, from many different unrelated bacteria suggests that

overlapping genes are no rare biological oddities. In this work, we

Figure 1. ORF lengths distribution of Escherichia coli O157:H7
Sakai. ORF lengths are given in base pairs (bp). All ORFs in the six
possible reading frames are shown. The prediction of a simple model
based on independent and identically chosen nucleotides (IID nt) is not
able to reproduce the ORF distribution.
doi:10.1371/journal.pone.0045103.g001

Statistical Properties of Open Reading Frames

PLOS ONE | www.plosone.org 2 September 2012 | Volume 7 | Issue 9 | e45103



show that the amount of long ORFs in alternative frames of

bacterial genomes exceeds theoretical expectations.

Results and Discussion

A Random Model Genome
Due to its triplet code, double stranded DNA can encode six

different reading frames. Three frames (z1,z2,z3) on the DNA

strand in 5’ to 3’ direction and further three frames on the

antisense strand ({1,{2,{3). Throughout this work, reading

frame z1 is defined as the frame in which an annotated gene is

located. An open reading frame is defined as the region between a

start codon NTG, with N[N~fA,G,C,Tg, followed by number

of triplets (n§0) and concluded with one of the three possible stop

codons (TAG,TGA,TAA). Although some of the start codons are

rare (e.g., TTG,CTG [26–28]) they are used in bacteria and are

only a single point mutation away from the preferred start codons

ATG or GTG [29,30]. The total length of an ORF is given in base

pairs (bp) including the start and stop codon. We also use a

measure counting the codons within an ORF ignoring the stop

codon, since the latter is not translated into an amino acid (AA).

In this paper, most results presented are exemplified using the

genome of the pathogenic Escherichia coli O157:H7 Sakai (EHEC,

accession NC_002695, [27]), which is an important zoonotic and

food borne organism [31–34]. The GC-content is ,50%. The

artificial random genome model Rcodon is derived from the codon

usage of the respective natural genome. It comprises a random

sequence of IID codons of the organism investigated which has the

same length as the bacterial genome. All ORFs in frame z1 are

considered as ‘‘annotated’’ ORFs of Rcodon by definition. Further

bacterial genomes examined with other GC-contents are listed in

Table 3. Results for those organisms are mentioned if appropriate.

The global length distribution of the EHEC genome compared

to its artificial Rcodon genome shows excellent correspondence

(Figure 2, left panel). The same overall features of a high number

of short ORFs and lesser numbers of longer ORFs is observable

despite the fact that Rcodon depends on a relatively simple concept.

At this stage it is unclear, however, whether long ORFs are a

consequence of selective forces or whether they do appear

randomly. It would be helpful to distinguish between ORFs that

either can be traced to evolutionary selection or to simple

statistical properties of the considered genome.

Derivation of a Predictive Theoretical Model
The random process of drawing codons until the first stop

codon appears follows a geometric distribution. Thus, the ORF

lengths in frame z1 are intuitively described by such a

distribution and depend on the stop codon probability only.

However, certain codons in frame z1 cause stop codons in other

frames. For instance, the leucine codon CTA causes a stop codon

TAG in frame {1. Similarly, combinations of certain pairs of

codons in z1 cause stop codons in other alternative frames.

Therefore, the length distribution of the ORFs in each frame

depends on the codon usage of frame z1 and each distribution in

an alternative frame follows a different geometric distribution,

depending on the probability of codons or pairs of codons in z1
forming a stop codon in the respective alternative frame. Thus, we

developed a mixture model of six geometric distributions, which

closely follows the natural distribution (Figure 2, left panel).

A detailed derivation of the model can be found in the Materials

and Methods part. The probability to observe exactly one ORF of

length ‘ in any of the six reading frames is calculated according to

Equation (3) by

PL(‘)~
X
i[F

pi 1{p
(i)
stop

� �‘{1

p
(i)
stop, F~f+1,+2,+3g,

where p
(i)
stop denotes the stop codon probability in an individual

reading frame i and pi is a weighting factor; F denotes

F~f+1,+2,+3g in short. The weighting factor is calculated

according to Equation (6) by

pi~
niP

j[F
nj

,

in conjunction with Equation (5)

ni~nG
:p(i)

stop
: p

(i)
start

p
(i)
startzp

(i)
stop

,

where nG is the sequence length and p
(i)
start denotes the start codon

probability in an individual reading frame i. The probability to

observe at least one ORF with minimum length ‘ in n trials, where

Figure 2. ORF lengths distribution and survival probability. Left panel: Shown is the relative frequency of the EHEC ORF lengths (orange
triangles) and of Rcodon (blue open dots). The prediction of the mixture model is shown in red. Right panel: Survival probability (probability to
observe at least one ORF with given length §‘ in any of the six reading frames) of the mixture model.
doi:10.1371/journal.pone.0045103.g002
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n is the number of ORFs calculated via n~
P

i[F ni, is called the

survival probability, which is calculated following Equation (7) by

psurvive(‘)~1{ 1{
X
i[F

pi 1{p
(i)
stop

� �‘{1

 ! !n

:

Comparison of Rcodon, the Mixture Model and the EHEC
Genome

The largest ORF in EHEC has a length of 5291 codons, which

corresponds to a survival probability of ,10-. The second largest

ORF is 2793 codons long with a survival probability of ,0.43.

The survival probability can be interpreted as a p-value against the

hypothesis that ORFs exceeding length ‘ will be observed. The

length limit with p-value 0:01 for an ORF in the model is

‘~4007 codons (Figure 2, right panel). In conclusion, the model

cannot explain the single exceptionally large ORF in EHEC, but

all others. This one ORF belongs to a rare class of giant genes (see

[35] for more details). Similar results have been obtained for

organisms of different GC-content (Streptobacillus moniliformis,

NC_013515, GC-content 26:3% and Xanthomonas campestris,

NC_007086, GC-content 65%; comparison in Supporting Infor-

mation S1).

To further assess the functionality of the model, several global

parameters of the mixture model prediction, Rcodon and EHEC

were compared. First, the predicted total number of all ORFs in

all six reading frames is 217461 in the mixture model, which is

quite close to the 219368 ORFs observed in EHEC and 216184 in

Rcodon. Second, the number of genes, or annotated ORFs, is 5901
in the mixture model, 5225 in EHEC, and 5827 in Rcodon. We are

further interested in the 75% quantile of the ORF lengths.

Seventy-five percent of all ORFs were predicted to be shorter than

35 codons in the mixture model, which is the same value for

Rcodon. The EHEC genome has as similar, but somewhat lower,

value of 33 codons. The deviation is due to a slight excess of

longer ORFs. Further, the average ORF length is predicted to be

32:12 codons in the mixture model, 32:41 codons in Rcodon and

31:14 codons in EHEC. In summary, prediction, artificial

genome and the natural EHEC genome show a close correspon-

dence of global values.

Comparison of Rcodon, the Mixture Model and Bacteria
with Different GC-contents

We applied our mixture model to a total of 70 bacteria with

GC-contents ranging from 21.4% to 74.9% (see Table S1). The

individual models were assessed by several characteristics impor-

tant for the global description of the genomes. For instance,

expected average open reading frame lengths over different GC-

contents, ORF frequencies and ORF length quantiles [2,4,5,36]

were compared between the predictions of the models and the

bacterial genomes. Probability distributions were compared in a

Quantile-Quantile-Plot (QQ-Plot, [37]).

A quantile separates the given data into subsets. The 75%

quantile of the ORF lengths is the boundary of length ‘ where

75% of all observed ORFs are shorter than ‘. As can be seen from

Figure 3 the values of Rcodon compared with the prediction of the

model (blue open dots) form a straight line with slope ~1,

indicating not only correlation, but virtually identical distributions.

Also, a clear correlation between the bacterial genomes and the

model can be seen (Figure 3, orange triangles). When the number

of ORFs predicted by the model was compared with the number

of ORFs found in the bacterial genomes (Figure 4, orange

triangles) or Rcodon (Figure 4, blue open dots), respectively, an

excellent correlation was found.

If the ratio of coding to non-coding ORFs is compared, Rcodon

and the model are nearly identical (Figure 5, blue open dots).

Interestingly, when comparing bacterial genomes with the model,

most genomes show an excellent correlation, but genomes with

Figure 3. QQ-Plot. Comparison of 75% quantile of ORF lengths
predicted by the mixture model to the ORF lengths observed in the
natural genomes (orange triangles) and Rcodon (blue open dots),
respectively. Some individual data points are labeled with an
abbreviated species name and the corresponding GC-content accord-
ing to Table S1.
doi:10.1371/journal.pone.0045103.g003

Figure 4. ORF number prediction. Comparison of ORF numbers
predicted by the mixture model to the ORF numbers found in natural
genomes (orange triangles) and Rcodon (blue open dots), respectively.
Some individual data points are labeled with an abbreviated species
name and the corresponding GC-content according to Table S1.
doi:10.1371/journal.pone.0045103.g004
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increasing GC-content deviate to some extent (Figure 5, orange

triangles).

The effect of the GC-content on the model predictions was

studied in more detail, as this is an important factor for the

expected number of ORFs and the average ORF length [2,38].

GC rich sequences have less stop codons, since the AT-rich stop

codons TAA,TAG,TGA are increasingly rare [2]. Less stop

codons cause longer ORFs (Figure 6, left panel). This correlation is

reproduced in the mixture model, when calculating the average

ORF length following Equation (4)

E½‘�~
X
i[F

p
(i)
start

p
(i)
startzp

(i)
stop

:
X
j[F

p
(j)
stop

p
(j)
start

p
(j)
startzp

(j)
stop

 !{1

,

which depends only on the start and stop codon probabilities and

is independent of the sequence length nG , if nG is sufficiently large.

The total length of a genome also influences ORF numbers

since it determines the probability to observe very long ORFs and,

trivially, a larger genome will harbor more ORFs. Therefore, the

correlation of the number of ORFs found in all reading frames was

compared with the genome length. When adding information

about the GC-content, the pattern shown in Figure 6 (right panel)

emerges. As said, longer genomes should in general contain more

ORFs, but the actual number also depends on the GC-content,

more precisely on the codon usage, as well. For example, if two

organisms with roughly the same genome length of *6:106bp, but

different GC-contents of *71% and of *34% are compared, only

*8:104 ORFs for the high GC-content genome, but *3:105

ORFs for the low GC-content genome were observed. This

behavior is also reflected in the predictions of the model, showing

only a minor variance in comparison with the natural genomes.

The expected absolute number of ORFs in all reading frames,

n~
X
i[F

nG
:p(i)

stop
: p

(i)
start

p
(i)
startzp

(i)
stop

,

depends on the sequence length nG as well as the probabilities of

start and stop codons, hence the GC-content (Figure 6, right

panel). An upper bound for the number of ORFs observable in a

genome over different sequence lengths is added to (Figure 6, right

panel) at the example of a GC-content of 32:5% and for a

relatively high GC-content of 70%. From a theoretical point of

view, no organism with a GC-content of 70% can have more

ORFs, than the bound labeled with 70% at a concrete sequence

length. The derivation of this bound together with the reason for

choosing GC-content 32:5% can be found in Supporting

Information S1.

Special Case Genus Mycoplasma
Even for Mycoplasma mycoides (NC_005364) with a GC-content of

24%, belonging to a very peculiar group of bacteria without a cell

wall and a parasitic life style, the model is applicable. Of the three

stop codons in the universal genetic code, only TAA and TAG are

used in most mollicutes [39]. The model was adapted to this

species which uses only two stop codons. The number of all ORFs

matches well when the model was compared to Mycoplasma mycoides

(60979 predicted versus 59911 observed). The predicted number

Figure 5. Ratio of annotated ORFs to non-annotated ORFs. The
ratio predicted by the mixture model is compared to the ratio observed
in bacterial genomes (orange triangles) and Rcodon (blue open dots),
respectively. The observable slight difference between natural genomes
and Rcodon is due the fact that the expected number of short coding
ORFs in Rcodon deviates from the natural genomes (compare to
Figure 7). Some individual data points are labeled with an abbreviated
species name and the corresponding GC-content according to Table S1.
doi:10.1371/journal.pone.0045103.g005

Figure 6. Influence of GC-content and sequence length. Left panel: Comparison of the average ORF lengths over the GC-content as predicted
by the mixture model (green dots) compared to bacterial genomes (orange triangles) and Rcodon (blue open dots), respectively. Right panel:
Comparison of the predicted number of ORFs to the observed number for different bacteria over sequence length. The number of ORFs expected
depends on the sequence length and GC-content. The upper bounds for the number of ORFs expected are shown for the GC-contents 32:5% and
70%.
doi:10.1371/journal.pone.0045103.g006
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of genes is 1106, which is close to the currently annotated number

of 1017. The ORF distribution (Supporting Information S1), the

75% quantile of 17 codons and the average ORF length of

19:1 codons is reproduced by the model with 18:9 codons.

Influence of the Coding ORF Lengths on the Prediction
The model prediction, as well as Rcodon, shows a systematic

error, as the number of coding ORFs (aORFs) in reading frame

z1 is slightly over-estimated (Table 1). This can be also seen in

Figure 5, in which all data points comparing the model with

natural genomes (orange triangles) are slightly shifted to the right

compared to the model and Rcodon (blue open dots). This deviation

is due to the fact that the lengths of the annotated genes in bacteria

do not follow a geometric distribution (Figure 7). The shortest

aORF in EHEC has a length of 14 codons, but the model and

Rcodon take all ORF lengths into account. Additionally, below

*80 codons, less aORFs are annotated due to biological reasons

(e.g., [12]). Consequently, the model expects more of those than

are annotated. However, this is not considered as a problem. It is

well known that current genome annotations rarely pick up short

ORFs which results in an underestimation [40]. In Table 1, an

excerpt of the predicted number of aORFs compared with the

number of ORFs observed is presented. Using the arbitrary

constraint of an individual minimal gene length for each organism,

the predicted number of aORFs is even closer to the observed

number (Table 1).

Application of the Mixture Model to Not-annotated ORFs
in Alternative Reading Frames

If, as hypothesized in the introduction, overlapping genes exist

in bacteria, alternative open reading frames might contain non-

annotated protein coding ORFs, which have been overlooked.

How could these be detected? The mixture model distinguishes

between ‘‘coding’’ ORFs in frame +1 and non-coding ORFs

(naORFs) in any alternative frame. Therefore, the overall model

that predicts overall ORF number statistics can easily be adapted

to the non-coding case (Supporting Information S1). One would

expect that the parameters for the naORFs in the model (based on

valid statistical assumptions as shown above) will deviate from the

parameters of the naORFs in the natural genomes. If a minimal

initial stage of beneficial protein expression is established by

random mutational events, selection will prevent decay back to the

original state. Indeed, the naORF-length distribution of the model

deviates significantly from the length distribution of the natural

genome (Figure 8, left panel). Due to the different probabilities to

obtain stop codons in the alternative frames, based on codon

occurrences in the +1 reading frame, the survival probabilities

differ for each frame (Figure 8, right panel). For instance, a long

ORF of 600 codons observed in reading frame {1 is more

probable than an ORF of the same size in reading frame z3.

Taken this fact into account there is a number of long naORFs in

each reading frame that cannot be explained statistically.

Especially for reading frame {1 the observation of long ORFs

overlapping coding sequences on the sense strand is not new, e.g.,

Merino et al. [14] described their findings as non-random

phenomenon in 1994. The still unanswered question was: Have

evolutionary forces shaped those long naORFs? Before this

question can be answered, artifacts caused by biased codon usage

(e.g., as known for highly expressed genes) have to be excluded first

(e.g., [38]). Ishihama et al. [41] published a list of high and very

high expressed genes of E. coli strain, MC4100 (NC_000913). We

applied our mixture model to this organism and compared the

predictions with the genome data for the individual alternative

reading frames (Figure 9. Note that the absolute numbers of

naORFs per frame are presented and are compared with the

expected number of naORFs predicted by the model). Three

groups of genes were defined and for each group the codon usage

was used as input for the model. First, all annotated genes, next,

Subset 1, which contains genes with the most highest expression

and finally, Subset 2, which contains Subset 1 plus further highly

expressed genes according to [41]. Comparing the group of all

Table 1. Number of aORFs predicted and observed.

Accession GC [%]
Number aORFs
Natural

Shortest aORF
~‘min codons½ �

Number aORFs
Predicted

Number aORFs
PredictedD§‘min

NC_011047 21.4 479 30 572 522

NC_005364 24 1017 36 1107 994

NC_009089 29.1 3693 21 4250 3989

NC_014251 39.8 2275 30 2475 2221

NC_005966 40.4 3306 23 3625 3383

NC_013730 50.2 6514 25 7264 6795

NC_002655 50.4 5266 12 5921 5709

NC_002695 50.5 5225 14 5901 5652

NC_006085 60 2297 33 2487 2259

NC_007492 60.5 5722 24 6243 5831

NC_007086 65 4271 30 4944 4540

NC_007509 65.3 1209 44 1376 1208

NC_006361 70.8 5683 34 6139 5536

NC_013595 70.9 8936 30 10198 9338

NC_013757 74 4801 30 5540 5084

NC_007760 74.9 4346 38 4663 4194

doi:10.1371/journal.pone.0045103.t001
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genes (Figure 9, red) to Subset 1 or Subset 2, a clear deviation

occurs (Figure 9, green and blue, respectively), showing that

indeed highly expressed genes can cause long ORFs in the {1
frame statistically as observed by Silke [38]. However, especially

the codon usage of the very high expressed genes, which are about

only 5% of all genes (Figure 9, green), causes this behaviour. But

this is not true for any of the other alternative reading frames.

Thus, long ORFs in +2, +3, 22 and 23 (Figure 9, black triangles)

are not explained by any biased codon usage of the annotated

ORF, which suggests that evolutionary forces have indeed shaped

longer naORFs. It can be hypothesized that such long ORFs

might be coding and form overlapping shadow genes. An

interesting coincidence might be the fact that the recently

described regulatory gene adm overlaps dmdR1 in frame 22 in

Streptomyces [25]. Concerning long overlapping ORFs in frame 21,

it should be further noted that at least some of these ORFs appear

in genes not found to be highly expressed [41]. Thus, long ORFs

in frame 21 in lowly expressed genes are ‘‘significant’’ as well.

Only the global length distribution of ORFs in frame 21 is indeed

dominated by the biased codon usage of highly expressed genes.

Concluding Remarks
This paper introduces a simple geometric mixture model that is

able to reproduce statistical properties of bacterial genomes

without empirical ‘‘curve fitting’’. It depends on the actual codon

usage of the organism examined and reproduces the overall

number of ORFs, the overall length distribution and many other

parameters of natural genomes. Most parameters between the

model and the natural genome are in excellent agreement. As

mentioned, all possible start codons were taken into account.

While one could argue that TTG and CTG are rare codons and

should be excluded from the simulations, all start codons are used

in bacteria and can be changed by evolutionary processes to

increase or decrease translational efficiency [29]. However,

different choices of start codons were tested, both, the model

prediction and the results of Rcodon fit the overall ORF length

distribution of the corresponding organism (data not shown).

Furthermore, it might be asked if the IID assumption is an

oversimplification which influences the predictions of the model.

Therefore, neighbouring biases among codons have been studied

using a first order Markov chain to derive the stationary codon

usage for reading frame +1. The predictions of both models – IID

approach and first order Markov chain – are virtually identical

(data not shown).

Statistical properties of ORFs are important in the context of

shadow genes, a phenomenon generally accepted in viruses and

bacteriophages [9,42], but neglected in bacteria. The term

‘‘shadow gene’’ (borrowed from [10]) in this work refers to

extensive overlaps in which two genes share the same DNA locus

or are genes even embedded one in the other. Trivial overlaps

(v30 codons) exist in basically all bacteria. Up to 30% of the

genes of a bacterium may overlap trivially [13], but only few of the

shadow genes have been recognized as true genes in bacteria to

date (e.g., [21–25,43,44]). Using the model developed in this study,

we could show that the length distribution of shadow genes

overlapping annotated genes deviates significantly between model

and bacterial genome. Thus, bacterial genomes contain a larger

number of long shadow ORFs than expected based on statistical

analysis. Random mutational drift would have eliminated the

signal long ago, if no selection pressures were stabilizing shadow

ORFs. Deviations between the statistical model and bacterial

genomes directly call for a functional explanation, since selection is

the only force known to stabilize the depletion of stop codons.

Most shadow genes have escaped discovery, as they are dismissed

Figure 7. aORF lengths distributions. The absolute frequency of aORF lengths in codons from the EHEC genome (NC_002695) is compared to its
Rcodon and the prediction of the mixture model. The visible difference between the natural genome and the theoretical expectations either by
Rcodon or the mixture model is due to the fact that short ORFs are generally less likely to be annotated as functional proteins. However, this is
changing (e.g., [40]) and short ORFs are picked up for annotations more frequently.
doi:10.1371/journal.pone.0045103.g007
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as false positives in most genome annotation programs (e.g., [11]).

This is in sharp contrast to many embedded overlapping genes

that have been discovered in bacteriophages (e.g., [8,42]). Since

phages reside in a long term evolutionary equilibrium with the

bacterial host genome [45], we suggest that overlooked shadow

genes also exist in bacterial genomes [44]. Experimental verifica-

tion of new protein coding sequences in prokaryotes is still a

challenging task, as experiments are time consuming and

expensive. In contrast to trivial approaches where just the largest

ORFs are considered being candidates for protein coding genes,

we could show that shorter than average ORFs also can be

significant, depending in which alternative frame they appear.

Furthermore, any observation indicating that genomes deviate

from the model are a good starting point for further analysis since,

most likely, biological specifics due to unknown functions may

have shaped these differences during evolution.

Figure 8. naORF lengths distributions. Left panel: The relative frequencies of naORF lengths derived from EHEC (orange triangle) are compared
to Rcodon (open blue dots) and the mixture model (red line). Right panel: The survival probabilities of naORF lengths for the different alternative
frames are derived from the mixture model. The survival probability shows the likelihood to observe at least one naORF with given length §‘.
Indeed, longer naORFs are expected in reading frames 21 and, to some extent, frame 22 (see text).
doi:10.1371/journal.pone.0045103.g008

Figure 9. Length distributions of different groups of genes for each alternative frame. Shown are the absolute frequencies of naORF
lengths for the genome of E. coli MC4100 (NC_000913) as predicted by the mixture model. Each colored line represents a different group used to
obtain a codon usage as input to the model. Subset 1 of very high expressed genes is shown in green, Subset 2, contains, in addition to Subset 1,
further highly expressed genes and is shown in blue (data from [41]). The group which includes all genes is shown in red. Finally, the natural
frequencies obtained from the bacterial genome are shown in black triangles. In most alternative frames, the expression values of the annotated
frame is of negligible influence, but not so for frame 21. As Silke [38] has already stated, most, but not all, long overlapping ORFs in 21 frame might
be explained by a codon usage bias for highly expressed genes. However, this finding is not true for any other alternative frame nor for genes not
highly expressed.
doi:10.1371/journal.pone.0045103.g009
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All results presented in this paper apply to bacterial genomes

only. Although intergenic regions appear in bacterial genomes,

they represent a small fraction of the overall genome (for example

12:9% for EHEC), and, therefore, we decided to ignore them in

our model. The eukaryotic genome organization, in contrast, is

very different. It will be a non-trivial task to develop a more

general model that can be applied to eukaryotic genomes also.

Such a model needs to account for both, an exon and an intron

sequence adjacent to one another at the same time. Whether a

general model describing the length distributions of ORFs in both

prokaryotes and eukaryotes can be designed at all is an open

question.

Materials and Methods

Definition of ORFs, aORFs and naORFs
The ORF finder program takes the whole nucleotide sequence

of an natural organism into account and finds all ORFs in all six

reading frames. An ORF is defined as the longest string of triplets

beginning with a start codon. An exception was made for

annotated ORFs (aORFs), for which the annotated start codon

was taken as beginning, ignoring any upstream start codons. The

ORF finder was implemented in Python programming language

and delivers the reading frame of the ORF, the first position of the

start codon and the last position of the stop codon, the length of

the ORF in base pairs and the length of the corresponding codons.

Trivially, the not-annotated ORFs (naORFs) are all ORFs not

annotated yet. The mapping of a naORF to a concrete reading

frame is conducted in relation to the annotated genes by

identifying overlaps with aORFs.

Genome Sequence Data
We investigated a total of 70 genomes of fully sequenced

bacteria reflecting different GC-contents ranging from 21.4% to

74.9% (see Table S1). The complete genome data was download-

ed as GenBank entry from NCBI database via Entrez. From those

files we extracted the whole genome sequence as well as the

annotated gene positions. Some genome sequences contain

undefined nucleotides. Those positions were substituted with

concrete nucleotides as given in Table 2 (similar to [4]).

Additionally, all annotated genes were ignored if their length

was no multiple of three or contained undetermined positions in

the region of the start or stop codon.

Derivation of the Model
Our model results from an approximation of the random

genome Rcodon. Basically, it is derived by assuming independence

of the different reading frames, as well as using certain average

case analyses. For an introduction to the fundamental concepts of

probability theory used in this section see, e.g., Feller [46].

Reading frames +1 and 21. In the reading frames +1 and

21 the sequence generated by the model consists of nG

independent and identical distributed (IID) random codons

C1,C2, . . . ,CnG
, where Ci[N 3

, N~fA,G,C,Tg is drawn accord-

ing to the codon usage Pz1(Ci) of the original genome, based on

the annotated genes. The codon usage is the number of

occurrences of each codon in a string of all concatenated

annotated ORFs divided by the number of all codons in that

string. The length L of an ORF in an individual reading frame i

follows a geometric distribution

P
(i)
L (‘)~ 1{p

(i)
stop

� �‘{1
:p(i)

stop,

where p
(i)
stop denotes the stop codon probability in the correspond-

ing frame. For i[f+1g the stop codon probability is determined

by the codon usage of the natural genome taking the sum of the

three probabilities for the stop codons. The geometric distribution

is used in general modeling waiting time of a process and was

already applied in the context of ORF lengths by [2].

Reading frames +2, +3, 22 and 23. In the reading frames

+2, +3, 22 and 23 the situation is slightly different compared to

frames z1 and {1. The sequence C1,C2, . . . ,CnG
is not IID

anymore, but is a Markov chain with memory one for each frame

i. The transition probabilities from codon Cj{1 to codon Cj in

frame i, denoted with Pi(Cj DCj{1), are induced by the distribution

of the codons in the z1 frame. For example, in the frame z2 the

transition probabilities can be obtained according to the following

approach: Each codon Cj~(Nj,1,Nj,2,Nj,3) consists of nucleotides

Nj,k[N , resulting in

Pz2 Cj~(Nj,1Nj,2Nj,3)DCj{1~(Nj{1,1Nj{1,2Nj{1,3)
� �

~
Pz1 Nj{1,3Nj,1Nj,2

� �
Pz1 Nj,3 � �

� �
Pz1 Nj{1,3 � �

� � ,
ð2Þ

where * denotes the sum over all probabilities for each possible

nucleotide combination. An example that illustrates the derivation

of Equation (2) can be found in Supporting Information S1.

The Markov chains (Figure 10) for the different frames are

ergodic (hence aperiodic and irreducible) if all codon probabilities

in the +1 frame are positive, as this implies that all transition

probabilities between the codons are positive (see Equation (2)).

The stop codon probabilities for each reading frame i[f+2,+3g
can then be obtained from the stationary distribution of the

corresponding Markov chain.

Mixture model. The probability to observe exactly one ORF

of length ‘ in any of the six reading frames F[f+1,+2,+3g can

be calculated by a weighted sum over all six geometric

distributions

PL(‘)~
X
i[F

pi 1{p
(i)
stop

� �‘{1

p
(i)
stop, ð3Þ

where p
(i)
stop is the stop codon probability in reading frame i and pi

Table 2. Undetermined nucleotides and their substitutions
[47].

Symbols Possible substitutions Origin and designation

R A,G puRine

Y C,T pYrimidine

M A,C aMino

K G,T Ketone

S C,G Strong interaction

W A,T Weak interaction

B C,G,T not-A, B follows A in alphabet

D A,G,T not-C, D follows C in alphabet

H A,C,T not-G, H follows G in alphabet

V A,C,G not-T/U, V follows U in alphabet

N A,G,C,T aNy

doi:10.1371/journal.pone.0045103.t002
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is determined by the distribution of the ORFs in the different

reading frames.

To calculate the parameter pi, we have to consider the number

of ORFs in each reading frame. This can be conducted using an

average case analysis. First, observe that in a certain frame i a

fraction ci of the whole sequence is within an ORF, whereas a

fraction 1{ci is between two consecutive ORFs. The ci are

obtained from the stationary distribution of the two state Markov

chain (Figure 11). The evaluation of the stationary distribution

leads to

ci~
p

(i)
start

p
(i)
startzp

(i)
stop

:

For each frame i the length of the genome sequence nG in

codons consists of a coding part of length

nG
:ci~nG

: p
(i)
start

p
(i)
startzp

(i)
stop

:

The expected ORF length, observed within such a coding

region is the expected value of the geometric distribution

E½‘i�~
X?
‘~1

‘: 1{p
(i)
stop

� �‘{1

p
(i)
stop~

1

p
(i)
stop

: ð4Þ

Applying this knowledge, we are now interested in the number

of ORFs in reading frame i denoted as ni using the following

equality

nG
:ci~ni

:E½‘i�:

Therefore, the number of ORFs in reading frame i can be

calculated by

ni~nG
:p(i)

stop
: p

(i)
start

p
(i)
startzp

(i)
stop

, ð5Þ

whereby the parameter pi for an individual reading frame i[F is

given by

pi~
niP
j[F nj

: ð6Þ

Survival Limit of the Model. From the probability to

observe exactly one ORF of length ‘ in Equation (3), we can

derive the probability to observe an ORF of length L§‘�

P(L§‘�)~
X?
‘~‘�

PL(‘)~
X?
‘~‘�

X
i[F

pi 1{p
(i)
stop

� �‘{1

p
(i)
stop

~
X
i[F

pi p
(i)
stop

X?
‘~‘�

1{p
(i)
stop

� �‘{1

~
X
i[F

pi 1{p
(i)
stop

� �‘�{1

,

where the last step follows from the geometric series.

The probability to observe k ORFs with length §‘� in n trials

follows a Binomial distribution

Bin n,p,kð Þ~
n

k

� �
pk(1{p)n{k, with p~P(L§‘�):

The survival probability was defined as the probability to

observe at least one ORF with length §‘�

psurvive(‘�)~1{Bin n,p,0ð Þ~1{(1{p)n,

with p~P(L§‘�):
ð7Þ

All probabilities can be compared to the relative frequencies of

ORF lengths in the natural organisms. If the absolute number of

ORFs with an probability p is needed, the expected number of

ORFs in n trials is calculated by

Figure 10. Ergodic Markov chain. Markov Chain connects all
codons. For each reading frame the stationary of this ergodic Markov
chain is calculated to obtain the individual start and stop codon
probabilities.
doi:10.1371/journal.pone.0045103.g010

Figure 11. Two state Markov chain. Stationary distribution of this Markov model reveals the probability for being within an ORF.
doi:10.1371/journal.pone.0045103.g011
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E½number of ORFs�~n:p:

Supporting Information

Table S1 Bacterial species investigated in this study.
Species names, accession numbers, GC-content and
length of the analyzed organism.
(PDF)

Supporting Information S1 Additional Data and Figures.
This file contains the detailed derivation of the upper bound on

the number of ORFs observable (Section 1). An example how the

transition probabilities of the Markov chain are calculated (Section

2). Length distributions and survival probabilities of further

organisms (Section 3). Comparison of naORF parameters in

bacteria (Section 4).

(PDF)

Acknowledgments

We thank the anonymous reviewers for their detailed and constructive

comments.

Author Contributions

Wrote the paper: KM KN S. Scherer MB S. Schober. Developed the

details of the model and analyzed the results: KM. Implementation of the

program: KM. Wrote the paper: KM. Biological interpretation of the

results: KN. Discussions and contributions on biological part of the

manuscript: KN. Developed idea of comparing bacterial genome with

random sequences: S. Scherer. Discussion and comments on biological

part of the manuscript: S. Scherer. Scientific mentor of KM and S.

Schober: MB. Developed the model in general: S. Schober. Discussions

and contributions on mathematical part of the manuscript: S. Schober.

Discussed the results and implications and commented on the manuscript

at all stages: KM KN S. Scherer MB S. Schober.

References

1. Patthy L (1999) Genome evolution and the evolution of exon-shuffling–a review.

Gene 238: 103–114.

2. Oliver JL, Marn A (1996) A relationship between GC content and coding-
sequence length. Journal of Molecular Evolution 43: 216–223.

3. Guigo R, Fickett JW (1995) Distinctive sequence features in protein coding genic
non-coding, and intergenic human DNA. Journal of Molecular Biology 253: 51–

60.

4. Li W(1999) Statistical properties of open reading frames in complete genome
sequences. Computers and Chemistry 23: 283–301.

5. McCoy MW, Allen AP, Gillooly JF (2009) The random nature of genome

architecture: Predicting Open Reading Frame distributions. PLoS ONE 4:
e6456.

6. Zhang J (2000) Protein-length distributions for the three domains of life. Trends

in Genetics 16: 107–109.

7. Carpena P, Bernaola-Galván P, Román-Roldán R, Oliver JL (2002) A simple
and speciesindependent coding measure. Gene 300: 97–104.

8. Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, et al. (1977) Nucleotide

sequence of bacteriophage WX174 DNA. Nature 265: 687–695.
9. Chirico N, Vianelli A, Belshaw R (2010) Why genes overlap in viruses.

Proceedings of the Royal Society B: Biological Sciences 277: 3809–3817.

10. Yooseph S, Sutton G, Rusch DB, Halpern AL, Williamson SJ, et al. (2007) The
Sorcerer II Global Ocean Sampling expedition: expanding the universe of

protein families. PLoS Biology 5: e16+.

11. Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial
genes and endosymbiont DNA with Glimmer. Bioinformatics 23: 673–679.

12. Warren A, Archuleta J, Feng WC, Setubal J (2010) Missing genes in the

annotation of prokaryotic genomes. BMC Bioinformatics 11: 131.

13. Johnson ZI, Chisholm SW (2004) Properties of overlapping genes are conserved
across microbial genomes. Genome Research 14: 2268–2272.

14. Merino E, Balbas P, Puente JL, Bolivar F (1994) Antisense overlapping open

reading frames in genes from bacteria to humans. Nucleic Acids Research 22:
1903–1908.

15. Makalowska I, Lin CF, Makalowski W (2005) Overlapping genes in vertebrate
genomes. Computational Biology and Chemistry 29: 1–2.

16. Jensen K, Petersen L, Falk S, Iversen P, Andersen P, et al. (2006) Novel

overlapping coding sequences in Chlamydia trachomatis. FEMS Microbiology
Letters 265: 106–117.

17. Delaye L, Deluna A, Lazcano A, Becerra A (2008) The origin of a novel gene

through overprinting in Escherichia coli. BMC Evolutionary Biology 8: 31+.

18. Nonaka G, Blankschien M, Herman C, Gross C, Rhodius V (2006) Regulon and
promoter analysis of the E. coli heat-shock factor, s32, reveals a multifaceted

cellular response to heat stress. Genes & Development 20: 1776–89.

19. McVeigh A, Fasano A, Scott D, Jelacic S, Moseley S, et al. (2000) IS1414, an
Escherichia coli insertion sequence with a heat-stable enterotoxin gene

embedded in a transposase-like gene. Infection and Immunity 68: 5710–5715.

20. Sousa CP (2003) East1 toxin and its presence in a changing microbial world.
Journal of Venomous Animals and Toxins including Tropical Diseases 9: 4–52.

21. Behrens M, Sheikh J, Nataro JP (2002) Regulation of the overlapping pic/set

locus in Shigella flexneri and enteroaggregative Escherichia coli. Infection and
Immunity 70: 2915–2925.

22. Silby MW, Rainey PB, Levy SB (2004) IVET experiments in Pseudomonas

uorescens reveal cryptic promoters at loci associated with recognizable
overlapping genes. Microbiology 150: 518–520.

23. Silby MW, Levy SB (2008) Overlapping protein-encoding genes in Pseudomo-

nas uorescens Pf0–1. PLoS Genetics 4: e1000094.
24. Kim W, Silby MW, Purvine SO, Nicoll JS, Hixson KK, et al. (2009) Proteomic

detection of nonannotated protein-coding genes in Pseudomonas uorescens Pf0–

1. PloS ONE 4: e8455+.

25. Tunca S, Barreiro C, Coque JJR, Martin JF (2009) Two overlapping antiparallel

genes encoding the iron regulator DmdR1 and the Adm proteins control
siderophore and antibiotic biosynthesis in Streptomyces coelicolor A3(2). FEBS

Journal 276: 4814–4827.

26. Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, et al. (1997) The
complete genome sequence of Escherichia coli K-12. Science 277: 1453–1462.

27. Hayashi T, Makino K, Ohnishi M, Kurokawa K, Ishii K, et al. (2001) Complete

genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic
comparison with a laboratory strain K-12. DNA Research 8: 11–22.

28. Guo FB, Ou HY, Zhang CT (2003) ZCURVE: a new system for recognizing

protein-coding genes in bacterial and archaeal genomes. Nucleic Acids Research
31: 1780–1789.

29. Sussman JK, Simons EL, Simons RW (1996) Escherichia coli translation

initiation factor 3 discriminates the initiation codon in vivo. Molecular
Microbiology 21: 347–360.

30. Gualerzi CO (2000) Translation initiation in bacteria. in: The ribosome:

structure, function, antibiotics, and cellular interactions. ASM Press, Washing-
ton, DC : 477–494.

31. Michino H, Araki K, Minami S, Takaya S, Sakai N, et al. (1999) Massive

outbreak of Escherichia coli O157:H7 infection in schoolchildren in Sakai City,
Japan, associated with consumption of white radish sprouts. American Journal of

Epidemiology 150: 787–796.

32. Callaway TR, Carr MA, Edrington TS, Anderson RC, Nisbet DJ (2009) Diet,
Escherichia coli O157:H7, and cattle: a review after 10 years. Current Issues in

Molecular Biology 11: 67–79.

33. Yoon JW, Hovde CJ (2008) All blood, No stool: enterohemorrhagic Escherichia
coli O157:H7 infection. Journal of Veterinary Science 9: 219–231.

34. Ferens WA, Hovde CJ (2011) Escherichia coli O157:H7: Animal reservoir and

sources of human infection. Foodborne Pathogens and Disease 8: 465–487.
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