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Abstract
Satellite-based PM2.5 monitoring has the potential to complement ground PM2.5 monitoring
networks, especially for regions with sparsely distributed monitors. Satellite remote sensing
provides data on aerosol optical depth (AOD), which reflects particle abundance in the
atmospheric column. Thus AOD has been used in statistical models to predict ground-level PM2.5
concentrations. However, previous studies have shown that AOD may not be a strong predictor of
PM2.5 ground levels. Another shortcoming of remote sensing is the large number of non-retrieval
days (i.e., days without satellite data available) due to clouds and snow- and ice-cover.

In this paper we propose statistical approaches to overcome these two shortcomings, thereby
making satellite imagery a viable method to estimate PM2.5 concentrations. First, we render AOD
a robust predictor of PM2.5 mass concentration by introducing an AOD daily calibration approach
through the use of mixed effects model. Second, we develop models that combine AOD and
ground monitoring data to predict PM2.5 concentrations during non-retrieval days. A key feature
of this approach is that we develop these prediction models separately for groups of days defined
by the observed amount of spatial heterogeneity in concentrations across the study region.
Subsequently, these methodologies were applied to examine the spatial and temporal patterns of
daily PM2.5 concentrations for both retrieval days (i.e., days with satellite data available) and non-
retrieval days in the New England region of the U.S. during the period 2000-2008. Overall, for the
years 2000-2008, our statistical models predicted surface PM2.5 concentrations with reasonably
high R2 (0.83) and low percent mean relative error (3.5%). Also the spatial distribution of the
estimated PM2.5 levels in the study domain clearly exhibited densely populated and high traffic
areas. The method we have developed demonstrates that remote sensing can have a tremendous
impact on the fields of environmental monitoring and human exposure assessment.
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1. Introduction
Particle pollution has been recognized as a significant concern related to human health and
global climate change in many parts of the world (Brunekreef and Holgate, 2002;
Ramanathan et al. 2001). Airborne particulate matter with aerodynamic diameter ≤2.5 μm
(PM2.5) is a mixture of pollutants including sulfate, nitrate, ammonium, organic compounds,
elemental carbon, metal oxides, and dust or soil particles (U.S. EPA 2004). Numerous
studies have shown that ambient PM2.5 concentrations are associated with adverse health
effects such as increased mortality and morbidity, aggravated respiratory and cardiovascular
symptoms, and lower birth weight (Bell et al. 2007, 2010a; Franklin et al. 2007; Gent et al.
2003, 2009). In most epidemiological studies, subject-specific PM2.5 exposures are
generally assessed by measuring ambient PM2.5 concentrations at one or more outdoor
monitoring sites. However, sparse PM2.5 monitoring spatial networks may limit our ability
to accurately assess human exposures to PM2.5, since concentrations measured at an outdoor
site may be less representative of the subjects’ exposures as the distance from the monitor
increases (Bell et al. 2010b; Lee et al. 2011a). In time-series analyses PM2.5 exposures
should be highly correlated with ambient PM2.5 concentrations. In cross-sectional studies
long-term PM2.5 exposures should be assessed with great accuracy (Bell et al. 2010b; Ito et
al. 2004; Pinto et al. 2004). Furthermore, in interest of reducing cost, PM2.5 monitoring sites
operate only a few days per week at varying frequencies such as every day, every third day,
and every sixth day. Thus epidemiological studies are often compromised due to the lack of
continuous measurements. In conclusion, due to their spatial and temporal limitations,
current PM2.5 monitoring networks cannot provide sufficient data to fully assess PM2.5
human exposures for health effect studies and are hindered in their ability to help answer
some key scientific questions, such as the effect of cumulative exposures over several days.

Satellite remote sensing provides data on aerosol optical depth (AOD), a measure of light
extinction by atmospheric aerosols (i.e., light scattering and absorption). AOD values reflect
particle abundance in the atmospheric column, and thus they have been used in statistical
models to predict ground-level PM2.5 concentrations (Engel-Cox et al. 2004; Liu et al. 2005,
2007a, 2007b, 2007c, 2009; Schaap et al. 2009). Satellite-based PM2.5 monitoring has been
considered to complement ground PM2.5 monitoring networks, especially for regions with a
limited number of PM2.5 monitors. However, most of previous studies have reported that
AOD has a low to moderate PM2.5 predictive ability (i.e., coefficient of determination R2 <
0.60) (Hoff and Christopher, 2009), which may not be sufficient for health effect studies. In
a recent paper we introduced a new daily calibration technique for Moderate Resolution
Imaging Spectroradiometer (MODIS) AOD to accurately predict ground PM2.5
concentrations (Lee et al. 2011b).

AOD values cannot be retrieved on days with clouds, high surface reflectance due to snow-
and ice-cover, or retrieval errors. As a result, AOD data are not available for a large fraction
of days (non-retrieval days) and thus PM2.5 concentration predictions are not always
possible.

Due to the low to moderate PM2.5 predictability of AOD measurements and the large
number of non-retrieval days, satellite remote sensing has played a limited role in the field
of particle exposure assessment. As mentioned above, we have already addressed the low
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predictability issue by introducing the daily AOD calibration approach. The challenge of the
infrequent satellite measurements will be addressed in this paper. Specifically, we have
developed a statistical model to predict daily PM2.5 concentrations for both retrieval and
non-retrieval days in the region of New England, U.S. for the years 2000-2008. This is of
paramount importance in our efforts to enhance spatial and temporal coverage of PM2.5
concentration estimates, leading to more reliable environmental impact assessment,
exposure assessment and health effect studies. Together these efforts render satellite remote
sensing a powerful tool in the fields of environmental monitoring and human exposure
assessment.

2. Methods
2.1. PM2.5 measurements

PM2.5 ambient air samples were collected at 69 U.S. Environmental Protection Agency
(EPA) PM2.5 monitoring sites in Connecticut (CT), Massachusetts (MA), Rhode Island (RI),
Southern Maine (ME), New Hampshire (NH), and Vermont (VT) for the years 2000-2008
(Fig. 1). At the 69 monitoring sites, 24-hr integrated PM2.5 filter samples were collected
with varying frequencies including every day, every third day, and every sixth day as per
EPA's monitoring program design. Not all monitoring sites operated for the entire nine years
thus the number of monitoring sites varied by year.

2.2. Satellite data
We obtained MODIS AOD data (Collection 5; Level 2 aerosol product) from the National
Aeronautics and Space Administration (NASA)'s Earth Observing System (EOS) satellites,
Terra and Aqua, over the New England region for the years 2000-2008. The MODIS AOD
measurements have a relatively fine spatial (10 × 10 km2 grid) and temporal (every one to
two days) resolutions, which makes them appropriate for daily air quality monitoring (Al-
Saadi et al. 2005). The over-land retrieval algorithm of Collection 5 primarily uses three
wavelength channels of 0.47, 0.66, and 2.12 μm (Levy et al. 2007), finally reporting AOD
values at the wavelength of 0.55 μm, with the expected uncertainty of ΔAOD=
±0.05±0.15×AOD (Levy et al. 2010; Remer et al. 2008). The Terra and Aqua satellites cross
the equator at two different times, approximately 10:30 am (descending orbit) and 1:30 pm
(ascending orbit) local sun times, respectively, providing aerosol information at two
different times per day with a scanning swath of 2,330 km (cross-track) by 10 km (along-
track at nadir). Details about the MODIS AOD retrieval algorithm can be found in Levy et
al. (2007, 2009). The daily averages of Terra and Aqua AOD values are most likely to
reflect the aerosol loading on a given day, but both AOD values are not always retrieved
each day. Due to the diurnal variations (Green et al. 2009) and potential calibration
differences between two satellite sensors, averaging the Terra and Aqua AOD measurements
would not be appropriate depending on the data availability on a given day. Moreover, the
Terra satellite was launched in December, 1999, while the Aqua satellite was launched in
May 2002, thus only Terra measurements are available for the years 2000-2002.
Consequently, we primarily used the Terra AOD measurements. The missing Terra AOD
values were estimated from the Aqua AOD ones, if they were available, using an adjustment
factor. This factor was equal to the ratio of the average Terra AOD to Aqua AOD for those
days when both the Terra and Aqua measurements were available. We created 582 grid cells
(10×10 km2) covering the New England region in ArcGIS (Version 9.3; ESRI), and all the
subsequent analyses were based on the grid cells.

2.3. Statistical model
PM2.5 prediction for retrieval days—We have previously introduced a daily AOD
calibration method that renders AOD a robust predictor of surface-level PM2.5
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concentrations. This calibration method assumes minimal spatial variability of time-varying
parameters influencing PM2.5-AOD relationships on a given day (Lee et al. 2011b). The
proposed calibration approach relied on daily ground PM2.5 concentrations measured at
multiple sites. Daily PM2.5-AOD relationships were derived using a mixed effects model
with random intercepts and slopes (Fitzmaurice et al. 2004) as follows:

(1)

where PMij is the PM2.5 concentration at a spatial site i on a day j; AODij is the AOD value
in the grid cell corresponding to site i on a day j; α and uj are the fixed and random

intercepts, respectively; β and vj are the fixed and random slopes, respectively; 
is the random intercept of site i; εij ~ N(0, σ2) is the error term at site i on a day j; and Σ is
the variance-covariance matrix for the day-specific random effects. The fixed effects
represent the average intercept and PM2.5-AOD slope, and the random effects explain the
daily-varying relationships. Due to the large number of sampling days it was not possible to
run the mixed effects model for the entire study period. Therefore, we split the whole dataset
(Years 2000-2008) into 5 subsets (Years 2000-2001, 2002-2003, 2004-2005, 2006-2007,
and 2008). To build the mixed effects model, we matched the PM2.5 concentrations
measured at a monitoring site and AOD values obtained for the corresponding grid cells. We
removed the sampling days with only one PM2.5-AOD pair on a given day before running
the model, since a slope cannot be determined with only one pair. In addition, we excluded
those days when the root mean squared error (RMSE) between the measured and predicted
PM2.5 concentrations was greater than 5 μg/m3 or when the estimated AOD slope was
negative. These days were not considered reliable for calibrating AOD data due to PM2.5
instrumental measurement errors, cloud contaminated AOD, or any other potential errors.
The number of PM2.5-AOD pairs for each data subset was 1,299 (2000-2001), 1,801
(2002-2003), 1,680 (2004-2005), 1,745 (2006-2007), and 972 (2008). We assessed the
model performance using the coefficient of determination (R2) and percent mean relative
errors (% MRE) between the measured and predicted PM2.5 concentrations. We obtained the
measured PM2.5 concentrations from 69 EPA monitoring sites and the predicted values from
our model estimations in the grid cells corresponding to the respective monitoring sites. The
% MRE is calculated as [|mean predicted PM2.5 – mean measured PM2.5| / (mean measured
PM2.5)] × 100. The R2 values show how well the measured and predicted PM2.5
concentrations are correlated, while the % MRE values present systematic differences
between those concentration levels. Together, the values of R2 and % MRE are indicative of
the ability of our modeling approach to produce reliable PM2.5 estimates for both time-series
and cross-sectional health effect studies.

We validated the mixed effects model using a cross-validation (CV) method which checked
for potential over-fitting. First, we randomly separated the entire dataset into 10 different
subsets, each of them encompassing approximately 10% of the data. Each 10% subset of
data was retained from the dataset, and the rest 90% of the data was used to fit the model.
The fitted model was applied to predict PM2.5 concentrations for the 10% of the retained
days. This process was repeated for each of the 10 subsets, and the predicted PM2.5
concentrations were compared to the measured PM2.5 concentrations using R2 and % MRE
values.

PM2.5 prediction for non-retrieval days—The spatial patterns of the observed daily
PM2.5 concentrations vary due to changes in meteorology and source emissions which
influence the impact of local and regional sources in the study region. A cluster analysis
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using K-means was performed to identify groups of days with similar PM2.5 concentration
spatial patterns in the R software. This analysis was based on the PM2.5 concentrations
measured at the sampling sites within the study region and included the entire dataset (i.e.,
retrieval and non-retrieval days for the 9 year period). The K-means method is used to
partition observations into K different subsets (i.e., clusters), yielding a solution that
minimizes the within-cluster variance and maximizes the between-cluster variance. That is,
the cluster analysis determines groups of days exhibiting similar spatial concentration
patterns.

As mentioned above the number of available PM2.5 monitoring sites varied by day due to
differences in sampling frequencies, site operating period, and missing data. Due to
sampling design considerations, a large number of sites (>35 out of 69) operated every third
day. The PM2.5 measurements in the sampling frequency of every third day were always on
the same day for all sites. Thus the cluster analysis was applied to every third day data,
which made it possible to obtain reliable day-specific PM2.5 spatial patterns. Furthermore,
the cluster analysis was performed on PM2.5 concentration differences, obtained by
subtracting the daily regional PM2.5 concentrations from the respective PM2.5
concentrations. On a given day the regional PM2.5 concentration was calculated by
averaging the daily PM2.5 concentrations measured at all available monitoring sites. Since
cluster assignment was done for every third day, the same cluster classification was applied
to the adjacent two days, assuming an identical spatial pattern for three consecutive days.
Finally, an important feature of the proposed approach is that the cluster analysis is
independent of satellite data retrieval because it was based on PM2.5 ground measurements.

Following the mixed effects model and the cluster analysis, PM2.5 concentrations in each of
the grid cells were predicted for days when no AOD values were available. Toward this end,
a cluster-specific PM2.5 prediction model was developed which used a generalized additive
model (GAM) (Hastie and Tibshirani, 1990) as follows:

(2)

where PMpredicted ij is the AOD-derived PM2.5 concentration at a spatial site i on a day j
(from equation (1)); PMregional j is the regional PM2.5 concentration on a day j; s(latitude,
longitude)i is a smooth function of location (latitude and longitude) for site i, and εij is the
error term at site i on a day j. We modeled this smooth function as a thin plate spline as
implemented in the R software package. As shown by equation (2), the predicted PM2.5
concentrations from the mixed effects model were used as a dependent variable. For each
cluster, these PM2.5 concentration values were regressed on the regional PM2.5 levels and
the spatial smooth function of latitude and longitude. As a result, a predicted spatial surface
of PM2.5 concentrations could be generated for each group of days defined by the clustering
algorithm. For each of the non-retrieval days PM2.5 concentrations in each grid cell were
estimated by assuming that each cluster had a single PM2.5 spatial surface and the regional
PM2.5 concentrations reflected the temporal variability of PM2.5 over the study domain. As
mentioned above, each cluster includes both retrieval and non-retrieval days because the
cluster analysis was independent of AOD data retrieval. The model performance for non-
retrieval days was also examined by comparing the measured and predicted PM2.5
concentrations using R2 and % MRE estimates. In order to compare the GAM predicted
PM2.5 concentrations to the measured ones at the monitoring sites we adjusted for site bias
using the random site estimates from the mixed effects model. The statistical approach to
predict PM2.5 concentrations within the study domain for non-retrieval days is summarized
in Fig. 2.
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2.4. Spatial variability of PM2.5 levels
We predicted concentrations for all retrieval and non-retrieval days during the 9-year period.
Subsequently, we estimated the 9-year average PM2.5 concentrations for each of the grid
cells in the study domain. We also present the PM2.5 concentration maps for each of the
identified clusters. For the concentration maps, we split the distributions into 6 equally-sized
bins due to the log-normally distributed PM2.5 levels.

3. Results and Discussion
3.1. Descriptive statistics

The mean (SE) PM2.5 concentrations measured at the 69 EPA monitoring sites varied from
7.96 (0.32) μg/m3 in Lebanon, NH (Site ID: 33-09-0010) to 16.38 (0.22) μg/m3 in New
Haven, CT (Site ID: 09-09-0018). The overall mean PM2.5 concentration across the
monitoring sites was 11.07 μg/m3 (SD=1.62 μg/m3). The PM2.5 concentrations measured at
the spatial sites were not based on the same number of sampling days due to differences in
sampling frequencies, site operation periods, or missing data, thus, the reported PM2.5 levels
may not be directly comparable. Mean (SE) daily AOD values for the grid cells covering the
New England region varied from 0.06 (0.01) to 0.30 (0.01). On average 627 AOD values per
grid cell were retrieved which corresponds to 19.1% of the study period.

3.2. Model prediction
The mixed effects model generated 994 daily PM2.5-AOD relationships for the years
2000-2008. The number of the determined relationships did not vary much by year, ranging
from 94 in 2000 to 131 in 2007 and 2008. However, the number of the relationships varied
considerably by season, with summer being the highest (N=329) followed by fall (N=324),
spring (N=253), and winter (N=88). The low number of retrieval days in winter was due to
the larger number of days with clouds or snow in this season. Note that the number of PM2.5
ground measurements is generally constant throughout the year. The fixed effects of
intercepts and slopes (AOD) for each of the 5 data subsets 2000-2001, 2002-2003,
2004-2005, 2006-2007, and 2008 were statistically significant (p<0.05), and the random
effects of intercepts and slopes varied substantially by day. The daily intercepts and slopes
(the mean of fixed plus random effect estimates) varied by season: 8.43 (SD=3.98), 7.98
(SD=3.86), 11.02 (SD=5.52), and 8.99 (SD=4.50) for intercepts; 8.18 (SD=4.12), 7.22
(SD=4.18), 9.25 (SD=5.31), and 8.49 (SD=4.63) for slopes in winter, spring, summer, and
fall, respectively. The random site estimates for densely populated and high traffic areas
were positive, indicating the necessity to include the site term in the mixed effects model to
adjust for site bias. The cluster analysis of the entire dataset for the years 2000-2008 yielded
9 different clusters. Each of the clusters consisted of 1,404 (42.7%), 678 (20.6%), 441
(13.4%), 189 (5.8%), 162 (4.9%), 132 (4.0%), 105 (3.2%), 96 (2.9%), and 81 (2.5%) days,
respectively. For all the cluster-specific performed GAMs, corresponding regional PM2.5
concentrations and spatial smooth function of coordinates were statistically significant
(p<0.05).

The results of mixed effects model used to estimate PM2.5 concentrations for retrieval days
are shown in Fig. 3. The model explained 93% of the variability in the measured PM2.5
concentrations obtained at the 69 monitoring sites (R2=0.93). There was a good agreement
between the measured and predicted PM2.5 concentrations [slope=1.02 (SE=0.003) and
intercept=-0.20 (SE=0.043)]. In addition, the cross-validation (CV) mixed effects model
explained 88% of the variability in the observed PM2.5 concentrations (R2=0.88) with a
slope of 1.00 (SE=0.004) and an intercept of 0.02 (SE=0.054). This suggests that AOD can
be a robust predictor of PM2.5 in the mixed effects model. Also the model performance
using these two simple linear regression models between the measured and predicted PM2.5
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concentrations suggested that excessive over-fitting did not occur and the mixed effects
model can be reliably applied to any grid cell in the study region.

The site-specific PM2.5 predictability was examined by estimating the R2 and % MRE
values for each of the 69 monitoring sites for both retrieval and non-retrieval days (Fig. 4).
Each monitoring site had the measured and predicted PM2.5 concentrations, and the
comparison between the measured and predicted PM2.5 levels showed the R2 and % MRE
for each site. These 69 R2 values and 69 % MRE values were represented in each box plot of
Fig. 4. For retrieval days, the average R2 and % MRE for 69 monitoring sites were 0.90
(SD=0.06) and 1.5 (SD=1.8) %, respectively. For the non-retrieval days, the average R2 and
% MRE values were 0.80 (SD=0.10) and 6.1 (SD=4.4) %, respectively. Therefore, models
for both the retrieval and non-retrieval days predicted PM2.5 concentrations accurately with
reasonably high R2 and low % MRE values for most spatial sites. As expected, model
performance was slightly better for retrieval days. In the past, low predictive power and a
large fraction of non-retrieval days have limited the application of satellite-based PM2.5
exposure assessment to epidemiological studies.

Model performance tests were conducted by year and season (Table 1). Overall, our
statistical models predicted surface PM2.5 concentrations with high R2 (0.83) and low %
MRE (3.5%) values. Yearly analysis showed constantly high R2 values ranging from 0.73 in
2000 to 0.87 in 2007 and low % MRE varying values from 2.3% in 2003 to 4.8% in 2002.
Moreover, seasonal comparisons show that daily ground PM2.5 concentrations can be
reliably estimated for all four seasons: R2 ranged from 0.75 in winter to 0.87 in summer and
% MRE varied from 2.1% in spring to 5.0% in winter. The PM2.5 predictive ability in winter
was lower than for other seasons, although the model performance was still reasonable. This
may be explained by the higher proportion of non-retrieval days during the winter.

Our study suggests that when satellite data are appropriately modeled they can be used to
predict PM2.5 exposures for epidemiological studies based on temporal (e.g., time-series and
case-crossover studies) and spatial (e.g., cross-sectional studies) variation in pollutant
concentrations. Time-series and case-crossover studies investigate associations between day-
to-day variations in exposures and health outcomes. Therefore, the high correlations
between the measured and predicted PM2.5 concentrations (assessed by Pearson correlations
or R2) indicate that the satellite-based PM2.5 predictions can provide reliable exposure
estimates for longitudinal health effect studies. Furthermore, cross-sectional studies examine
associations between health effects and long-term PM2.5 exposures across communities. The
very good agreement between the site measured and predicted mean PM2.5 concentrations,
as assessed by % MRE, suggests that satellite remote sensing can enhance our ability to
assess PM2.5 exposures for the cross-sectional studies. Often PM2.5 concentrations vary
spatially (Hoek et al. 2002; Kim et al. 2005). Therefore, using one or a limited number of
outdoor monitors may not be sufficient to produce accurate human exposure assessments.
This exposure error can result in the underestimation of health risks associated with PM2.5
exposures (Jerrett et al. 2005; Thomas et al. 1993; Zeger et al. 2000). Use of MODIS AOD
data helps to capture some or most of the spatial heterogeneity thus reducing exposure error.

3.3. Spatial patterns of PM2.5 concentrations
The spatial distribution of the predicted 9-year average PM2.5 concentrations is shown in
Fig. 5. In the figure, each grid cell value represents the average of daily predicted PM2.5
concentrations for 9 years. Our prediction models estimated daily PM2.5 concentrations for
the entire study period (2000-2008) including both retrieval and non-retrieval days. Thus the
number of the predicted PM2.5 concentrations in each grid cell is identical, and the reported
grid cell concentrations can be compared directly. The estimated average PM2.5
concentrations during the period of 2000-2008 ranged from 10.25 to 11.44 μg/m3. Note that
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on a given day concentration ranges were larger. Higher concentrations were predicted for
densely populated and high traffic areas (e.g., Bridgeport, Hartford, and New Haven, CT,
Boston and Springfield, MA, and Providence, RI) and high point emission source areas (e.g.,
power plants located in the coastal cities, Somerset and Salem, MA) (U.S. EPA, 2008).
Previous studies have shown that the Northeastern cities of the U.S. are mostly impacted by
the regionally transported PM2.5 pollution (Lee et al. 2011a; Liu et al. 2003). As a result,
average PM2.5 concentrations tend to exhibit low spatial variability throughout the study
region (Burton et al. 1996; Suh et al. 1997).

PM2.5 concentration spatial patterns may vary daily depending upon the prevailing
meteorological conditions and the location and characteristics of the impacting PM and
gaseous pollutant sources (Seinfeld and Pandis 2006). The New England area is the receptor
of pollution mostly transported by northwestern, western, and southwestern winds. In
addition, this region is impacted by emissions produced within the metropolitan New York
area. Therefore, the spatial patterns and composition of particles in the New England depend
on many time-varying parameters. However, it is possible to distinguish discrete spatial
patterns that may reflect certain synoptic conditions. Using cluster analysis we were able to
identify 9 distinct spatial patterns (clusters) for the entire 9 year study. The 9 concentration
maps are shown by Fig. A1. In the figure, each concentration map characterized different
spatial patterns of PM2.5 in terms of spatial gradients and PM2.5 levels. The spatial gradients
clearly displayed a group of days (i.e., clusters) influenced by transported pollution from the
metropolitan New York area and Canada. The average PM2.5 concentration levels and the
range of the PM2.5 levels (i.e., the highest minus lowest PM2.5 concentrations) varied by
cluster. This may be due to PM2.5 source locations/emission rates, local meteorology (i.e.,
prevailing winds and stability), and the relative contributions of transported and local
pollution over the region. The 9 distinct cluster-specific concentration maps, as shown in
Fig. A1, provide evidence that the cluster analysis successfully captured and represented the
heterogeneous PM2.5 spatial patterns in the study region. Moreover, these spatial patterns
help us qualitatively examine the characteristics of particle pollution (e.g., days that are
strongly influenced by transported pollution).

4. Conclusions
We have introduced a new approach that uses satellite AOD data to predict the spatial and
temporal patterns of PM2.5 levels in New England. Our method is based on the daily
calibration of AOD measurements using ground-level PM2.5 concentrations, which was
accomplished using a mixed effects model. These calibrations are necessary, since the
relationship between AOD and PM2.5 concentrations depends on many time-varying
parameters such as particle concentration vertical profile, particle composition, and relative
humidity among others. Daily calibration renders AOD a better predictor of PM2.5, and it
represents a significant improvement over previous studies, which assume a constant
relationship between the two parameters.

Furthermore, we have proposed a new method to predict PM2.5 concentrations during non-
retrieval days, which are quite frequent in New England due to clouds and snow. The cluster
analysis, which was based on the analysis of ground PM2.5 measurements obtained at a large
number of sites in New England, identified 9 distinct spatial patterns of PM2.5. Each of the
spatial patterns determined a single PM2.5 spatial surface, generating 9 cluster surfaces of
PM2.5 over the study period. The cluster-specific analysis allowed accurate prediction of all
the missing PM2.5 concentrations in each grid cell. The cluster analysis is crucial in
predicting ground PM2.5 concentrations for non-retrieval days, while overcoming the
limitation of satellite data availability.
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Overall, we have demonstrated the tremendous potential of satellite AOD data to accurately
predict exposures to PM2.5. These data are necessary for both short- and long-term PM2.5
epidemiological studies. As satellite remote sensing improves, data with finer spatial and
temporal resolutions will become available in the future, leading to more accurate PM2.5
exposure estimates. With regard to the MODIS, AOD data with the spatial resolution of 3
km is expected in the near future. This improvement will enhance our ability to assess daily
subject-specific PM2.5 exposures, since data with finer spatial resolution may further reduce
exposure measurement errors.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
The authors thank the Harvard-EPA Clean Air Research Center and the Yale Center for Perinatal, Pediatric and
Environmental Epidemiology. This publication was made possible by USEPA grant RD 83479801. Its contents are
solely the responsibility of the grantee and do not necessarily represent the official views of the USEPA. Further,
USEPA does not endorse the purchase of any commercial products or services mentioned in the publication. This
publication was also supported by NIEHS grants R01ES016317 and R01ES019587.

References
Al-Saadi J, Szykman J, Pierce RB, Kittaka C, Neil D, Chu DA, Remer L, Gumley L, Prins E,

Weinstock L, MacDonald C, Wayland R, Dimmick F, Fishman J. Improving national air quality
forecasts with satellite aerosol observations. Bull Amer Meteor Soc. 2005; 86:1249–1261.

Bell ML, Ebisu K, Belanger K. Ambient air pollution and low birth weight in Connecticut and
Massachusetts. Environ Health Perspect. 2007; 115:1118–1124. [PubMed: 17637932]

Bell ML, Belanger K, Ebisu K, Gent JF, Lee HJ, Koutrakis P, Leaderer BP. Prenatal exposure to fine
particulate matter and birth weight variations by particulate constituents and sources. Epidemiology.
2010a; 21:884–891. [PubMed: 20811286]

Bell ML, Ebisu K, Peng RD. Community-level spatial heterogeneity of chemical constituent levels of
fine particulates and implications for epidemiological research. J Expo Sci Environ Epidemiol.
2010b doi:10.1038/jes.2010.24.

Brunekreef B, Holgate ST. Air pollution and health. Lancet. 2002; 360:1233–1242. [PubMed:
12401268]

Burton RM, Suh HH, Koutrakis P. Spatial variation in particulate concentrations within metropolitan
Philadelphia. Environ Sci Technol. 1996; 30:400–407.

Engel-Cox JA, Holloman CH, Coutant BW, Hoff RM. Qualitative and quantitative evaluation of
MODIS satellite sensor data for regional and urban scale air quality. Atmos Environ. 2004;
38:2495–2509.

Fitzmaurice, GM.; Laird, NM.; Ware, JH. Applied longitudinal analysis. Wiley & Sons; New York:
2004.

Franklin M, Zeka A, Schwartz J. Association between PM2.5 and all-cause and specific-cause
mortality in 27 US communities. J Expo Sci Environ Epidemiol. 2007; 17:279–287. [PubMed:
17006435]

Gent JF, Triche EW, Holford TR, Belanger K, Bracken MB, Beckett WS, Leaderer BP. Association of
low-level ozone and fine particles with respiratory symptoms in children with asthma. JAMA.
2003; 290:1859–1867. [PubMed: 14532314]

Gent JF, Koutrakis P, Belanger K, Triche E, Holford TR, Bracken MB, Leaderer BP. Symptoms and
medication use in children with asthma and traffic-related sources of fine particle pollution.
Environ Health Perspect. 2009; 117:1168–1174. [PubMed: 19654929]

Green M, Kondragunta S, Ciren P, Xu CY. Comparison of GOES and MODIS aerosol optical depth
(AOD) to aerosol robotic network (AERONET) AOD and IMPROVE PM2.5 mass at Bondville,
Illinois. J Air Waste Manag Assoc. 2009; 59:1082–1091. [PubMed: 19785275]

Lee et al. Page 9

Environ Res. Author manuscript; available in PMC 2013 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Hastie, TJ.; Tibshirani, RJ. Generalized additive models. Chapman & Hall; New York: 1990.

Hoff RM, Christopher SA. Remote sensing of particulate pollution from space: Have we reached the
promised land? J Air Waste Manag Assoc. 2009; 59:645–675. [PubMed: 19603734]

Hoek G, Meliefste K, Cyrys J, Lewne M, Bellander T, Brauer M, Fischer P, Gehring U, Heinrich J,
van Vliet P, Brunekreef B. Spatial variability of fine particle concentrations in three European
areas. Atmos Environ. 2002; 36:4077–4088.

Ito K, Xue N, Thurston G. Spatial variation of PM2.5 chemical species and source-apportioned mass
concentrations in New York City. Atmos Environ. 2004; 38:5269–5282.

Jerrett M, Burnett RT, Ma RJ, Pope CA, Krewski D, Newbold KB, Thurston G, Shi YL, Finkelstein N,
Calle EE, Thun MJ. Spatial analysis of air pollution and mortality in Los Angeles. Epidemiology.
2005; 16:727–736. [PubMed: 16222161]

Kim E, Hopke PK, Pinto JP, Wilson WE. Spatial variability of fine particle mass, components, and
source contributions during the regional air pollution study in St. Louis. Environ Sci Technol.
2005; 39:4172–4179. [PubMed: 15984797]

Lee HJ, Gent JF, Leaderer BP, Koutrakis P. Spatial and temporal variability of fine particle
composition and source types in five cities of Connecticut and Massachusetts. Sci Total Environ.
2011a; 409:2133–2142. [PubMed: 21429560]

Lee HJ, Liu Y, Coull BA, Schwartz J, Koutrakis P. A novel calibration approach of MODIS AOD data
to predict PM2.5 concentrations. Atmos Chem Phys. 2011b; 11:7991–8002. doi:10.5194/
acp-11-7991-2011.

Levy RC, Remer LA, Mattoo S, Vermote EF, Kaufman YJ. Second-generation operational algorithm:
Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging
Spectroradiometer spectral reflectance. J Geophys Res. 2007; 112:D13211. doi:
10.1029/2006JD007811.

Levy RC, Remer LA, Tanre D, Mattoo S, Kaufman YJ. Algorithm for remote sensing of tropospheric
aerosol over dark targets from MODIS: Collections 005 and 051: Revision 2; February 2009.
MODIS Algorithm Theoretical Basis Document. 2009

Levy RC, Remer LA, Kleidman RG, Mattoo S, Ichoku C, Kahn R, Eck TF. Global evaluation of the
Collection 5 MODIS dark-target aerosol products over land. Atmos Chem Phys. 2010; 10:10399–
10420.

Liu W, Hopke PK, Han YJ, Yi SM, Holsen TM, Cybart S, Kozlowski K, Milligan M. Application of
receptor modeling to atmospheric constituents at Potsdam and Stockton, NY. Atmos Environ.
2003; 37:4997–5007.

Liu Y, Sarnat JA, Kilaru V, Jacob DJ, Koutrakis P. Estimating ground-level PM2.5 in the eastern
United States using satellite remote sensing. Environ Sci Technol. 2005; 39:3269–3278. [PubMed:
15926578]

Liu Y, Franklin M, Kahn R, Koutrakis P. Using aerosol optical thickness to predict ground-level
PM2.5 concentrations in the St. Louis area: A comparison between MISR and MODIS. Remote
Sens Environ. 2007a; 107:33–44.

Liu Y, Koutrakis P, Kahn R. Estimating fine particulate matter component concentrations and size
distributions using satellite-retrieved fractional aerosol optical depth: Part 1 - Method
development. J Air Waste Manag Assoc. 2007b; 57:1351–1359. [PubMed: 18069458]

Liu Y, Koutrakis P, Kahn R, Turquety S, Yantosca RM. Estimating fine particulate matter component
concentrations and size distributions using satellite-retrieved fractional aerosol optical depth: Part
2 - A case study. J Air Waste Manag Assoc. 2007c; 57:1360–1369. [PubMed: 18069459]

Liu Y, Paciorek CJ, Koutrakis P. Estimating regional spatial and temporal variability of PM2.5
concentrations using satellite data, meteorology, and land use information. Environ Health
Perspect. 2009; 117:886–892. [PubMed: 19590678]

Pinto JP, Lefohn AS, Shadwick DS. Spatial variability of PM2.5 in urban areas in the United States. J
Air Waste Manag Assoc. 2004; 54:440–449. [PubMed: 15115373]

Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D. Aerosols, climate, and the hydrological cycle.
Science. 2001; 294:2119–2124. [PubMed: 11739947]

Lee et al. Page 10

Environ Res. Author manuscript; available in PMC 2013 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Remer LA, Kleidman RG, Levy RC, Kaufman YJ, Tanre D, Mattoo S, Martins JV, Ichoku C, Koren I,
Yu H, Holben BN. Global aerosol climatology from the MODIS satellite sensors. J Geophys Res.
2008; 113:D14S07. doi:10.1029/2007JD009661.

Schaap M, Apituley A, Timmermans RMA, Koelemeijer RBA, de Leeuw G. Exploring the relation
between aerosol optical depth and PM2.5 at Cabauw, the Netherlands. Atmos Chem Phys. 2009;
9:909–925.

Seinfeld, JH.; Pandis, SN. Atmospheric chemistry and physics: From air pollution to climate change.
John Wiley & Sons; New York: 2006.

Suh HH, Nishioka Y, Allen GA, Koutrakis P, Burton RM. The metropolitan acid aerosol
characterization study: Results from the summer 1994 Washington, D.C. field study. Environ
Health Perspect. 1997; 105:826–834. [PubMed: 9347898]

Thomas D, Stram D, Dwyer J. Exposure measurement error: Influence on exposure-disease
relationships and methods of correction. Annu Rev Publ Health. 1993; 14:69–93.

U.S. Environmental Protection Agency (U.S. EPA). [15 March 2011] Air quality criteria for
particulate matter; 2004. Available: http://cfpub2.epa.gov/ncea/cfm/recordisplay.cfm?deid=87903

U.S. Environmental Protection Agency (U.S. EPA). [14 January 2011] National Emissions Inventory
(NEI); 2008. Available: http://www.epa.gov/ttn/chief/eiinformation.html

Zeger SL, Thomas D, Dominici F, Samet JM, Schwartz J, Dockery D, Cohen A. Exposure
measurement error in time-series studies of air pollution: concepts and consequences. Environ
Health Perspect. 2000; 108:419–426. [PubMed: 10811568]

Lee et al. Page 11

Environ Res. Author manuscript; available in PMC 2013 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://cfpub2.epa.gov/ncea/cfm/recordisplay.cfm?deid=87903
http://www.epa.gov/ttn/chief/eiinformation.html


Highlights

- Satellite-based PM2.5 prediction has the potential to monitor PM2.5 air quality.

- We use an AOD daily calibration approach to predict PM2.5 for retrieval days.

- The amount of PM2.5 spatial heterogeneity can be observed.

- These enable us to develop PM2.5 prediction models for non-retrieval days.
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Fig. 1.
Location of 69 EPA PM2.5 monitoring sites in the study region. This study region is covered
by 582 grid cells (10×10 km2).
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Fig. 2.
Flowchart summarizing PM2.5 prediction for non-retrieval days.
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Fig. 3.
Model performance for retrieval days for the years 2000-2008 (Unit: μg/m3): (A) Mixed
effects model and (B) CV mixed effects model. The green solid line presents the regression
line, and the red dashed line displays the 1:1 line indicating perfect agreement.
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Fig. 4.
Site-specific PM2.5 predictability using R2 and % MRE for the years 2000-2008: (A)
Retrieval days and (B) Non-retrieval days. The R2 and % MRE values were based on the
comparison between the measured and predicted PM2.5 concentrations by site. Each box plot
represents 69 monitoring sites.
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Fig. 5.
Spatial distribution of the 9-year average predicted PM2.5 concentrations.
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