
Screening a large, ethnically diverse population of human
embryonic stem cells identifies a chromosome 20 minimal
amplicon that confers a growth advantage

The International Stem Cell Initiative

Abstract
The International Stem Cell Initiative analyzed 125 human embryonic stem (ES) cell lines and 11
induced pluripotent stem (iPS) cell lines, from 38 laboratories worldwide, for genetic changes
occurring during culture. Most lines were analyzed at an early and late passage. Single-nucleotide
polymorphism (SNP) analysis revealed that they included representatives of most major ethnic
groups. Most lines remained karyotypically normal, but there was a progressive tendency to
acquire changes on prolonged culture, commonly affecting chromosomes 1, 12, 17 and 20. DNA
methylation patterns changed haphazardly with no link to time in culture. Structural variants,
determined from the SNP arrays, also appeared sporadically. No common variants related to
culture were observed on chromosomes 1, 12 and 17, but a minimal amplicon in chromosome
20q11.21, including three genes, ID1, BCL2L1 and HM13, expressed in human ES cells, occurred
in >20% of the lines. Of these genes, BCL2L1 is a strong candidate for driving culture adaptation
of ES cells.

In human ES cell cultures, somatic mutations that generate a selective advantage, such as a
greater propensity for self-renewal, can become fixed over time1. This selection may be the
reason for the nonrandom genetic changes found in human ES cells maintained for long
periods in culture. These changes, mostly detected by karyotypic analyses, commonly
involve nonrandom gains of chromosomes 12, 17, 20 and X, or fragments of these
chromosomes2–12. The embryonal carcinoma (EC) stem cells of human teratocarcinomas,
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the malignant counterparts of ES cells, though typically highly aneuploid, always contain
amplified regions of the short arm of chromosome 12 and, commonly, gains of
chromosomes 1, 17 and X13–16. Gain of chromosome 20q has also been noted in yolk sac
carcinoma and nonseminomatous germ cell tumors, which contain EC cells17–19. Such
observations suggest that these specific genetic changes in ES cells may be related to the
nature of pluripotent stem cells themselves rather than the culture conditions. Mouse ES
cells also undergo karyotypic changes upon prolonged passage20, often with gain of mouse
chromosomes 8 and 11 (ref. 21); mouse chromosome 11 is highly syntenic with human
chromosome 17 (ref. 22).

Structural variants in otherwise karyotypically normal human ES cells have also been
described10,11,23,24. These structural variants include gains on chromosome 4, 5, 15, 18 and
20 and losses on chromosome 10, although only gains on chromosome 20 were commonly
observed in multiple cell lines.

Marked epigenetic changes have also been noted on prolonged passage; studies of global
DNA methylation in human ES cells found considerable instability with time in culture25,26.
Functional gain of the X chromosome, resulting from loss of X-chromosome inactivation in
culture-adapted ES cells with two karyotypically normal X chromosomes has been
reported27. On the other hand, some imprinted genes retain their monoallelic expression
over long-term culture of human ES cells, although this stability is not invariant for all
loci28–31.

Because stem cells can adopt alternative fates (that is, self-renewal, differentiation or death),
it might be expected that those maintained in the pluripotent state for many passages would
be subject to strong selection favoring variants that enhance the probability of self-
renewal32. Viewed in this light, the increased frequency of genetic variants in ES cell
cultures over time might be considered inevitable33. Indeed, ES cell lines do often show
progressive ‘adaptation’ to culture, with the result that late-passage cells may be maintained
more easily, showing enhanced plating efficiencies27. Similarly, some mouse and human EC
cell lines derived from germ cell tumors are nullipotent, as if selected for the capacity for
self-renewal exclusively34,35. Taken together, these observations suggest that acquisition of
extra copies of portions of chromosomes 12, 17, 20 and X by human ES and EC cells is
driven by increased dosage of a gene or genes that favor self-renewal, independent of culture
conditions.

However, there are also reports of human ES cell lines that have been maintained for many
passages in vitro without overt karyotypic changes. It has been argued that some culture
techniques, such as manual ‘cutting and pasting’ of ES colonies, favor maintenance of cells
with a diploid karyotype3,6. As the appearance of a genetic variant in an ES cell culture must
involve both mutation and selection, the low population size in cultures maintained by these
methods may simply beat the mutation frequency33. Nevertheless, culture conditions
themselves might influence the mutation rate independently of selection, and a population
bottleneck, such as cloning, could allow a viable genetic variant to dominate in the absence
of a selective advantage.

Candidate genes from the commonly amplified regions can be posited to provide the driving
force for selection of variant ES cells, but direct evidence for the involvement of any
specific gene is lacking. For example, NANOG, on human chromosome 12p, promotes the
self-renewal of ES cells when overexpressed36–38, but one of the two minimal amplicons of
chromosome 12p in EC cells has been reported to exclude the NANOG locus39. It is also
unclear to what extent changes affecting different loci are selected independently of one
another or whether alterations at some loci act synergistically. Further, overexpression of
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disparate genes affecting a common pathway(s) could lead to an increased proliferative
potential. Although the frequent gain of chromosomes 12, 17, 20 and X in both ES and EC
cells argues for a selective advantage independent of culture conditions, changes affecting
other regions might be more likely to depend upon culture conditions.

To provide better insight into the frequency and types of genetic changes affecting human
ES cells on prolonged passage, the International Stem Cell Initiative (ISCI) surveyed by
karyology and high-resolution SNP array 125 independent human ES cell lines, provided by
38 laboratories in 19 countries around the world, particularly to identify the common genetic
changes that occur during prolonged culture (Supplementary Table 1). An opportunity was
also taken to screen the samples against a specialized custom DNA methylation array
focused on polycomb-target genes. These likely play a role in controlling ES cell
differentiation and could be primary targets for the types of epigenetic change observed in
cancer cells40. Thus, they may provide a source of selective advantage for variant stem cells.
In most cases, each line was analyzed at both an early- and a late-passage level, using all
three types of assay. The scale and design of this screen helped ensure that the ES cell lines
sampled were representative of the world population. A group of 11 human iPS cell lines
from three laboratories was also included to provide a pilot comparison of these pluripotent
cells derived by reprogramming. Our results indicate that the common gains of
chromosomes 12 and 17 in human ES cells are unlikely to be driven by the gain of single
genes, but that the gain of chromosome 20 may be driven by the gain of a single gene,
BCL2L1.

RESULTS
Independence, diversity and population structure of the cell lines surveyed

To define the range of ethnicity represented by the human ES cell lines included in this
study, we first analyzed the SNP calls identified in the SNP array data by referencing them
to ethnically defined human genotyping data sets. Of the samples submitted for SNP
analysis, three cell lines were included twice, and four pairs of ES cell lines and a set of
three lines were identified as having a full sibling relationship (Supplementary Table 1).
After accounting for these, 112 genetically unrelated ES cell lines passed SNP quality-
control criteria. Subsequent analysis allowed us to determine whether specific structural
variants found in particular cell lines are limited to the population from which they were
derived or common to all human ES cell lines studied.

For population structure analysis, the international breadth of this study required the use of a
diverse set of reference samples to compare to these 112 genetically unrelated cell lines. The
reference samples were pooled from the HapMap41, the human genome diversity panel
(HGDP)42 and the Pan-Asian SNP Initiative43 to generate an ethnically diverse set of 1,868
reference samples. We performed cluster analysis44 of the human ES samples against these
reference samples, using the CEU (European), Chinese, Japanese and African HapMap
populations as references, to arrive at the population structure of the human ES cell lines
analyzed (Fig. 1a).

Of the 112 genetically unrelated ES cell lines, 61 (54%) were of European ancestry, 31
(28%) of Asian ancestry, 3 (3%) of African ancestry, 12 (10%) of Middle East and East
European ancestry, and 4 (4%) of Central-South Asian and South European ancestry (Table
1). The European ES cell lines were further stratified using a recently described
comprehensive European reference set45 and were found to match subpopulations from
many different regions of Europe (Fig. 1b). The cell lines of Asian descent were stratified
into those of East Asian origin, including those of Han Chinese, Korean, Japanese and
Indian origin, and those of Central or Central-South Asian origin (Fig. 1c,d). Five of the cell
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lines classified as Middle East and East European clustered with one another but not
particularly close to any of the reference samples used in this study, namely clusters
belonging to HGDP-Central/South-Asia, HGDP-Middle East and the HGDP-European
samples (Fig. 1d). Four of these five lines were derived in Iran, and are most likely of
Persian ancestry, a population not represented in the reference samples. It is notable that the
nine ES cell lines most commonly cited in the scientific literature are representative of the
genetic backgrounds of populations from northern, northwestern and central European, Han
Chinese, Indian and Middle Eastern populations (Table 1).

Karyotype analysis
Stability of the cell lines—Analyses were carried out on all 120 human ES cell lines
(including duplicate and sibling cell lines) provided for karyotyping at both early- and late-
passage levels (‘paired’ lines), as well as on five additional lines that were provided only in
early passage (Supplementary Table 1). Among this total of 125 lines, 42 (34%) had
abnormal karyotypes (defined as at least two metaphases with identical, abnormal
karyotypes of at least 30 metaphases screened) in at least one passage level. The data from
this study confirm that human ES cells are commonly diploid soon after derivation, and that
many do retain a normal karyotype after many passages (Fig. 2a).

Late-passage cultures of the paired lines were approximately twice as likely to have a
chromosome abnormality (39/120, 33%) as those from the early-passage cultures (17/120,
14%). Among the five lines submitted only at an early-passage level, one (20%) had an
abnormal karyotype with an extra copy of chromosome 17q. Of the 39 paired lines with
abnormal karyotypes at late passage, 24 were normal at the early passage, whereas the
remaining 15 also had abnormalities at both passage levels. In this case, the abnormalities
seen at the late passage were mostly similar to those seen at the early passage. About half of
all the abnormalities involved combinations of chromosomes 1, 12, 17 and 20 (Fig. 2a).

A number of cultures were mosaic with, mostly, two populations of cells, one with a normal
karyotype and one with a particular abnormal karyotype; 10 of 24 with abnormalities only at
late passage, and 8 out of 15 with abnormalities at both passage levels were mosaic
(Supplementary Table 1). Five lines that were mosaic at early passage showed an increase in
the abnormal cell population at late passage. In all of these cases, the abnormality involved
extra copies of chromosomes 1, 12, 17, 20 or X. One pair showed additional chromosome
changes in the late passage and one pair had unrelated abnormal karyotypes at each passage
level. Two lines were scored as abnormal in early passage but normal at late passage.
However, both were mosaic, with 3/30 metaphases in one case with a translocated
chromosome t(2:19), and 5/30 metaphases in the other with a duplication on chromosome
13. Both chromosomal rearrangements were unique to these lines and most likely represent
random changes that were outcompeted by the normal cells over time.

Among the 11 iPS cell lines examined, three exhibited chromosome abnormalities, a
frequency (27%) comparable to that found in ES cell lines. Of these, one line (RR01)
exhibited trisomy 12 at both early and late passage. The other two lines were provided only
at one passage level; one had a trisomy 12 (RR05) and one an inversion on chromosome 5
(RR03). None of these abnormalities were present in the somatic cells from which they were
derived. These results are consistent with recent analysis of human iPS cell chromosomal
instability both in the general frequency of aberrations and over-representation of
chromosome 12 alterations12,46.

A common source of cells with abnormal karyotypes—The proportion of cell lines
with abnormal karyotypes did increase with delta, the difference in estimated number of
population doublings (P = 0.048) (Fig. 2b). There was also a marked variation in the
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proportion of abnormal ES cell lines submitted by the different participating laboratories.
The 42 abnormal lines were among cell lines submitted by 21 laboratories, whereas no
abnormal lines were found among the other 40 lines submitted from the remaining 12
laboratories. This was not directly linked to the delta of the submitted lines and might
simply reflect the stochasticity of mutation, or could imply a laboratory effect. The cell lines
in each category were from diverse ethnic origins, and were cultured under very similar
conditions, although a role for subtle variations in culture technique cannot be excluded.
Nevertheless, consistent with suggestions that enzymatic mass-passaging techniques may
favor the generation of abnormalities, a twofold higher proportion of the paired lines that
had an initially normal karyotype but became abnormal at late passage were passaged by
enzymatic methods (18/58, 31%), relative to those passaged by the manual cut-and-paste
technique (6/43, 14%) (χ2, P = 0.009). This effect is significant even after adjusting for
delta (P = 0.017).

Candidate regions/genes—Aberrations of all chromosomes with the exception of
chromosome 4 were observed (Fig. 3). However, most chromosomes were affected in very
few instances, and four cell lines with particularly abnormal karyotypes accounted for many
of these sporadic changes (Supplementary Table 1). In addition, there were three instances
of balanced rearrangements seen as sole aberrations, a translocation between 2 and 19 in an
early-passage human ES cell culture, an inversion of 11 in a late passage culture, for which
the early passage was normal, and a Robertsonian translocation between chromosome 21
and 22 in both passages of one line. There were also abnormalities affecting chromosome 7
in seven ES cells, but five came from one laboratory, suggesting an unknown cause
particularly associated with that group, perhaps related to their derivation of ES cells from
prenatal genetic screening material. By contrast, in most abnormal lines (25/42), the changes
involved one or more of chromosomes 1, 12, 17 and 20. Of the 17 lines that were abnormal
in early passage, eight had abnormalities involving these chromosomes whereas, of the 24
lines that acquired abnormalities between early and late passage, 16 lines had changes
involving acquisition of one or more of these chromosomes (Fig. 2a). Among the gains,
there were minimal amplicons affecting the telomeric region of chromosome 17 (17q25) in
two lines, and another affecting 20q11.2 was apparent in another line (Fig. 3). Gains of only
the short arm of chromosome 12 were found in three cell lines.

The large differential in frequency between gain and loss of chromosomes is remarkable. In
contrast to the 39 ES cell lines that showed gains of chromosomal material in late passage,
20 lines showed losses of chromosomal material. However, only two lines exhibited
chromosomal deletions that were not caused by unbalanced translocations (one, UU03, had
two unrelated deletions of chromosomes 6 and 18), although even in these there were also
unrelated chromosome gains. Excepting the deletions on chromosome 7, which only
occurred in the lines from one laboratory, three regions showed recurrent loss, 10p13-pter
(five cases), 18q21-qter (five cases) and 22q13-qter (three cases); in several cases these were
the sole changes (Fig. 3).

Structural changes determined by molecular karyotyping
Identification of ES cell–associated structural variants—As genomic structural
changes do occur below the ~5 MB detectable limit of karyotyping, we used SNP data to
identify structural variants and detect structural changes down to a minimum of 1 kb in
length. We identified structural variants for all samples that passed quality control, but
restricted our detailed analyses to those cells judged to have a normal karyotype, because of
the difficulty of ascribing functional significance to a small structural genomic change in a
background of a much larger karyotypic abnormality. Nevertheless, we did examine the
breakpoints in six cases of balanced rearrangements (PP-107, NN-12, J-02, CC-05, AA-03,
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RR-03) but found no evidence of structural variants associated with these (Supplementary
Table 1). In addition, although loss of heterozygosity can be detected with the SNP platform,
we focused our attention primarily on structural variant analysis as this is the more likely
structural change to lead to a selective advantage. Nonetheless, we provide a spreadsheet of
overlapping loss of heterozygosity across the 225 human ES cell samples and an
associated .bed file with all loss-of-heterozygosity calls (Supplementary Information 1 and
2). Structural variants were identified in the 200 DNA samples from karyotypically normal
ES cells that passed quality control by comparison with the reference genome (hg18).
Further quality controls removed one sample due to an extremely high number of structural
variants called and two more for extremely high total length of structural variants
(Supplementary Fig. 1). A total of 27,409 deletions with an average size of 40.2 kb, and
7,413 duplications with an average size of 95.4 kb, were detected. The sizes of these
structural variants and the total number of differences between deletions and duplications
are consistent with previous structural variant studies of human populations47. As structural
variants are a common feature of variation between individuals, the majority of structural
variants detected in the human ES cells most likely represent the condition of the genomes
of the respective embryos from which they were derived, and are unrelated to human ES cell
culture.

To aid in distinguishing culture-associated structural variants, we compared the human ES
cell structural variants to those identified using the same platform to analyze a set of 267
HapMap samples (raw data directly supplied by Illumina). Though relatively restricted in
population diversity compared to our human ES cell data set, the HapMap samples provide a
set of common reference structural variants. Our subsequent analyses focused only on
variant regions enriched in human ES cell lines over the HapMap samples. We identified
504 regions of gain and 860 regions of deletion in the karyotypically normal ES cell lines as
‘ES cell associated’ (Supplementary Information 3 and Supplementary Table 2).

Genome-of-origin variants—The apparent ES cell–associated structural variants most
likely include some rare and/or localized variants absent in the HapMap set, yet unrelated to
human ES cell culture selection. There are a number of examples in which a particular
variant occurs in a single line in both the early and late passage. Although we cannot
exclude that such variants arose in culture before the early-passage samples being obtained,
it is more likely they represent rare and/or localized variants present in the genomes of the
donated embryos. We did see such a case among the iPS cell lines for which we have SNP
data from the parental somatic cell line. For instance, in three iPS cell lines derived from the
same parental fibroblast, the same rare gain (chr12:106,928,902-107,008,902) was detected
in both the early and late passages and the parental line (Supplementary Information 3).
Also, among the sibling human ES cells lines, we found recurring rare variants specific to
each family. For instance, a gain at chr3:45,220,749-45,263,539 was found in the early and
late passages of human ES cell lines G02 and G05, although this allele was absent in G04,
the third of these sibling lines. At another location, chr3:167,536,633-167,837,107, a gain
occurs in the early and late passage of all three of these sibling lines. For the purposes of this
study, we have assumed that none of these rare variants arose during ES cell culture, and we
define them as ‘genome-of-origin’ variants (Supplementary Table 2).

Dynamically changing variants—Some structural variants that were detected are
represented in the HapMap population and change dynamically in ES cell culture,
suggesting the labile nature of at least some genomic elements. For example, 18 human ES
cell lines had a gain at chr17:75,289,455-75,296,305 (Supplementary Table 2, labile
structural variant), but this was also present in four HapMap samples. Among the human ES
cell samples, this structural variant was present in the late but not early passage of four lines,
but in five other definitive cases it was present in the early but not late passage. Thus, this
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represents a dynamically changing variant with no evidence for positive selection in human
ES cell culture but provides an example of the labile nature of the human genome.

Structural variants enriched in late-passage cultures—In the subset of structural
variants enriched in the ES cells, there was no overall trend toward a gain of total structural
variant numbers between early-passage and late-passage samples: that is, there was an
increase in the total number in the late passage of some lines, but a decrease in others
(Supplementary Table 2). Among the particular structural variants that did show increases in
several lines in a late passage, a number encompassed regions known to encode genes that
may be relevant to human ES cell behavior, but they were isolated instances. For example, a
deletion variant spanning the SOX21 locus was found in one line (UU03-E), and a minimal
deleted region at chr4:983425-997875, which spans the promoter and first exon of FGFRL1,
was present in the late but not early passage of two lines (L03-l, TT20-l). FGFRL1 is
expressed in human ES cells and may act as an inhibitory sink for FGF2, which is important
for human ES cell maintenance48. Late-passage samples of MM01 and TT20 lines share a
minimal overlapping deletion variant of ~540 bp at chr3:196,472,618-196,473,157. This
spans a highly conserved open reading frame (C3orf21) that is expressed in human ES cells
but has no known function48.

Structural variants in karyotypically normal ES cells in the regions of common karyotypic
abnormalities

In one region of chromosome 1q, two cell lines (V09 and FF01) in late, but not early,
passage, have an overlapping 3.1 MB gain (chr1:199,985,282-203,092,388), which spans
JARID1B, a polycomb-related gene encoding a histone H3 lysine-4-demethylase49,50. On
chromosome 12, two cell lines (B02 and F04) have an overlapping gain of 1.1 MB in
chr12:5,592,150-6,749,326, in the late-passage samples. This structural variant is within a
minimal amplicon identified by karyology (12p13.31) and includes NANOG, CD9 and
GAPDH, all of which are expressed in human ES cells. There was little evidence for
repeated occurrence of gains below the resolution of standard banding techniques in regions
of chromosome 17 (Supplementary Fig. 2).

In contrast, there was a striking occurrence of a structural variant gain within chromosome
20 in 22 karyotypically normal cell lines. Notably these gains, many validated by
quantitative PCR (Supplementary Fig. 3), are within the minimal amplicon, 20q11.2, found
by karyology (Fig. 4). Among these 22 cell lines, there were five instances where the gain
was detected in both early and late passage but 17 instances where it was detected only in
the late passage. There were no instances of this gain in early passage but absence in late
passage of the same cell line. This gain was also present in an ES cell line (J01) that had an
abnormal karyotype at late passage and in an iPS cell line (RR01) that contained an extra
copy of chromosome 12 (Supplementary Table 1). This strongly suggests that once genomic
rearrangements occur in this region, they provide a positive selective advantage during
subsequent culture. The least difference in passage number between the early and late
passage from the same cell line, which had the gain in the late passage alone, was 22. The
apparent strong positive selection for gain of this region suggests that a gene providing a
cell-autonomous functional advantage under normal human ES cell culture conditions is
encoded within the DNA of the shared overlapping region. Moreover, three cell lines (F-01,
Q-02 and K-05) that had a normal karyotype and a 20q11.21 structural variant gain in early
passage acquired an abnormal banded karyotype in samples from later passage. The late
passage abnormal karyotypes of F-01, Q-02 and K-05 were 46,XX,der(15)t(15;17)
(p11;q21); (47,XX,+der(1)(t(1;1)(p?21.2;q11); and 47,XX,t(1;11)(p?36;q13),trp(17)(p11.2),
+20, respectively. This preliminary evidence suggests that early gains in 20q11.21 might
promote further subsequent genetic change.
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The duplicated regions of chromosome 20 in the various cell lines and the minimal amplicon
are diagrammed in Figure 4b. The proximal ends of each of the structural variant gains
within chromosome 20 are presumed to lie in a nonbridged sequencing gap sized at 1 MB
near the centromeric region of the long arm. The most proximal SNP identified in all these
gains is the first occurring after this gap, at position 29,267,954. The distal end of the gain
varies across the lines. The longest gain extends to 31,793,485 with a measured length of 2.5
MB, similar to the shortest karyotypically identified gain in this region, dup(20)q11.21 in
cell line UU01 (Fig. 3). The shortest gain is 0.55 MB extending to 29,821,940 and contains
13 genes (Fig. 4c). Three of these genes, ID1, BCL2L1 and HM13 are known to be
expressed in human ES cells based on mRNA-Seq data (Fig. 4c) and published microarray
data27. Although a single RefSeq-annotated microRNA lies in this region there is no
evidence for its expression in human ES cells51. Further, combined with the mRNA-Seq
data, ChIP-Seq data from H1 human ES cells of histone modifications, considered universal
predictors of enhancer and promoter activity (H3K4me3, H3K27ac), do not suggest
additional functional regions other than those associated with the three RefSeq genes
identified as expressed in human ES cells (Fig. 4c).

When five pairs of cell lines with and without the chromosome 20 gain were analyzed, there
was no clear correlation between increased expression and the presence of the 20q11.21 gain
for these three expressed genes (Fig. 4d). Nevertheless, preliminary results indicated a
strong selective advantage in culture for cells with the gain over those without
(Supplementary Fig. 4). It has also been recently reported that Bcl-XL, the long, anti-
apoptotic isoform encoded by the BCL2L1 locus, can suppress apoptosis in human ES cells
and increase their cloning efficiency52. Further, when we transfected MM01 ES cells with a
constitutive vector encoding Bcl-XL, the predominant isoform expressed in human ES cells,
these cells showed a distinct growth advantage with respect to the parental cells
(Supplementary Fig. 4).

DNA methylation analysis
To examine whether cell lines that are genetically unstable at the karyotype level tend to
show higher levels of epigenetic instability, we analyzed DNA methylation patterns,
focusing on developmentally relevant genes known to be targets of abnormal promoter DNA
methylation in cancer40, and thus most likely to be subjected to selection for altered
expression during culture adaptation. For this we used a custom GoldenGate DNA
methylation array developed to interrogate DNA methylation changes in known polycomb
group protein (PcG) targets in human ES cells53. In general, the DNA methylation patterns
of the human ES cells tended to be unstable, with both increases or decreases depending
upon the locus (Fig. 5 and Supplementary Information 4). Table 2 summarizes those genes
that were most frequently subject to gain or loss of methylation during passage, or that
showed the least change. Overall, we did not observe any hot spots for DNA methylation at
the ~1,500 loci interrogated in the array used in this study, and chromosomes 12, 17 and 20
were not any more methylated, on average, than the rest of the genome.

As shown by cumulative distribution function (CDF) curves, most cell lines underwent
extensive DNA methylation changes during their time in culture (Online Methods).
However, there was a marked difference between the cell lines. For example, in some cell
lines there were few changes observed even if there was a large difference in passage level
between the early- and late-passage samples (Fig. 5 Q4 and Supplementary Table 3),
whereas with other pairs there were large differences observed even when the passage-level
difference between the samples was small (Fig. 5 Q1 and Supplementary Table 3).
However, the causes of the variation in methylation stability between the lines were not
evident. There was no obvious laboratory effect, and the karyotypically abnormal cell lines
were not any more unstable than their karyotypically normal counterparts. This suggests that
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genetic instability played little to no role in the epigenetic instability of the cell lines
analyzed. In addition, the DNA methylation patterns of the sibling ES cell lines were as
different between themselves as they were between unrelated lines (Supplementary
Information 4), suggesting that the genetic background of human ES cells plays a minor role
in the degree of their epigenetic instability.

DISCUSSION
The occurrence of genetic and epigenetic change in human ES cells on prolonged passage is
clearly important with respect to their use in regenerative medicine. Understanding the key
genes involved and the mechanisms that drive change is important, not only for minimizing
the impact of such variants in applications of ES and iPS cells, but also for exploring the
mechanisms that control the fate decisions of pluripotent cells between self-renewal, death
and differentiation. Nevertheless, given the scale of the present study, it is striking that most
of the ES cell lines studied (79/120 pairs, 69%) remained karyotypically normal, even after
many passages, whereas it was only with respect to chromosome 20 that evidence for
structural variants in a specific region offering a strong selective advantage could be
deduced. Among the small number of iPS cell samples studied, 3 out of 11 had abnormal
karyotypes, with 1 of the 3 having the 20q11 gain in the late-passage sample.

Since the first reports of nonrandom chromosomal gain in human ES cells, many studies by
standard karyology and by various molecular techniques, including CGH and SNP arrays,
have found that, indeed, certain regions of the genome of both ES and, more recently, iPS
cells are particularly subject to such genetic change upon prolonged passage in culture.
Recently, it was also shown that iPS cells acquire mutations during their derivation,
although many such mutations are lost on subsequent passaging54. It is commonly assumed
that those genetic changes that repeatedly appear in pluripotent stem cells provide variant
cells with a growth advantage, but the nature of the selective advantage is unclear. At the
molecular karyotype level, it is difficult to disentangle changes that simply reflect variants
existing in the human population from those acquired during culture. To address this, we
explicitly sought to compare the genomes of a large set of human ES cell lines at two
different passage levels and from as diverse a set as possible of the principal laboratories
isolating these cells around the world. Although the number of human ES cell lines that have
been derived worldwide is uncertain, the 125 ES cell lines analyzed in this study represent a
substantial proportion of those commonly available. Notably, our data show that these lines
include representatives of most major ethnic groups, reflecting far greater ethnic diversity
than previously reported55,56.

One feature of the human genome emphasized by the current study is that some regions are
especially dynamic, particularly but not exclusively those including repetitive elements. In
the current panel of ES cells, many regions showed gains or losses between the passage
levels, but with no consistency, suggesting that there is no common selection pressure
driving the copy number changes. That such dynamically variable regions were readily
detected suggests that human ES cultures may go through population size restrictions more
often than appreciated. Indeed, the cell cycle time of human ES cells is about 18–20 h, but
common culture practice involves splitting cultures at low split ratios every 4–5 d or longer.
This implies a very large proportion of undifferentiated cells, maybe as many as 90%, are
lost between passages of stock cultures33.

Likewise the DNA methylation status of the ES cell lines also appeared to change
dynamically. Although there was a marked increase in differential DNA methylation with
time, indicated by the greater number of DNA methylation changes in the cell lines with the
highest differences in passage number, there was also a substantial variation between lines
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that had undergone similar differences in passage numbers. Thus, human ES cells change
not only genetically, but also epigenetically in culture. This conclusion is consistent with
several other smaller scale studies that have interrogated human ES cells with respect to
either general DNA methylation25, or imprinting29,31. These studies all found DNA
methylation and imprinting changes that appeared to be variable between lines and were
locus dependent. However, we could not identify specific recurring regions subject to
methylation in the genome and there was no observed correlation between DNA methylation
changes and chromosomal abnormalities. This suggests that, in general, changes in DNA
methylation may be a dynamic process and not necessarily associated with adaptation as
such. This point is reinforced by the observation that DNA methylation is markedly different
between sibling lines.

In addition to these apparently stochastic and dynamic changes in the genome and
epigenome, we did detect marked nonrandom changes in certain parts of the genome. The
karyotypic changes seen in the current study match well with other published reports
(Supplementary Fig. 5)1. Gains of chromosomes 1, 12, 17 and 20, and losses of
chromosomes 10p and 18q, are common in both data sets, and it is only gains of
chromosomes 12, 17 and 20 that are often seen as a sole karyotypic change. However,
recurrent deletion of chromosome 22q is a novel finding. On the other hand, the gain of
chromosome X is a relatively common finding in published studies, whereas only two
instances of gain and three instances of loss were observed in the present study. In the light
of their relatively frequent occurrence, the minimal amplicons 1q21-qter, 12p11-pter, 17q25-
qter and 20q11.2, and perhaps minimal deletions 10p13-pter, 18q21-qter and 22q13-qter
deserve special attention as being likely to harbor genes of particular importance for the
culture adaptation of human ES cells.

The frequent nonrandom gains of chromosomes 1, 12, 17 and 20 suggests that these
chromosomes include a gene(s) that, when overexpressed, confers a growth advantage. Yet,
it is striking that in our current extensive study, as in previous studies, structural variant
analysis did not point to any frequent repetitive minimal amplicon occurring on
chromosomes 1, 12 and 17. Obvious candidate genes are located on these chromosomes—
for example, NANOG on chromosome 12—but none seems to be more subject to structural
variants than other genes on these chromosomes in the absence of karyotypic change. We
did see gains spanning the neighboring SLC2A3/NANOGP1 region described in a recent
study46 but this is just as prevalent, if not more so, within our reference samples and spread
across most major ethnic groups, suggesting it is a common structural variant in the human
population rather than specific to human ES cells. Together, these observations suggest that
the selective advantage attributable to the gain of chromosomes 1, 12 and 17 may depend
upon overexpression of genes or genetic elements at multiple, spatially separated loci, or
upon the combination of a structural gene with a long range cis-acting regulatory element
such that both units must be amplified together to yield an increased function. Alternatively,
the appearance of gains within smaller regions may be restricted by chromosomal structure
less susceptible to this form of mutation.

By contrast, and in agreement with other studies5,10,11,23,46,57, our karyotypic and structural
variant data point to a region (20q11.21) that, when amplified, apparently drives selection.
In this study, because of the much larger number of cell lines and our ability to compare
early and late passage, we were able to map the gain to a specific region. Other studies have
also reported that gains in this region are associated with enhanced growth characteristics23,
and at least some of the lines in the present study were reported by their contributors to have
increased population growth rates (data not shown). The frequency of this gain (25% of the
karyotypically normal cell lines), combined with the enrichment in late-passage samples,
clearly indicates its selective advantage in human ES cell culture. The mechanism for the
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selective advantage presumably lies in the minimal region shared by all 22 affected lines, a
region containing 13 genes, only three of which are known to be expressed in human ES
cells: HM13, ID1 and BCL2L1.

A recent genome-wide RNA interference (RNAi) screen highlights the functional
importance of BCL2L1, an anti-apoptotic factor, in human ES cell biology58. This RNAi
screen ranked BCL2L1 twenty-second of 21,121 genes in reducing proliferation after
knockdown, whereas HM13 and ID1 were ranked 6,679th and 4,224th, respectively58.
Additionally, a recent structural variant screen of >3,000 specimens from two dozen cancer
cell types similarly identified a reoccurring gain on 20q11.21 in which BCL2L1 was also
contained within the minimal amplicon, and knockdown experiments indicated a role for
BCL2L1 in cancer cell proliferation59. Recently, it has also been reported that
overexpression of the related anti-apoptotic gene, BCL2, enhances the survival of human ES
cells60, although BCL2 is encoded with the region of chromosome 18 subject to recurrent
loss in the current data set. Taken together, these observations suggest that similar mutations
shared between ES and cancer cells lead to a selective advantage during clonal evolution.
The temporal component of our study, where we see17 instances of early/normal to late/
mutated transitions, provides additional support for the notion that the 20q11.21 mutation is
the driver mutation in the clonal evolution of these adapted stem cells. Although a role for
ID1 (ref. 61) and HM13 cannot be excluded, enhanced cell survival due to elevated
expression levels of BCL2L1 offers the most likely mechanism.

The repeated appearance of a structural variant across multiple lines requires both a selective
advantage for the variant (e.g., increased expression of BCL2L1), and a predisposition for
the respective mutation to occur. It is noteworthy that the proximal end of all human ES cell
20q11.21 gains lies within a gap region of the current human assembly62. The presumption
is that the highly repetitive sequence within this gap predisposes the region to structural
rearrangement. With the link between genome rearrangements, primate evolution and
disease association63, it is notable that this gap coincides with a recent chromosomal
rearrangement, a pericentric inversion64, occurring in the last common ancestor of gorilla,
chimp and human (Fig. 6). The gap region, possibly a centromeric remnant of a tandem
duplication62, introduces the repetitive sequence creating 20q11.21 rearrangement (or
amplification) susceptibility. The frequency of appearance that is created by this
combination of mutability and the decreased apoptosis warrants routine surveillance similar
to that now done in karyotypic analysis.

The identification of genes that drive both cancer progression of EC cells in germ cell
tumors and the progressive culture adaptation of ES cells has been a goal since the first clear
recognition that gain of sections of the short arm of chromosome 12 is an invariant feature
of EC cells14. The commonality of the changes in the tumors and in the ES cell in culture
suggests common underlying mechanisms. However, the identification of a specific driver
gene on chromosomes 1, 12 and 17 has been elusive, suggesting that more than one gene
may be involved in the growth advantage of the aneuploid cells. Our present results now
point to a specific gene subject to gain, most likely the anti-apoptotic gene, BCL2L1, on
chromosome 20, that may promote the survival of ES cells in vitro and EC cells in vivo,
thereby providing a strong growth advantage, whether in cancers or in vitro.

METHODS
Methods and any associated references are available in the online version of the paper at
http://www.nature.com/naturebiotechnology/
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Figure 1.
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Population structure of the human ES cell lines analyzed. Principal component (PC)
analyses were conducted on the entire final merged data set. PC1 and PC2 are plotted on the
y and x axes, respectively. (a) The overall distribution of the human ES cell lines studied
compared to the major ethnic groups identified in the HapMap study41, the human genome
diversity panel (HGDP)42 and the Pan-Asian SNP Initiative43. (b–d) The cell lines were
further subdivided to show their relationships to European (b), East Asian and Indian (c) and
Middle East-European–Central South Asian populations (c).
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Figure 2.
Cytogenetic changes occurring during prolonged passage of human ES cells. (a) Percentage
of human ES cell line pairs that exhibited a karyotypic abnormality in either early or late
passages, or both. Cell lines were excluded if they were known to be derived from
karyotypically abnormal embryos. The ES cell pairs are grouped according to whether the
chromosome change was observed at late passage only (normal early, abnormal late), both at
early and late passages (abnormal early, abnormal late) or early passage only (abnormal
early, normal late) and no chromosomal change (normal early, abnormal late). The
percentage of cell lines that have individual gains of chromosomes 1, 12, 17 and 20, gain of
chromosomes 1 and 17, or gain of chromosomes 1, 12, 17 and 20 are highlighted.
Chromosome changes not involving 1, 12, 17 and 20 are indicated as ‘Other’. The numbers
above each bar indicate the total number of lines that fall into the four categories out of the
total number of pairs of lines analyzed. *Two cell lines (C02 and CC05) in the ‘abnormal
early, abnormal late’ category were known to be derived from karyotypically abnormal
embryos (a trisomy 13 and ring chromosome 18). One abnormal cell line (AA06) has been
excluded from this figure as only one passage was available for analysis. (b) Proportion of
pairs of lines that acquired karyotypic abnormalities over different periods in culture. The
pairs of lines are grouped according to ‘Delta’, the difference in estimated population
doublings between the early and late passages. Only those lines that had a normal karyotype
at the early-passage level were included in the analysis, and of those only 117 pairs could
reliably be assigned an estimated population doubling time estimate.
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Figure 3.
Ideogram demonstrating the chromosome changes found in this study. Each colored bar
represents one chromosome change occurrence in one cell line. Chromosome losses and
gains are shown to the left and right of the ideogram, respectively, except that those
instances where a single chromosome rearrangement results in a gain and a loss the colored
bars are shown together for clarity. The cytogenetic changes are color coded: Maroon, loss
of a whole chromosome (monopsony); red, loss via a structural chromosome rearrangement
(unbalanced translocation or interstitial deletion); dark green, gain of a whole chromosome
(trisomy); light green is gain via a structural chromosome rearrangement (unbalanced
translocation or interstitial duplication); blue represents the occurrence of an apparently
balanced rearrangement the nature of which is labeled. Instances in which a change affected
only a single chromosome are denoted by ●, whereas changes associated with complex
karyotypes (>5 unrelated chromosome aberrations) are denoted by ★. Two cell lines (C02
and CC05) were known to be derived from karyotypically abnormal embryos and contain a
trisomy 13 and ring chromosome 18 respectively. iPS cell lines are excluded from this
figure. Based upon these studies the minimal critical chromosomal regions subject to gain in
culture adapted human ES cell lines were 1q21-qter, 12p11-pter, 17q21.3-qter and 20q11.2.
The minimal regions subject to loss were 10p13-pter, 18q21-qter and 22q13-qter.
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Figure 4.
Copy number variation occurrence in human ES cell lines during prolonged passage. (a)
20q11.21 gain. The region on chromosome 20 frequently found to experience gain over
extended human ES cell culture is indicated by the red boxed region in the chromosome
ideogram. Also shown are the B allele frequency and logR ratio plots representing instances
of one of the longest and one of the shortest 20q11.21 structural variants. (b) Length
representation of all individual occurrences of gains in the 20q11.21 region. Samples from
which the structural variant was derived are indicated on the left-hand column. The invariant
5′ region and the variable 3′ positions are indicated. Position of genes outside of the
minimal amplicon that show greater than 20 RPKM level of expression in human ES cells
are shown (RPKM = number of reads that map per kilobase of exon model per million
mapped reads for each gene). (c) Expression, RefSeq gene, and regulation tracks in the
minimal amplicon. Positive and negative strand mRNA-Seq data from H1 human ES cells
indicating polyA RNA transcripts expressed within the minimal amplicon region
(chr20:29,267,954-29,853,264) are shown together with H1 human ES cell ChIP-Seq data of
histone modifications considered universal predictors of enhancer and promoter activity. (d)
Comparison of expression levels of three genes (HM13, ID1, BCL2L1) contained within the
identified minimal 20q11.2 amplicon between early- (normal) and late-passage (20q11.2
CNV carrying) samples. MM01 and FF02 are genetically identical sub-lines from two
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separate laboratories, MM01 has no amplification at 20q11.2, whereas FF02 possesses a
copy number change at 20q11.2 that includes the identified minimal amplicon (b).

Page 27

Nat Biotechnol. Author manuscript; available in PMC 2012 September 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Cumulative distribution function of methylation changes in human ES cells in this study.
The change in DNA methylation is represented by empirical CDF curves of the absolute
difference in DNA methylation between early- and late-passage cell-line pairs for all 1,536
analyzed probes. The black curves denote genetically stable lines; the red curves denote
genetically unstable lines. All analyzed lines were divided into quartiles based on the
passage-number difference between the early and late member of each pair. The first
quartile contains the lines with the lowest difference in passage number between the early
and late sample (range 4 to 47), whereas the fourth quartile contains the lines with the
highest difference in estimated population doublings (range 210 to 1,482).
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Figure 6.
Recent pericentric inversion associated with 20q11.21 susceptibility to gain. (a) The
ancestral condition of chromosome 20 before a pericentric inversion in the last common
ancestor of the gorilla, chimp and human. (b) Structure of human chromosome 20 with the
location of the gap indicated in which the proximal end of all 20q11.21 amplicons lie.
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Page 30

Table 1

Ethnic origin of human ES cell lines analyzed indicating ancestry of those most often cited

Ancestry Number of cell linesa Most commonly used cell lines Citations from 2008 to 2009b

European 63 (61c)

 Italian 4

 Southwestern European 2

 Southeastern European 2

 Northeastern European 14d

 Northern European 8 BG01 13

 Northwestern European 24d HUES7 18

 Central European 11 H1 95

Asian 33 (32c)

 Central Asian 3

 Central-South Asian 1

 Han Chinese 14 HES2 16

HES3 14

 Japanese 3

 Korean 9

 Indian 3d HES-1 6

African 4 (3c)

 East African 1

 West African 3d

Middle East – East European 14e (12c)

H9 122

H7 25

HSF-6 12

Central-South Asia South European 4

Total cell lines 118 (112c)

a
The numbers of cell lines shown includes only those that passed quality control for SNP analysis.

b
UMass Stem Cell Registry (http://www.umassmed.edu/iscr/hESCusage.aspx).

c
Total number of genetically unrelated cell lines.

d
Includes two cell lines from siblings.

e
Includes three cell lines from siblings.

Nat Biotechnol. Author manuscript; available in PMC 2012 September 24.

http://www.umassmed.edu/iscr/hESCusage.aspx


N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Page 31

Table 2

The top 20 genes that were most frequently gained, lost or showed no change in DNA methylation levels in
the 122 ES cell lines analyzed at early and late passage

Gained DNA methylation Lost DNA methylation No change in DNA methylation

GPC3 CBLN4 NR4A3

RAB9B HIST1H3C EPHA4

TCEAL4 LY6H COL12A1

IL1RAPL2 HIST1H4L TIGD3

ESX1 ANKRD20B SNX7

TCEAL3 HIST1H4F PIP5K1B

AMMECR1 DMRT2 KCNJ2

MGC39900 TTLL7 T

LRCH2 FOXD4L1 ZBTB7A

ZCCHC12 FOXD4L2 IL20RA

REPS2 ONECUT1 GNAO1

SOX3 MAL EPB41L4A

RP13-360B22.2 SYT6 VDR

TSC22D3 BHLHB4 HS6ST3

NHS HIST1H3I VGLL2

TCEAL7 XTP7 SIX1

MGC4825 NEUROG1 SFT2D2

GPR50 TFAP2D BCAN

BCL2L10 DRD5 ELMOD1

CDX4 ASCL2 PTGER4

GPC3 gained more than 5% DNA methylation (range: 98–5%) in over 70% of the samples analyzed, whereas CBLN4 lost more than 5% DNA
methylation (range: 70–5%) in over 60% of them. The genes listed in the “No change” column showed fluctuations in DNA methylation <1% in all
samples profiled.
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