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ABSTRACT This report of independent genome sequences of two natural populations of Drosophila melanogaster (37 from North
America and 6 from Africa) provides unique insight into forces shaping genomic polymorphism and divergence. Evidence of inter-
actions between natural selection and genetic linkage is abundant not only in centromere- and telomere-proximal regions, but also
throughout the euchromatic arms. Linkage disequilibrium, which decays within 1 kbp, exhibits a strong bias toward coupling of the
more frequent alleles and provides a high-resolution map of recombination rate. The juxtaposition of population genetics statistics in
small genomic windows with gene structures and chromatin states yields a rich, high-resolution annotation, including the following: (1)
59- and 39-UTRs are enriched for regions of reduced polymorphism relative to lineage-specific divergence; (2) exons overlap with
windows of excess relative polymorphism; (3) epigenetic marks associated with active transcription initiation sites overlap with regions
of reduced relative polymorphism and relatively reduced estimates of the rate of recombination; (4) the rate of adaptive nonsynon-
ymous fixation increases with the rate of crossing over per base pair; and (5) both duplications and deletions are enriched near origins
of replication and their density correlates negatively with the rate of crossing over. Available demographic models of X and autosome
descent cannot account for the increased divergence on the X and loss of diversity associated with the out-of-Africa migration.
Comparison of the variation among these genomes to variation among genomes from D. simulans suggests that many targets of
directional selection are shared between these species.

ACCESS to sequenced genomes from natural, outbreed-
ing populations (Begun et al. 2007; Li and Durbin

2011) places our theoretical understanding of the forces

that determine patterns of genomic variation within and
between taxa in a new empirical light. Alignment of the
predictions of classical evolutionary genetic models with
richly annotated population genomic survey data is an ex-
citing challenge. Descriptions of the patterns of variation in
these first sets of population genomic data can foster effi-
cient sieving of hypotheses and serve as a foundation for the
design of subsequent studies. Here we present the descrip-
tion of the genomic sequence assemblies from two collec-
tions of natural populations of Drosophila melanogaster. The
polymorphism, divergence, and copy-number variation re-
vealed in these data are presented at several scales that all
support the hypothesis by Maynard Smith and Haigh (1974)
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that linked selection can dominate genetic drift as the driver
of stochastic allele-frequency dynamics in large natural pop-
ulations such as D. melanogaster. Discerning the contribu-
tions and interactions of hitchhiking (impact of linked
adaptive substitutions) vs. more complex selective dynamics
and background selection [i.e., the impact of selection against
linked deleterious alleles (Charlesworth 1996)] remains a
clear challenge.

Natural populations of D. melanogaster are found today
in virtually all tropical and temperate locations, typically
commensal with humans. Biogeographic analyses and pop-
ulation genetics surveys have identified eastern sub-Saharan
Africa as the center of diversity of D. melanogaster and its
likely ancestral range (Tsacas and Lachaise 1974; Veuille
et al. 2004 ; Pool and Aquadro 2006). The smaller of the
two population samples we surveyed is from a population in
Malawi, Africa (MW), representing that biogeographic cen-
ter. The second and larger sample of sequenced genomes is
derived from Raleigh, North Carolina (RAL) (Jordan et al.
2007) and represents a relatively recently (�200 years)
established North American extension (Lintner 1882) of the
older (�10,000 years) “Old World” or “out-of-Africa dias-
pora” (Lachaise et al. 1988; Li and Stephan 2006; Thorton
and Andolfatto 2006). Although populations of D. mela-
nogaster in theWestern Hemisphere appear to have a predom-
inantly European origin, evidence of admixture from Africa
into American populations has been reported (Caracristi and
Schlötterer 2003; Nunnes et al. 2008).

The study of genetic variation in natural populations of
D. melanogaster has played an important role in the devel-
opment of evolutionary theory, largely because of the central
role of the species in the advancement of knowledge of genetic
inheritance. Our fundamental understanding of the biology of
D. melanogaster, as well as the advanced methods and unique
resources available for its study, has fueled research into the
evolutionary forces shaping quantitative, cytogenetic, and mo-
lecular genetic variation. In this same context the design of
experiments and interpretation of data in this study leverage
new and unique resources, including recent results from the
modENCODE Project (Roy et al. 2010).

While genomic annotation and descriptions and contrasts
of polymorphism and divergence on different scales show
our central results, other population genetics statistics were
calculated and interpreted, including an estimate of the rate
of recombination, the scale and direction of linkage disequi-
librium, and geographic differentiation. Together these
analyses provide a richly detailed new view and interpreta-
tion of population genomic variation in natural populations
of D. melanogaster (Mackay et al. 2012).

Materials and Methods

Drosophila stocks

The genomes sequenced and analyzed here are derived from
two sources. The first source is a collection of 37 inbred lines

provided by T. F. C. Mackay. The details of their provenance
and breeding are in Jordan et al. (2007). The lines listed in
Table 1 are part of a larger collection established by the
Mackay laboratory and available in the Bloomington Dro-
sophila Stock Center. Briefly, inseminated females collected
at the Raleigh, North Carolina Farmer’s Market in 2003
were cultured independently. For �20 generations single
sib-pairs of progeny were mated. Thus independent inbred
stocks were established from each isofemale line. The MW
genomes were derived by classical balancer extractions from
independent isofemale lines collected in Mwanza, Malawi
by William Ballard in 2001. Isogenic X chromosome lines
were established using FM7a, nod4/C(1)DX/Dp(1;Y)y+;
svspa-pol as a balancer stock. The three types (second, third,
or both) of autosomal inbred lines were extracted using
CyO/wgSp-1; TM3, Ser1/Sb1 as the balancer stock. Indepen-
dent isogenic stocks of seven X chromosomes, six second
chromosomes, and five third chromosomes from the MW
population were established and resequenced.

Genomic DNA

Three genomic DNA isolation protocols were used as
indicated in Table 1. Most DNAs were prepared from adults,
using the nuclear-isolation/CsCl protocol in Bingham et al.
(1981). “NIBPC” refers to genomic DNA preparations that
followed the nuclear isolation in Bingham et al. (1981) but
resuspended the nuclei in 5 ml of 100 mM NaCl, 200 mM
sucrose, 100 mM Tris-HCL, 50 mM EDTA, and 0.5% SDS. In
the case of “BPC” 25 adults were homogenized in 500 ml of
this Tris-EDTA-SDS buffer. In both cases 0.25 vol of cold
KOAc was added, mixed, and placed on ice for .30 min.
These were then centrifuged at high speed and the super-
natant was extracted with phenol-chloroform, ethanol pre-
cipitated, and resuspended in H2O. The BPC samples were
treated with RNAse. The genomic DNA preparations of the
MW chromosome X lines and RAL-365, RAL-379, RAL-391,
RAL-437, RAL-514, RAL-555, RAL-730, and RAL-799 started
with only adult females, while the remainder are unse-
lected, i.e., adult females and males.

The construction of libraries, preparation of the flow cell,
and 36 cycles of synthesis imaging followed the Illumina
protocols described in Bentley et al. (2008). Our initial DNA
concentrations were 5 mg and the target insert size was
150–200 bp. The PCR enrichment of the libraries ranged
between 15 and 18 cycles. All the 36-bp reads analyzed
were processed through Illumina pipeline V0226 or V030
that includes feature extraction plus parameter-matrix esti-
mation (Firecrest module), basecalling (Bustard module),
subsequent Eland alignment to BDGP Release 5, and first-
pass quality score calibration. Only reads that passed the
Illumina pipeline’s quality control (QC) filters were used
for subsequent analysis.

Library QC and titration

Evaluation of eight new libraries occurred on a “titration flow
cell.” A serviceable library exhibited adequate intensity and
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a cluster density that could be adjusted on subsequent runs to
the target values in subsequent lanes. The target G and C
content was between 19% and 21% in each. If these three
metrics were not met, a new library was prepared. The sam-

ple flow cells were generated from libraries that pass these
QC and titer criteria. We found that eight lanes at the target
cluster density resulted in$10·mean coverage of the unique
portion of the genome. This was chosen as our production

Table 1 Stock name, Bloomington Drosophila Stock Center number, DNA preparation protocol, libraries/assemblies, GC content, mean
read depth, target chromosomes, inversions, and SRA accession numbers (see text)

DPGP stock BDSC
DNA

preparation Library/assembly % GC Mean depth Target Chrs
Cosmopolitan
inversions: PCR SRA accession

MW11-1 30858 CsCl MW11-1_1 42.0 9.53 X SRX022256
MW27-3 37290 BPC MW27-3_1 42.3 11.99 3 SRX019049
MW28-1 30859 CsCl MW28-1_1 43.3 10.36 X SRX019104
MW28-2-3 30860 CsCl MW28-2-3_1 40.8 9.65 2, 3 In(2L)t; In(2R)NS; In(3R)K SRX000484
MW38-1 30861 CsCl MW38-1_1 43.5 9.88 X SRX019107
MW38-2 30862 CsCl MW38-2_1 41.3 11.69 2 SRX019109
MW46-1 36919 BPC MW46-1_1 42.3 12.14 X SRX019110
MW56-2-3 30863 CsCl MW56-2-3_1 43.7 9.88 2, 3 In(3R)K SRX000440
MW6-1 30854 CsCl MW6-1_1 42.3 11.86 X SRX022257
MW6-2 30855 BPC MW6-2_1 43.0 11.63 2 In(2L)t SRX022258
MW6-3 37289 BPC MW6-3_1 43.0 11.62 3 In(3R)K SRX022259
MW63-1 30864 CsCl MW63-1_1 42.7 11.79 X In(X)A SRX019022
MW63-2-3 32046 CsCl MW63-2-3_2 42.2 11.41 2, 3 In(2L)t; In(2R)NS SRX000439
MW9-1 30856 CsCl MW9-1_1 42.7 13.41 X SRX022262
MW9-2 30857 BPC MW9-2_1 42.8 11.86 2, 3 SRX022263
RAL-301 25175 CsCl RAL-301_1 42.3 15.79 X, 2, 3 In(2L)t/+ SRX000530
RAL-303 25176 CsCl RAL-303_1 41.6 10.42 X, 2, 3 SRX000529
RAL-304 25177 CsCl RAL-304_1 42.4 11.22 X, 2, 3 In(2R)NS SRX000531
RAL-306 37525 CsCl RAL-306_1 43.2 10.24 X, 2, 3 SRX000532
RAL-307 25179 CsCl RAL-307_2 42.7 9.71 X, 2, 3 SRX000533
RAL-313 25180 CsCl RAL-313_1 39.7 10.54 X, 2, 3 In(2L)t SRX022270
RAL-315 25181 CsCl RAL-315_1 42.6 9.85 X, 2, 3 SRX000535
RAL-324 25182 CsCl RAL-324_1 42.7 11.83 X, 2, 3 In(3R)Mo SRX010933
RAL-335 25183 CsCl RAL-335_2 42.1 10.84 X, 2, 3 SRX022273
RAL-357 25184 CsCl RAL-357_1 41.6 10.94 X, 2, 3 SRX022274
RAL-358 25185 CsCl RAL-358_1 41.1 9.74 X, 2, 3 In(2L)t; In(3R)Mo SRX000536
RAL-360 25186 CsCl RAL-360_1 40.7 9.44 X, 2, 3 SRX000534
RAL-362 25187 CsCl RAL-362_2 41.6 10.61 X, 2, 3 SRX022277
RAL-365 25445 CsCl RAL-365_1 43.1 10.06 X, 2, 3 SRX000537
RAL-375 25188 CsCl RAL-375_1 43.5 10.15 X, 2, 3 SRX000538
RAL-379 25189 CsCl RAL-379_1 40.1 10.31 X, 2, 3 SRX000539
RAL-380 25190 CsCl RAL-380_2 42.8 9.21 X, 2, 3 SRX000556
RAL-391 25191 CsCl RAL-391_2 43.6 10.54 X, 2, 3 SRX000557
RAL-399 25192 CsCl RAL-399_1 41.3 9.55 X, 2, 3 SRX000558
RAL-427 25193 NIBPC RAL-427_1 42.6 10.32 X, 2, 3 SRX000528
RAL-437 25194 NIBPC RAL-437_1 42.7 11.32 X, 2, 3 In(3R)Mo SRX010938
RAL-486 25195 CsCl RAL-486_1 41.0 11.5 X, 2, 3 SRX022286
RAL-514 25196 BPC RAL-514_1 42.6 9.63 X, 2, 3 SRX022287
RAL-517 25197 BPC RAL-517_1 41.8 11.93 X, 2, 3 SRX022288
RAL-555 25198 CsCl RAL-555_1 42.8 11.72 X, 2, 3 In(3R)Mo SRX022289
RAL-639 25199 CsCl RAL-639_1 42.0 11.86 X, 2, 3 SRX022290
RAL-705 25744 CsCl RAL-705_1 43.0 11.66 X, 2, 3 SRX022291
RAL-707 25200 CsCl RAL-707_1 42.7 11.6 X, 2, 3 In(3R)Mo SRX022292
RAL-707 25201 NIBPC RAL-707_2 43.3 11.47 X, 2, 3 In(3R)Mo SRX022293
RAL-714 25745 CsCl RAL-714_1 42.0 11.25 X, 2, 3 In(3R)Mo SRX022294
RAL-730 25202 NIBPC RAL-730_1 43.2 11.38 X, 2, 3 SRX022295
RAL-732 25203 CsCl RAL-732_1 42.5 11.27 X, 2, 3 In(3R)K/+ SRX022296
RAL-765 25204 CsCl RAL-765_1 42.8 10.7 X, 2, 3 SRX022297
RAL-774 25205 CsCl RAL-774_1 41.1 10.7 X, 2, 3 SRX022298
RAL-786 25206 CsCl RAL-786_1 42.4 10.32 X, 2, 3 In(3R)P SRX022299
RAL-799 25207 BPC RAL-799_1 42.2 12.43 X, 2, 3 SRX022300
RAL-820 25208 CsCl RAL-820_1 41.6 10.92 X, 2, 3 In(3R)Mo SRX022301
RAL-852 25209 CsCl RAL-852_1 40.6 11.44 X, 2, 3 In(2R)NS SRX022302
ycnbwsp 2057 CsCl ycnbwsp_0 42.8 11.64 X, 2, 3 SRX027154
ycnbwsp 2057 CsCl ycnbwsp_1 41.6 11.4 X, 2, 3 SRX010957
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goal for each genome (see Table 1). Earlier studies and our
own experience suggested the error increases with deviation
in the GC content of the reads (Bentley et al. 2008; Ossowski
et al. 2008). However, our criteria yielded a data set with
only a mild dependence of apparent SNP rate (relative to
the reference sequence) on GC content (see Figure 1).

Genomic regions excluded from the analyses

Because this short read resequencing technology is ineffective
in repetitive genomic regions, this study focuses only on the
five large euchromatic “chromosomes” of the melanogaster
reference sequence (BDGP 5). The study of genomic variation
in the highly repetitive chr4, chrXhet, chr2Lhet, chr2Rhet,
chr3Lhet, chr3Rhet, and sparse chrY contigs are left to an-
other technology at another time. Even within the large eu-
chromatic arms there are many repetitive regions that are not
assembled in these data, left as “N” with no quality value. As
discussed below, specific genomic regions of particular
genomes are excluded if there is evidence that they are not
random samples of the genomes in the natural populations.

Assembly and quality calibration

The genome sequences were assembled using the MAQ
program described in Li et al. (2008). We carefully investi-

gated the error properties of such assemblies based on in-
dependent data from the reference sequence strain
(ycnbwsp). An assembly-based error model was formulated
that quantitatively captured the main sources of error. Ap-
plication of this model allowed us to assign recalibrated
quality values (similar to Phred scores) for each nucleotide
in each assembly. These more realistic values allow quality
to become an effective parameter in downstream population
genetics analyses. The rationale, implementation, and eval-
uation of this approach are more thoroughly presented in
Appendix A.

Background and residual heterozygosity

The sib-mating inbreeding process is, of course, not
expected to be completely or uniformly successful across
the genome. Regions in which closely linked recessive
deleterious mutations are segregating in repulsion will
resist close inbreeding and remain heterozygous (Falconer
1989, p. 101). Additionally, the balancer-chromosome
method of inbreeding used with the MW lines could fail
because of chance sampling of such recessive lethals.
Furthermore, simple technical shortcoming such as low
depth or poor primary sequence quality can yield in-
creased levels of heterozygous base calls. Thus we

Table 2 Definitions and symbols used in the methods and analyses

Symbol Definitions Equation

dw Estimate of the average nucleotide substitution divergence at polarized sites in a window, weighted by
(allele) sampling depth.

(1)

pw Estimate of the expected heterozygosity for nucleotide substitutions per site in a random sample from a
randomly mating population. Weighting is by allele sampling depth and the standard bias correction
is applied to each.

(2)

r Population recombination parameter: r = 2Nr/bp for both autosomes and the X chromosome. For local
genomic estimates of 2Nr/bp, r̂ is determined via statistical fitting to an approximation of the
equilibrium between mutation to selectively equivalent alleles and genetic drift in a single, stable
outbreeding population (McVean et al. 2004).

rv Linkage disequilibrium oriented by the allele frequencies. Let p and q be the frequencies of the more
common alleles at two loci, p . 1/2 and q . 1/2 (Langley and Crow 1974). And let g be the
frequency of the gametotype composed of those two more common alleles.
Then rv ¼ ðg2pqÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð12pÞqð12qÞp
.

HKAl Hudson–Kreitman–Aguadé-like test statistic reflecting the significance of the deviation of the observed
proportions of segregating and diverged sites in a window to the chromosome-arm averages under a
model for the equilibrium between mutation to selectively equivalent alleles and genetic drift in a
single stable outbreeding population (Hudson et al. 1987; Ford and Aquadro 1996).

(3)

TsD A test statistic for either an excess (+) or a deficiency (2) of common alleles compared to the predictions
of a model for the equilibrium between mutation to selectively equivalent alleles and genetic drift in a
single stable outbreeding population (Tajima 1989).

(4)

x[log(p)] “+” or “2” the log10 of the P-value for a test statistics such as HKAl and TsD. The sign reflects the sign
of the deviation from expectation: the number of segregating sites in the case of HKAl and the
frequency spectrum for TsD.

p/min(divl, divg) A simple metric of reduced diversity in a window where the denominator is the lesser of local divergence
and global average divergence.

s The difference in relative fitness of homozygotes for alternative alleles at a locus. The heterozygote’s
relative fitness is 1 2 hs, where h is the dominance coefficient.

r The rate of recombination between two closely linked genomic sites, usually adjacent base pairs unless
otherwise indicated.

r̂ Estimated rate of recombination per base pair based on local smoothing of incremental change in the
standard genetic map.

rS Spearman’s rank correlation coefficient.
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routinely created both “diploid” and “haploid” MAQ as-
semblies for QC purposes. Plots of heterozygosity along
each chromosome arm were generated by parsing the
output from MAQ cns2snp. This command calls all SNPs
occurring within the MAQ consensus (prior heterozygos-
ity rate = 0.001 for the diploid assemblies). In 100-kbp
windows incremented every 5 kbp along each arm, het-
erozygosity was calculated as the proportion of called
sites that are heterozygous (see Supporting Information,
Figure S1). The tendency of MAQ to call the reference
sequence base when coverage and/or quality are low
means that these plots are conservative in their detection
of regions of residual heterozygosity. Nevertheless, they
proved to be sensitive, robust, and interpretable indica-
tors of QC problems at many levels, including the failure
of inbreeding.

A specific augmentation of this method was developed
to identify and delineate regions of “residual heterozygos-
ity.” First, if a window exhibited heterozygosity .0.0075,
a region of residual heterozygosity was enucleated. The
region of residual heterozygosity was extended in both
directions until a window with heterozygosity ,0.001
was reached in each direction. This sliding-window
method was conducted twice, starting at each end of the
chromosome arm and proceeding to the other. Overlap-
ping regions from different enucleation sites were merged.
Second, regions of residual heterozygosity ,150 kbp apart
were merged and the intervening formerly “normal” het-
erozygosity regions were considered to be part of a larger
region of excess residual heterozygosity regions. Addition-
ally, any regions of excess residual heterozygosity within
500 kbp of either end of a chromosome arm were extended
to the end of the arm.

All regions of called residual heterozygosity were
verified by examining the QC plots of heterozygosity
(above) with the called regions highlighted and typically
masked from the subsequent analyses. In a few cases,
adjustments were made to the parameters to produce
calls in better agreement with the plotted heterozygosity.

Figure S1 show the QC plots and coordinates of regions
of residual heterozygosity found. Note the two regions
(chr2L:1,677,628–1,890,473 and chrX:21,409,827–21,732,469)
found to have high heterozygosity in a large portion of
the assemblies. Such regions are listed in Table S1 for
each assembly. These were masked in the subsequent
analyses.

Regions of identity by descent

Both as a matter of quality control and to identify the
potential impact of polymorphic local recombination
suppressors (e.g., cosmopolitan inversions) the genomic
distribution of large regions of extremely high sequence
similarity between pairs of genomes was systematically
determined. Each assembly was compared to all other
assemblies in nonoverlapping windows of 100 kbp for
the proportion of differences per base pair. Exceptional
pairs of assemblies, exhibiting large numbers of consecu-
tive windows with near zero divergence, were flagged as
potentially containing identical-by-descent (IBD) seg-
ments. Plots of these measures were examined to confirm
that large segments identified in a few comparisons were
truly empirical outliers as well as being far beyond the
theoretical expectation, assuming a large randomly mat-
ing and sampled population. These exceptions fell into
two small groups, one apparently attributable to the sam-
pling of close relatives and the second apparently associ-
ated with inversions (see below and in Corbett-Detig
et al. 2012). Three genomes (RAL-303_1, RAL-304_1,
and RAL-306_1) share extensive regions, including whole
chromosome arms that are nearly identical. These genomes
were filtered in subsequent analyses such that only one
copy of each of the apparently IBD regions was included
(see Table S2).

Cosmopolitan chromosome inversions

PCR-based assays for In(2L)t (Andolfatto et al. 1999), In
(3L)P (Wesley and Eanes 1994), and In(3R)P (Sezgin et al.
2004) and five new assays for In(X)A, In(X)Be, In(2R)NS,

Figure 1 SNP rate (differences
from the reference sequence per
base pair) of the RAL lines for base
pairs with different Illumina quality
scores, $Q10, $Q20, $Q30, and
$Q40 (light to dark blue) plotted
with depth-weighted mean GC
content at unique base pairs (large
solid circles). The whiskers show the
range of depth-weighted GC con-
tent over lanes. The gray bars show
depth-weighted %GC of the me-
dian lane. Note the apparent in-
crease in nonreference basecalls
(SNP rate) in the lines with the
lowest GC content.
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In(3R)K, and In(3R)Mo were performed as described in
Corbett-Detig et al. (2012). The results are presented in
Table 1.

Allele sampling depth

Many local features of the genome are difficult to rese-
quence with the approach used here. For example, sites
near repetitive sequences and within highly diverged
segments are less likely to be covered by uniquely mapping
reads and thus more likely to have low-quality scores or be
missing altogether from the sequence of an individual
genome. The average sampling depth, or the average
number of genomes in which a site was sequenced (above
a particular quality value) in at least one genome in the
sample, is presented in Table A1, Table S3, and Table S4
for each chromosome arm (and the total) in the RAL and
MW samples [D. simulans genome (SIM) data are also
presented for comparison in Table S5]. The median sam-
pling depth and the total number of base pairs called are
also presented. The average sampling was always close to
the actual sample size. For the total data in RAL and MW
the average numbers of sample genomes are 32.11 and
4.63, respectively (medians 33 and 5), not far from the
values predicted for complete sampling, 33.95 and 5.76,
respectively (corrected for filtered regions of residual het-
erozygosity and IBD, see Table S6). Thus the average num-
bers of quality score (Q)30 (Q40) base pairs in each
assembly of the RAL and MW samples are 6.182 · 107

(5.582 · 107) bp and 5.960 · 107 (5.338 · 107) bp, re-
spectively, indicating the size of the “unique” portion of the
D. melanogaster genome that can be resequenced with
these technologies.

Local genomic regions of high polymorphism and di-
vergence are expected to have lower sampling depth. This
is borne out in Figure S6, which shows a consistent trend
of higher expected heterozygosity and divergence (both
defined below) among Q30 sites with lower sampling cov-
erage for RAL, MW, and SIM. Restricting the analysis to
Q40 sites reduces this trend somewhat but this also reduces
the overall sampling depth (see Figure S6, Table A1, Table
S7, Table S8, Table S9, and Table 10). As expected, both
expected heterozygosity and divergence in the RAL, MW,
and SIM samples are correlated on the local genomic scale
(see Table S11). Table A1 also shows that the average
sampling depth of coding base pairs is quite comparable
to all unique portions of the genome. The largest discrep-
ancy is the Q40 X chromosome where the average sampling
depth of all unique base pairs is 27.37, while that for coding
base pairs is 24.95. Furthermore the achieved sampling
depth at Q30 is within 10% of the maximum possible (see
Table S6). Still it must be acknowledged that a proportion
of this association between allelic sampling depth and se-
quence variation could be due to the fact that base-calling
errors and depth can be correlated with systematic varia-
tion in assembly quality (e.g., read depth or unannotated
paralogs).

Multispecies alignments

To make estimates and inferences about nucleotide sub-
stitutional divergence on the D. melanogaster and D. sim-
ulans lineages the reference sequences for these two
species (BDGP R5/dm3, WUGSC mosaic 1.0/droSim1)
were aligned with those of D. yakuba (WUGSC 7.1/droYak2)
and D. erecta (Agencourt prelim/droEre1) in Berkeley Drosoph-
ila Genome Project’s D. melanogaster Release 5 (BDGPr5)
coordinates. Alignments were produced using a combina-
tion of the Mercator (Dewey 2007) and FSA programs
(Bradley et al. 2009). Mercator was used to build a one-
to-one colinear orthology map between the four genomes
and FSA was run on the resulting colinear blocks to pro-
duce nucleotide-level alignments. The input to Mercator
consisted of all coding exon annotations for the four
genomes available from the University of California, Santa
Cruz (UCSC) Genome Browser (Karolchik 2003) as well as
the results from running BLAT (Kent 2002) on the coding
exon sequences in an all-vs.-all fashion. Mercator was run
with its default parameters and the “breakpoint finding”
utility included with Mercator was used to refine the coor-
dinates of the endpoints of the collinear blocks. FSA was
run on the nucleotide sequences of the colinear blocks
with options “–mercator cons –exonerate –softmasked
–maxram 1000”. Since the focus of our analyses is the
polymorphism and divergence within the D. melanogaster
lineage, insertions relative to D. melanogaster were ig-
nored and deletions were simply treated as N’s. This mul-
tispecies genomic alignment is publicly available at www.
dpgp.org.

The syntenic assemblies of the six D. simulans genomes
(SIM) presented in Begun et al. (2007) were remapped to the
D. melanogaster Release 5 coordinates and used throughout
the analyses presented here that involve polymorphism within
D. simulans.

Nucleotide-substitution polymorphism and divergence

A fundamental aspect of the way we have assembled these
data is to associate each base call with a realistic estimate
of the statistical confidence (as described in Appendix A).
This readily affords the opportunity to check any observed
and interesting pattern at increasing levels of minimum
quality. This approach and other inherent properties of
the technology lead to missing data. Thus at any particular
site in any one of the sampled genomes the called nucle-
otide may or may not have sufficient quality to be included
in a calculation; i.e., it may be “missing data.” The statis-
tics described below incorporate this variation in (allele)
sampling depths.

Average divergence in windows

Unless otherwise indicated, divergence was estimated as the
average across sites in a segment or a domain of the
proportion of “derived states.” As in Begun et al. (2007),
we defined the average lineage-specific divergence as
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where L is the number of sites in the window or domain, jl is
the number of diverged alleles among the cl observed alleles
at site l, n is the number of sampled genomes, c is the num-
ber of these for which there are data, and kcj is the number
of sites in the window or domain at which j of the observed c
sampled genomes are “derived” (diverged) from the inferred
ancestral state. Ancestral states were inferred as the shared
state in the aligned outgroup genomes. For D. melanogaster
the ancestral state was assumed to be that in the simulans
sequence if either the yakuba or the erecta sequence was
aligned and shared that state. For simulans the inference
was the reciprocal, melanogaster matching yakuba or erecta.
Otherwise the ancestral state was not inferred and the site
not included in the estimation of divergence. This parsi-
mony-based estimate is inherently biased under virtually
all models as an estimator of divergence at a particular site.
However, the magnitude of this bias is likely small for the
short timescales relevant for our analyses (Zuckerkandl and
Pauling 1962). A more substantial bias across the genome
arises from variation in rates of divergence and particularly
the clustering of rapidly evolving sites that are much more
likely to be excluded from any analyses incorporating diver-
gence. The implications of this bias for particular analyses
are discussed in this context.

Expected heterozygosity in windows

The most intuitive measure of population genetic variation
is the estimate of the expected (under random mating)
heterozygosity at a single nucleotide site (hereafter “hetero-
zygosity” or p). We use the following estimate of heterozy-
gosity over a range (or domain) of nucleotide sites (unless
otherwise indicated),

pw ¼

Xn
c¼2

Xc21

j¼1

2jðc2 jÞkcj
cðc2 1Þ

Xn
c¼2

Xc
j¼0

kcj

; (2)

where n is the number of genomes sampled, c # n is the
sampling depth, and kcj is the number of sites with exactly c
sampling depth and j “derived alleles” (Begun et al. 2007).
The designation of derived in the estimation of expected
heterozygosity is, of course, not relevant. But note that in
specific analyses we limited our attention to those sites at
which the ancestral state can be inferred (as for dw above),
while in others, all sites are considered, including those
lacking useful outgroup data. The estimates of the “average”
heterozygosity and divergence for chromosome arms were
calculated simply as the weighted average of p in 1000-bp

windows in which at least 100 bp had sampling depth .2.
Weighting was by number of base pairs in the window with
allelic depth .2.

HKA-like analysis (HKAl)

Powerful analyses of evolutionary genetic models can occur
when the same process is observed in the same units on
different scales of time or space. The most fundamental of
these situations is the comparison of within-population
sequence polymorphism to divergence between distinct taxa.
The Hudson–Kreitman–Aguadé test assesses the prediction of
the neutral model (equilibrium between selectively neutral
mutation and genetic drift) by comparing the numbers of
segregating sites and the average number of diverged sites
in two or more genomic regions to their expectations based
on estimates of the pertinent parameters of the model (see
Hudson et al. 1987). Ford and Aquadro (1996) modified
this approach (their “FS” test) by comparing the numbers
of fixed differences and segregating sites between species.
Formal applications of these tests depend on the choice of
the genomic segments being compared, on the assumed
rate of recombination, and on simulated distributions of
the x2-like test statistic. A more empirical and practical ap-
proach applied here is to simply compute the comparable
expected values for the numbers of segregating and fixed
diverged sites in a window from the chromosome-wide pro-
portions of such sites at various sampling depths and to
calculate the analogous x2-like statistic as in Begun et al.
(2007). Specifically, the proportion of all variant sites that
are segregating,

pc ¼

Xc21

j¼1

kcj

Xc
j¼1

kcj

;

the proportion of all variant sites that are fixed,

dc ¼ kccXc
j¼1

kcj

¼ 12 pc;

the observed number of segregating sites,

OðSwÞ5
Xn
c52

Xc21

j51

kwcj;

the observed number of fixed sites,

OðDwÞ ¼
Xn
c¼2

kwcc;

the total number of variant sites,

OðTwÞ ¼ OðSwÞ þ OðDwÞ;
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the expected number of segregating sites,

EðpwÞ5

Xn
c52

pc
Xc
j51

kwcj

Xn
c52

Xc
j51

kwcj

;

the expected number of fixed sites,

EðdwÞ ¼

Xn
c¼2

dc
Xc
j¼1

kwcj

Xn
c¼2

Xc
j¼1

kwcj

;

and

x2HKAl ¼
½EðpwÞOðTwÞ2OðSwÞ�2

EðpwÞOðTwÞ þ ½EðdwÞOðTwÞ2OðDwÞ�2
EðdwÞOðTwÞ ;

(3)

where kcj is the number of sites with exactly c sampling
depth and j derived alleles in the reference segments,
e.g., the whole chromosome arm or the “trimmed” (see
below) portion. And w in kwcj, pw, dw, Sw, Dw, and Tw refers
to the particular window. The window size is adaptively
variable such that adjacent base pairs are sequentially
included in the window until O(Tw), the total number
of variant sites is greater than a fixed parameter. When
overlapping windows are displayed, the indicated over-
lap is in these units of numbers of segregating and fixed
sites.

Since all the chromosome arms display a marked re-
duction in pw proximal to the centromeres and telomeres,
these regions (see Table S14) were trimmed from the chro-
mosome arm in the calculation of kcj. Finally, the display of
the results of this HKA-like test for each window is in terms
of the 6log10 of the nominal P-value associated with the
ordinary x2 with 1 d.f. and the sign of O(Sw ) 2 E(pw)O
(Tw). x[log(pHKAl)] associated with HKAl will be positive
when the observed proportion of segregating sites is greater
the trimmed chromosome arm average, given the distribu-
tion of sampling depths and average divergence at the sites
in the window.

On a finer scale HKAl was calculated using Equation 3
described above. To choose a window size for fine-scaled
HKAl it was first necessary to put different possible window
sizes on a common basis. The false discovery approach of
Benjamini and Yekutieli (2001) was applied to a geometric
series of window sizes from 16 to 512 variant (polymorphic
or divergent) sites. The number of windows, k with nominal
P , k*0.05/n (where n is the total number of windows on
the chromosome arm), was determined for each window
size and is plotted in Figure S5. Despite the variation in
depth of sampling and even the sequencing technologies

(i.e., Sanger and Illumina sequencing for D. simulans and
D. melanogaster, respectively), a maximum emerges be-
tween 20 and 70 variant base pairs per window for each
of the chromosome arms for all three samples. In the in-
terest of economical and transparent presentation a window
size of 50 segregating and lineage-specific, fixed divergent
sites was chosen. Windows in this range with a P � 0.01 or
less would be formally significant (under the naive binomial
assumption) at the 0.05 level on a chromosome-arm–wide
basis. Typically, less than one-quarter of windows with 50
variant base pairs reach this threshold. While the primary
purpose of this approach was simply to settle on a small
window size that would serve to simply and transparently
annotate those regions of the genome with highly deviant
divergence-relative polymorphism, it is instructive to com-
pare the observed distributions of x[log(pHKAl)] with naive
neutral theory predictions with different assumed levels of
recombination (see Figure 2). As expected, the simulations
with no “intralocus” (i.e., within the 50-SNP window) re-
combination exhibit wider variation in both positive and

Figure 2 The distributions of observed and simulated HKAl (signed chi-
square) values. The olive line is the distribution of observed HKAl values
for all adjacent windows of 50 variant sites (segregating or fixations on
the melanogaster lineage) for which the expected numbers derive from
the observed averages in the large subset of these windows outside the
designated (“trimmed”) centromere- and telomere-proximal regions
with low crossing over. The black line shows the distribution of HKAl
for the same windows, using the observed averages for all windows to
derive the expected numbers. The blue and red lines are the theoretical
distributions for high and no recombination derived from simulations
using Hudson’s ms program with the commands ms 35 1000000 -s
50 -r 8 500 -I 2 1 34 -ej 2.5 1 2 or -r 0, respectively. The parameter -ej
2.5 relates the outgroup divergence time to 4N0 and yields the ob-
served proportion of segregating sites (0.44), both averaged over all
sample sizes and only at sites with 34 observed alleles, the simulated
number.
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negative x[log(pHKAl)]s. Note this difference is larger in the
positive domain. But as Figure 2 clearly shows, the distribu-
tion of observed x[log(pHKAl)]s falls far below the simulated
values in the negative domain and well above for the more
relevant 2Nr = 8 in the positive domain. Removing the
centromere- and telomere-proximal regions substantially
reduces the magnitude of the deviation in the medial por-
tion of the negative domain. But many of the most the ex-
treme 0.05%, with nominal P-values ,10211, are outside
these regions of extremely low crossing over per physical
length.

Frequency spectrum in windows

To evaluate genomic patterns of variation in the frequency
spectrum of segregating sites within windows, a simple
extension of the familiar Tajima’s D statistic (Tajima 1989)
is used to accommodate the variation in sampling depth.
Since this test statistic is constructed to approximate a N(0,
1) normalization of the difference between the expected het-
erozygosity and Waterson’s estimator of 4Nm, it is natural to
simply sum the D values for each of the observed sampling
depths in a window and divide by the square root of the
number of these observed sampling depths. Of course, this
statistic, TsD, is only �N(0,1), but it does allow the compar-
ison of different windows,

TsD ¼

Xc
i¼4

xðSi . 3ÞDðp; SiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXc
i¼4

xðSi. 3Þ
s ; (4)

where D(pi, Si) is Tajima’s D for the sites in the window with
sampling depth i and x(Si . 3) = 0 if there are fewer than
three SNPs at sampling depth i and 1 otherwise.

To assess the statistical significance of each observed
value, 1000 samples with observed numbers of segregat-
ing sites at the observed pattern of sampling depths were
generated using Hudson’s ms (Hudson 1990, 2002). The
recombination rate was set to zero, producing conservative
estimates of the critical values (pTsD) for both the positive
and the negative deviations. Windows of the signed loga-
rithm of the pTsD, 6x½log�ðpTsDÞ� depend on the sign of Dw

and are plotted and labeled as TsD. The window sizes for
TsD were set such that the sum of the numbers of segre-
gating sites over observed sampling depths was a con-
stant 50.

Estimating the rate of recombination per base pair

A unified, high-resolution genetic map based on the segre-
gation of a high density of physically mapped SNPs, such as
is available in humans, has not yet been reported for D. mel-
anogaster. The genetic mapping data available at flybase.org
comprise a highly edited and rectified summation of a vast,
heterogeneous and sometimes conflicting literature of ge-
netic, cytogenetic, and physical mapping in melanogaster. To

date the only available estimate of distribution of the rate
of crossing over per physical length across the whole genome
is that of Singh et al. (2005), which was recently updated
(Fiston-Lavier et al. 2010). Their approach is to fit a third-
degree polynomial of the genomic positions to the FlyBase
reported genetic map positions for each chromosome arm (af-
ter removing a few obvious outliers). The derivative of the
fitted functions is then their estimate of local rates of recom-
bination (crossing over) per base pair across each of the major
arms. Begun et al. (2007) presented locally smoothed interval
estimates from such data for the X and noted higher-resolution
parallels to the distribution of p (notably) in D. simulans. Here
we pursued such local smoothing and higher-resolution maps
with the following simple approach based on selected data
compiled at FlyBase. We start with the genetic and geno-
mic map positions in the “Map Conversion Table,” which is
organized around the cytogenetic “lettered subdivisions.”
While the specifics of each curatorial decision are not
available, the general method is documented at FlyBase.
The reported genetic map positions in that table for each
of some 100+ lettered cytogenetic subdivisions (�200
kbp) on each arm appear to correspond to the map posi-
tion of a reported locus physically localized in that sub-
division. But clearly conflicts between the genetic and
physical maps have been rectified. The physical bound-
aries and reported genetic map positions in this FlyBase
table are included in Table S12.

The estimate of the rate of crossing over per base pair
(M/bp), r̂ (gene conversion contributes little to the under-
lying data) is the increment in the reported genetic map
divided by the length in base pairs of the subdivision. Inset
A in Figure 3 shows the distribution of these estimates, r̂ and
the smoothed fit (hereafter referred to as r̂15) for the X
chromosomes plotted against the midpoint of the subdivi-
sion. The smoothing is locally weighted regression and
smoothing scatterplots (loess) (Cleveland 1979) imple-
mented in the function loess in R (R Development Core
Team 2010) with the span parameter = 15% and the de-
fault tricubic weighting. This plot is logarithmic to accom-
modate the wide range of r̂ values. The large numbers of
segments with an estimated rate of zero are obviously off
the bottom of this plot. The comparably smoothed fit for
each chromosome arm is plotted in the remaining 5 panels
of Figure 3 on a linear scale. The r̂15 data plotted in Figure
3 are in Table S12.

Fine-scale recombination rate estimation

We used the program package LDhat version 2.1 (McVean
et al. 2004) to estimate the fine-scale population recombi-
nation rate variation in Q30 assemblies of the 37 RAL lines.
In LDhat, missing data are handled by marginalizing over
the unknown allelic values in the likelihood computation.
The computational complexity of this procedure scales ex-
ponentially with the number of missing entries. To avoid
this hurdle in our genome-wide fine-scale recombination
analysis, i.e., to create a complete data set (with no missing
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data), we removed missing data using the approach de-
scribed below. For several reasons some assemblies have
long intervals of contiguous missing alleles. For each
chromosome, we found the set of missing intervals for
each sample and used the resulting collection of end
points to partition the chromosome into a set of nonover-
lapping blocks. Then, within each block, we removed
completely missing haplotypes. Finally, we removed the
sites containing at least one missing entry. The data re-

sulting from this procedure had the properties listed in
Table S13.

We used LDhat’s subprogram complete to generate two-
locus likelihood lookup tables with the population-scaled
recombination rate ranging from 0 to 500, with an incre-
ment of 0.5 (McVean et al. 2004). The population-scaled
mutation rate was set to 0.006 for autosomes and 0.004
for the X. For each sample configuration, we ran complete
until either the minimum effective sample size reached 1000

Figure 3 Distributions of estimates of the rates of recombination per base pair, r (M/bp) and r = 2Nr, where N is the populations size (see text). r̂15 is the
(orange) loess-smoothed (span = 15%) per genome per generation estimate of the rate of recombination between adjacent base pairs, derived from
curated FlyBase genetic map positions. (A) r̂15 and the estimated r for each subdivision on the X, plotted on a logarithmic scale. r̂15 is the (olive)
comparably (span = 15%) loess-smoothed per population per generation estimate of the rate of recombination (2Nr) between adjacent base pairs (see
text). The gray line is the higher-resolution (span = 8%) smoothed estimate of 2Nr, r̂8.
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or 1.0 million genealogies were sampled, whichever came
first. To estimate genome-wide fine-scale population recom-
bination rates, r = 2Nr, we adopted a sliding-window ap-
proach, with each window containing 1000 SNPs and
consecutive windows overlapping by 250 SNPs. N is the
population size and r is the recombination rate between
base pairs per generation. Because of the lack of crossing
over in male Drosophila meiosis, N and r are multiplied by
2 rather than by 4. LDhat’s subprogram interval was used to
estimate variable recombination rates. For each window,
we ran the reversible-jump MCMC for 5 million iterations,
with a burn-in of 200,000 iterations, and subsequently took
a sample every 2000 iterations. To stitch together the esti-
mates in the overlapping region of consecutive windows,
we discarded the estimates for 125 SNPs from the ends of
each window. In each interval, the prior for the number of
recombination rate changes is taken to be a Poisson distri-
bution with mean (S 2 2)e2j, where S is the number of
SNPs in a window (in our case 1000) and j is a block
penalty. Because of the evident spikes in the estimates
(see below), we tried a range of j, including 15, 25, 35,
and 45. Note that changing the penalty from 15 to 45
decreases the mean of the prior by a factor of �9.4 ·
10214. For the reversible-jump MCMC to successfully sam-
ple recombination maps with several rate changes when
the penalty is as high as 45, the data must strongly support
the rate changes so that an increase in the likelihood com-
pensates for a decrease in the prior.

Because the estimated fine-scale recombination rates
exhibit considerable variation on several scales, especially
spikes (see below), we report here the following conserva-
tive estimate based on two independent runs with j = 45.
In 50-kbp windows the r map with the fewest changes was
selected to thus remove “unreplicated” spikes. Table 5 shows
properties of these two maps and this combination. Spikes
with a width .2 kbp are unlikely to be artifacts of the LDhat
estimation.

For the purpose of comparing this map of linkage
disequilibrium-based estimates of r̂ of 2Nr with the map of
r̂15, a comparably smoothed map, r̂15, and a more fine-scale
r̂8 were also created (see Figure 3).

Differentiation between Africa and North America
in windows

The patterns of differentiation of allele frequencies between
populations can be a powerful means of discerning the
impact of geographically variable selection or other pro-
cesses generating allele-frequency differences. To depict
genomic differentiation between the RAL and MW samples
in windows, Fisher’s exact test (FET) was computed for each
segregating site in the window. The statistical significance of
the ensemble was gauged by Fisher’s combined probability
test (FCPT). To deal with the obvious fact that such closely
linked segregating sites do not meet the assumption of in-
dependence, a simple shuffling test was used to generate the
null distribution of the FCPT x2 (Hudson et al. 1992). The

assignment of genomes to RAL and MW was randomly per-
muted and the FCPT x2 was calculated. This was repeated
until either 100 permutations had a FCPT x2-value greater
than that for the sample or 500,000 permutations were
tested. From this distribution of a more reliable critical
value, pHBK for the observed x2 can be estimated; x[log
(pHBK)] is the quantity plotted and labeled Hudson–Boos–
Kaplan-like (HBKl). The size of these HBKl windows was set
to a specific sum of expected heterozygosity, 1.0 across con-
tiguous segregating sites, to normalize the statistical power
among windows.

Shared polymorphism

To assess the pattern of shared polymorphism between
D. melanogaster and D. simulans across the genome, a simple
extension of the HKA-like test was calculated that follows
the approach in Wakeley and Hey (1997), except that no
attempt is made to evaluate the statistical significance of
deviations from the neutral model. Instead the goal was to
detect genomic regions that harbored extreme amounts of
shared polymorphisms. The expected proportion of shared
polymorphisms was estimated for each sampling depth
across each chromosome arm (ignoring the trimmed regions
near centromeres and telomeres). A goodness-of-fit x2 was
calculated for each nonoverlapping window containing a to-
tal of 100 polymorphic and divergent sites. Each test has
four cells, the number of sites polymorphic in the RAL and
MW combined sample but monomorphic in the SIM sample,
the number of sites polymorphic in the SIM sample but
monomorphic in the combined D. melanogaster sample,
the number of sites monomorphic in both samples, and
the number of sites polymorphic in both samples. Variation
in polymorphism and divergence is addressed by the HKAl
analyses. To evaluate the patterns of shared polymorphism
the usual (expected – observed)2/expected for the polymor-
phic-in-both-samples cell was treated as a 1-d.f. x2 and the
6x log(pWHl)] is plotted only in the genome browser [see
below, labeled Wakeley–Hey-like (WHl)]. Large positive val-
ues indicate an excess and negative values a deficiency of
shared polymorphisms. There is little power to detect re-
gions deficient in shared polymorphisms given the overall
low rate of shared polymorphism.

Correlations between chromatin states

The fine-scale windows for pw, dw, HKAl, HBKl, and r̂ were
intersected with the chromatin state “windows” described in
Kharchenko et al. (2010), using the unionBedGraph com-
mand in the BEDTools v2.12.0 (Quinlan and Hall 2010).
The distributions of resultant values were examined in two
ways: box plots that capture the central tendencies and em-
pirical cumulative distributions that display the differences
in the tails more effectively (available in Figure S11 and
Figure S12). Because of the variation in the length of parti-
tioned windows, the analyses were based on weighting by
number of base pairs in each window, using the Hmisc and
Enmisc R packages (R Development Core Team 2010).
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Gene-based methods

We defined a gene set for analyses by including only genes
whose gene models (initiation codons, splice junctions, and
termination codons) are either canonical or the same as the
reference 5.16 annotations for every sampled genome. To
ensure a minimum amount of data available for analyses, we
restricted our analyses to genes having three or more alleles
(lines) with at least 100 bp of data in both D. melanogaster
and D. simulans samples. To have appropriate outgroup
sequences to perform polarized analyses, genes for which
neither D. yakuba nor D. erecta alleles had the same gene
model as D. melanogaster reference annotations or had
,100 bp were excluded. If more than one isoform met the
above criteria, only the longest isoform was used. All statis-
tical tests in gene-based analysis were performed with R
version 2.8.0 (R Development Core Team 2010).

When analyzing bases with quality score $Q30, there
were 9328 genes of 13,693 annotated genes that were in-
cluded in the “golden gene set.” When considering bases
with quality score $Q40, we restricted our analyses to
9258 genes that are shared with the Q30 data set (note that
a few genes may be excluded from the Q30 gene set because
of a premature stop codon that is not supported at Q40).
Unless stated in the text, patterns observed with Q30 data
were also observed with the more stringent Q40 data.

Expected nonsynonymous and synonymous heterozygosity
was estimated as average pairwise differences. We include
only sites with a sampling depth of $20 alleles in the
D. melanogaster RAL sample and with $3 alleles in the D.
simulans SIM and D. melanogasterMW samples. The numbers
of nonsynonymous and synonymous sites were counted using
the procedure in Nei and Gojobori (1986). Numbers of non-
synonymous and synonymous changes between two codons
are calculated by averaging over all possible pathways be-
tween the pairs.

Lineage-specific divergences were estimated on branches
leading to D. melanogaster and D. simulans by using
D. yakuba (or D. erecta when the D. yakuba allele was not
available) as the outgroup. We excluded polymorphic sites
when estimating lineage-specific divergence to avoid the in-
flation of divergence with polymorphism (“polymorphism-
adjusted divergence”). To accomplish this, we used two
alleles each from D. melanogaster and D. simulans with the
following criteria to capture the most of within-species poly-
morphism while ensuring enough statistical power for esti-
mations. Each allele in either species was first ranked from
high to low according to the proportion of bases that were
not missing data (coverage). For D. melanogaster, two MW
alleles with lowest rank (highest coverage) were picked.
However, if any one of the MW alleles had rank $20, the
MW allele with lower coverage was replaced by the RAL
allele with the highest coverage. The two D. simulans alleles
with highest coverage were included in the analyses. Lineage-
specific divergence was estimated using maximum-likelihood
methods implemented in PAML version 4 (Yang 2007). We

used codeml with HKY as the nucleotide substitution model.
The tree was assigned as [outgroup, (D. melanogaster allele 1,
D. melanogaster allele 2), (D. simulans allele 1, D. simulans
allele 2)], and the species-specific dN and dS were obtained
from the estimates of the shared branch between two indi-
viduals in either D. melanogaster or D. simulans. Genes with
,100 sites included in the PAML analysis were not included
in downstream analyses.

Genetic differentiation between African and North
American populations was tested by estimating averaged
FST (Wright 1949; Weir and Cockerham 1984) of amino
acid polymorphism. Only amino acid positions with sam-
pling depth of at least 20 in the RAL sample and at least 3
in the MW sample were included. P-values associated with
each FST were estimated using 1000 random permutations
of the samples with respect to population identity (Hudson
et al. 1992).

Polarized McDonald–Kreitman (MK) tests (McDonald
and Kreitman 1991) were applied to D. melanogaster MW
polymorphism data, using the alleles of the D. simulans mo-
saic assembly genome and D. yakuba or D. erecta (when the
D. yakuba allele is unavailable) to count fixed differences on
the D. melanogaster lineage. D. simulans polarized MK tests
used D. simulans polymorphism data and the reference
D. melanogaster genome and either the D. yakuba or the
D. erecta allele. Codons with sampling depth greater than
or equal to three in D. simulans and D. melanogaster MW
samples are included in the analysis. When none of the poly-
morphic states was the same as those of the outgroups, we
counted the site as both polymorphic (counting the differ-
ences between two ingroup alleles) and divergent (summing
the differences between the outgroup state and each of the
ingroup states). Polymorphic codons with more than two
states within species are not included in the analysis. When
two alternative codons differ at .1 bp, pathways between
codons that minimized the number of nonsynonymous sub-
stitutions were used. To ensure at least modest statistical
power, genes for which expectations of each of the four cells
of the MK tables were less than one were removed. Statis-
tical significance of the 2 · 2 contingency table was deter-
mined by Fisher’s exact test. Excess of nonsynonymous
fixations (NSfix) and excess of nonsynonymous of polymor-
phisms (NSpoly) were calculated as the observations sub-
tracted by the expectations from the 2 · 2 tables. Polarized
MK tests were calculated using three different data sets:
Q30 minimum data, Q40 minimum data, and Q30 minimum
data with singleton alleles removed. The proportion of adap-
tive amino acid fixations (a) was estimated according to Smith
and Eyre-Walker (2002) for individual genes.

Evidence of enrichment of statistical association in par-
ticular Gene Ontology (GO) categories was investigated for
the critical values in the MK test. We combined the full GO
list and the GO slim list (from the gene ontology website
http://www.geneontology.org/) to annotate the GO catego-
ries of each golden gene. We considered only GO terms
associated with at least five golden genes for which an MK
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test was calculated (after filtering criteria). For each GO
term, we calculated the proportion of genes having MK tests
P, 0.05 and rejecting the null hypothesis in the direction of
excess amino acid fixation. The P-value associated with each
GO term was determined by sampling without replacement
n (the number of golden genes associated with a GO term)
MK test P-values and calculating the proportion of signifi-
cant MK tests. This process was repeated 10,000 times to get
the empirical P-values associated with each GO term.

GC content of each gene was estimated as the proportion
of G and C bases of the fourfold degenerate sites of the
D. melanogaster reference allele. Recombination rate of the
midpoint of each gene was estimated according to the ge-
netic-map–based recombination rate estimates described
above. We categorized genes into four equal bins according
to genetic-map–based recombination rate, r̂15, separately for
the autosomes and the X: “very low recombination” (0–2.98
cM/Mbp for X-linked genes and 0–1.07 cM/Mbp for autoso-
mal genes), “low recombination” (2.98–4.15 cM/Mbp for X-
linked genes and 1.07–2.57 cM/Mbp for autosomal genes),
“intermediate recombination” (4.15–5.17 cM/Mbp for X-
linked genes and 2.57–3.84 cM/Mbp for autosomal genes),
and “high recombination” (.5.17 cM/Mbp for X-linked
genes and .3.84 for autosomal genes) (see Figure S13 for
distributions of numbers of genes with r̂15 within the indi-
cated intervals). With this binning, there are �300 X-linked
and 2000 autosomal genes in each recombination category.
Alternative binning criteria classified genes into no recom-
bination (0 cM/Mbp), low recombination (0–3.6 cM/Mbp
for X-linked genes and 0–1.89 cM/Mbp for autosomal
genes), intermediate recombination (3.6–4.79 cM/Mbp for
X-linked genes and 1.89–3.72 cM/Mbp for autosomal
genes), and high recombination (.4.79 cM/Mbp for X-
linked genes and .3.72 cM/Mbp for autosomal genes). This
resulted in 37 X-linked and 468 autosomal genes in the no
recombination category and �400 X-linked and 2300 auto-
somal genes in other categories. As most analyses were not
sensitive to the choice of binning methods, we present only
the results using the first categorizing methods to ensure
equal statistical power of each bin. When investigating the
effect of recombination rates on polymorphism, we used
linear regression with the linear model “synonymous p ~
recombination rate.” The linear model “a ~ recombination
rate” was used when analyzing the effect of recombination
rates on adaptive protein evolution. P-values associated with
each regression coefficient were calculated by 1000 random
permutations.

Shared polymorphism in genes: A codon that has the same
two alternative states segregating in both D. melanogaster
and D. simulans is considered a codon with shared ancestral
polymorphism. To be conservative, codons with more than
two alternative states segregating in either species were not
considered. Also, if a codon was segregating for two alter-
native states in both D. melanogaster and D. simulans but
only one state was shared between the two species or if

there was no state shared when one species is monomorphic
while the other is segregating for two alternative states, the
codon was excluded from the analyses. The nonsynonymous
and synonymous differences between pairs of codon states
were calculated by the path that minimizes the number of
nonsynonymous changes. We used Fisher’s exact test to test
whether, in a gene, the ratio of shared polymorphic sites
to all variable sites (including fixed differences between
D. melanogaster and D. simulans, sites that are polymorphic
within one of the two species, and shared polymorphic sites)
is significantly different from the golden gene totals. Genes
without any variations (both between species and within
species) are removed from the calculation of the proportion
of shared ancestral polymorphism for overall golden genes.
Because we are interested in shared polymorphism that may
have functional importance, we mainly present analysis of
nonsynonymous variation.

Identification and analysis of copy-number variation

To detect copy-number differences among inbred lines we
examined the depth of sequence reads at each position of the
genome in each sequenced line. Duplications were detected
as regions of significantly increased depth, while deletions
were inferred based on significantly decreased depth. We
used a hidden Markov model (HMM) to segment the genome
of each line into regions of euploidy and aneuploidy. The
model calculates the expected read depth at each position
based on the depth in the resequenced reference genome, GC
content, number of SNPs, and number of small indels and
then detects stretches of positions having read depth de-
viating from this expectation (see Appendix B). We set
the minimum length of duplications and deletions to 295
bp to minimize false positive calls. Because our HMM was
quite conservative, we used a second step to genotype
copy-number variants (CNVs) identified in at least one line
in all other lines. This genotyping step uses a likelihood-ratio
test to score every line as either a duplication or a deletion
based on the length and type of CNV identified by the HMM
(see Appendix B).

CNVs and origins of replication

To investigate the relationship between the genomic distri-
bution of origins of replication and CNVs, the origin of rep-
lication complex (ORC) meta-peaks ChIP-chip data based on
immunoprecipitation of the replication initiation complex
from three cell lines at modencode.org/ were analyzed
(Roy et al. 2010). This data set is composed of 7084 anno-
tated intervals covering a total of 1.98 million bp. Approxi-
mately 33% of these were annotated in all three cell lines,
23% in two, and 44% in one. The scoring of genomic regions
reflects the number of cell lines that were positive. The
annotated ORC intervals were extended in both directions
by 500 bp. A null or background data set with a similar
chromosomal distribution and the same sizes was gener-
ated. Each shuffled interval was placed 10 kbp away ran-
domly 59 or 39 of an annotated ORC. If exactly one of the
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two random locations overlapped an annotated ORC, the
other location was preferred. Importantly, this Monte Carlo
data set preserved the total count, cell line weight, and size
distribution. The numbers, sizes, and heterozgosities of
CNVs overlapping these two data sets are the bases of the
analyses presented.

CNVs and replication time

To examine potential associations between CNVs and replica-
tion time we looked at the replication time map of Schwaiger
et al. (2009) obtained from the author’s website. This map
includes replication time data for two cell lines, Kc and Cl8,
which were analyzed independently for comparison. We used
our CNVs called for the RAL lines for this analysis. To compare
replication times of individual deletions and duplications
events, the midpoint of each CNV was computed and the
replication time for both cell lines was obtained from afore-
mentioned map of Schwaiger et al. Each CNV was also classi-
fied as early, middle, and late replicating based on a clustering
of the Kc replication time data also done by Schwaiger et al.
and used in Cardoso-Moreira et al. (2011). To examine the
potential association between the local density of copy-number
variation and replication time as reported in Cardoso-Moreira
and Long (2010), the numbers of deletion and duplication
events were summarized in 100-kbp independent nonover-
lapping windows. For each window, we also computed the
corresponding expected replication time. This was done sep-
arately for the Kc and Cl8 cell lines for comparison.

Results

Polymorphism and divergence

The expected heterozygosities for each of the major chro-
mosome arms in the RAL and MW samples are in Table 3.
Figure 4 (top) shows box plots of the expected heterozygos-
ity in 1-kbp windows in each chromosome arm. The compa-
rable estimates for the D. simulans sample (Begun et al.
2007) are presented for comparison. Clearly the expected
heterozygosity of D. simulans is much greater than that of
D. melanogaster (both RAL and MW). Note also that the
divergence on the simulans lineage is less than on the mel-
anogaster lineage, 0.024 vs. 0.030 respectively. Furthermore,
divergence on the X is greater than that of the autosomes on
both the simulans and melanogaster lineages (see Figure 4,

bottom). The X-to-autosome ratios of expected heterozygos-
ity are notably variable among the samples; the ratio for the
Africa sample (MW) is well above the naively expected 0.75,
at 1.10. Consistent with earlier studies (Andolfatto et al.
2001; Kauer et al. 2003; Hutter et al. 2007), the ratio in
the North American sample (RAL) is far below, at 0.67.
These deviations have been detected in earlier surveys of
small parts of the genome and have motivated the investi-
gation of complex demographic models (Hutter et al. 2007;
Pool and Nielsen 2008). The increased scale and scope of
the present data invite a reanalysis of these earlier interpre-
tations (discussed below). At this point though, the focus is
on a thorough empirical description of the genomic variation
at all scales.

Polymorphism and divergence across
the chromosome arms

Expected heterozygosity, pw: A striking feature of DNA
sequence polymorphism in D. melanogaster and D. simulans
(Begun et al. 2007) and indeed in a number of other spe-
cies, e.g., tomato (Stephan and Langley 1998; Roselius
et al. 2005), D. ananassae (Stephan and Langley 1989;
Stephan et al. 1998), and humans (Hellmann et al. 2008;
Cai et al. 2009), is the systematic reduction in centromere-
and telomere-proximal regions where crossing over per
physical length also declines (Hahn 2008 and references
therein). Figures 5 and 6 and Figure S2, Figure S3, and
Figure S4 show that p declines near the centromeres and
telomeres and reveal other large-scale (�105 bp) peaks
and troughs in expected heterozygosity in overlapping
150-kbp windows incremented every 10 kbp. While the X
in the RAL sample does show lower average p, it also
exhibits more large-scale variation than does the X from
the MW sample. Also obvious in these large-scale plots of
p are the strong parallels between the two melanogaster
samples and between D. melanogaster and D. simulans (see
Table 4).

Average divergence, dw: Figures 5 and 6 as well as Figure
S2, Figure S3, and Figure S4 show the average lineage-
specific divergence, dw, in the same overlapping 150-kbp
windows incremented every 10 kbp. In contrast to pw the
distribution of dw is remarkably uniform across each of the
arms, although as noted above the X does consistently

Table 3 The expected heterozygosity, p and average lineage-specific divergence, dw on the chromosome arms in the RAL, MV, and
SIM samples

Expected heterozygosity, p Divergence, d

Chromosome arm RAL MW SIM RAL MW SIM

X 0.00385 0.00822 0.01366 0.04137 0.04051 0.02744
2L 0.00634 0.00846 0.01847 0.03497 0.03409 0.02503
2R 0.00588 0.00733 0.01706 0.03370 0.03279 0.02379
3L 0.00576 0.00783 0.01920 0.03504 0.03397 0.02484
3R 0.00486 0.00631 0.01698 0.03395 0.03313 0.02352
Genome 0.00531 0.00752 0.01714 0.03084 0.03017 0.02432
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exhibit an overall higher amount of divergence. One
can also note another subtle but consistent pattern of de-
creasing divergence from the centromere to the telomere
(Begun et al. 2007). The generality of this observation of

divergence suggests that quantitative modeling of the
forces that shape polymorphism and divergence should
strive to address the cause of this chromosome-arm
pattern.

Figure 4 The distributions of estimates of expected heterozygosity and of divergence in 1000-bp windows on chromosome arms (X, 2L, 2R, 3L, and 3R)
for RAL, MW, and SIM.
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Contrasting polymorphism with divergence
at the chromosome level

Arguably, the comparison of levels of polymorphism to
divergence in different genomic regions is the most funda-
mental analysis directly relevant to models proposed to
explain the maintenance of genetic variation and the
divergence between species. The simple empirical analog
of the HKA test (Hudson et al. 1987) as modified by Ford
and Aquadro (1996), HKAl, identifies local genomic regions
in which the relative polymorphism (numbers of segregating

sites) and divergence (numbers of fixed differences) exhibit
strong deviation from the chromosome arm average. In Fig-
ures 5 and 6 and Figure S2, Figure S3, and Figure S4 are
plotted x[log(pHKAl)], the signed log of the P-value for a sim-
ple 1-d.f. x2 at the midpoint of nonoverlapping windows of
512 variable (polymorphic or diverged) sites. The expect-
ations of numbers of segregating sites are based on the
observed proportions at each sampling depth across the
chromosome arm (excluding the centromere- and telomere-
proximal regions in Table S14 and demarcated by the orange

Figure 5 Expected heterozygosity, divergence, and HKAl on the X for the North American (RAL), African (MW), and simulans (SIM) samples. Blue shows
expected heterozygosity, p at the midpoint of 150-kbp windows (incremented every 10 kbp, minimum coverage = 0.25 and Q30 sequence). Red shows
lineage-specific, average Q30 divergence in 150-kbp windows (incremented every 10 kbp and minimum coverage of 0.25). A preliminary application of
HKAl on the Q30 data in windows of 4096 contiguous polymorphic or divergent sites identified centromere- and telomere-proximal regions (orange
bars) in which the each window exhibited a deficiency of polymorphic sites relative to the chromosome-arm average. Then HKAl was applied again on
the Q30 data in windows of 512 contiguous polymorphic or divergent sites (excluding these centromere- and telomere-proximal regions from
calculation of the chromosome-arm–wide expected proportions, pc and dc). x[log(pHKAl)] (olive) is the log of the P-value associated with HKAl plotted
with the sign of the difference between the observed number and the expected number of polymorphic sites in the window.
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bars in Figures 5–6 and Figure S2, Figure S3, and Figure S4. Of
course, the most striking features of the distribution of pw and
this HKAl statistic are the reductions in the regions adjacent
to the centromere and telomere. As is apparent in the bottom
(SIM) panels of Figures 5 and 6, and Figure S2, Figure S3, and
Figure S4. and as reported by Begun et al. (2007), simulans also
exhibits reductions in these regions. But note that the regions of
reduced polymorphism in simulans are smaller than in mela-
nogaster (RAL and MW) on chromosome arms 2R, 3L, and 3R.

A prediction of models of linked strong directional
selection is a positive correlation of the variation in poly-

morphism with variation in recombination per physical
length, especially as the rate of recombination approaches
zero (Maynard Smith and Haigh 1974; Kaplan et al. 1989;
Charlesworth et al. 1993). Indeed these genomic regions do
exhibit much lower levels of crossing over per physical length
(Figure 3) and of r̂, an estimate of 2Nr (Figure 7 and Figure
S7). At the telomere the proportion of segregating sites plum-
mets most precipitously in parallel with r̂15 and p. On the X of
melanogaster the telomere-associated suppression extends
over a wider region than on the autosomes (Figure 3). At
the centromeric ends of chromosome arms x[log(pHKAl)] is

Figure 6 Expected heterozygosity, pw, divergence, dw, and HKAl on 2L for the North American (RAL), African (MW), and simulans (SIM) samples. Blue
shows expected heterozygosity, pw at the midpoint of 150-kbp windows (incremented every 10 kbp, minimum coverage = 0.25 and Q30 sequence).
Red shows lineage-specific, Q30 divergence, dw in 150-kbp windows (incremented every 10 kbp and minimum coverage of 0.25). A preliminary
application of HKAl on the Q30 data in windows of 4096 contiguous polymorphic or divergent sites identified centromere- and telomere-proximal
regions (orange bars) in which the each window exhibited a deficiency of polymorphic sites relative to the chromosome-arm average. Then HKAl was
applied to the Q30 data in windows of 512 contiguous polymorphic or divergent sites (excluding these centromere-and telomere-proximal regions from
calculation of the chromosome-arm–wide expected proportions, pc and dc). x[log(pHKAl)] (olive) is the logarythim of the P-value associated with the HKAl
plotted with the sign of the difference between the observed number and the expected number of polymorphic sited in nonoverlapping windows of
512 variable sites.
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extremely negative over even broader physical regions, espe-
cially on several of the autosomes inmelanogaster. As Figure 3
shows, crossing over per base pair is low in these regions.

The second striking feature of these patterns of poly-
morphism and divergence is the large number of extreme
x[log(pHKAl)] windows across the whole euchromatic arm
between these centromere- and telomere-proximal regions.
The pattern is more variable for x[log(pHKAl)] in Figures 5
and 6 and Figure S2, Figure S3, and Figure S4 than for pw

and dw because the windows of these latter two statistics are
larger (150 kbp vs. �20 kbp) and densely overlapping
(10-kbp increments). These remarkable deviations in x[log
(pHKAl)] occur both in the direction of excess polymorphism
and in that of excess divergence, positive and negative

x[log(pHKAl)], respectively. The broad (.150 kbp) peaks
and especially troughs in pw and x[log(pHKAl)] often harbor
a number of apparently disjunct smaller windows in which
the proportions of segregating sites are quite deviant.

The view of these statistics at a finer scale (in smaller
windows and in coding elements) is discussed below, but at
this gross resolution the large number of windows on each
arm that are associated with extremely small HKAl test
P-values is remarkable and is most simply interpreted as
evidence of a great deal of recent and (by deduction) re-
current selective substitution of rare variants (newly arising
adaptive mutations).

Patterns of polymorphism within cosmopolitan
gene arrangements

Perhaps the most striking population genomic feature of
D. melanogaster is the high level of large paracentric inver-
sion heterozygosity in tropical populations. D. simulans and
its sibling species show very low levels of segregating kar-
yotypic variation. This appears to be the conserved ancestral
state, since simulans and the melanogaster “standard” eu-
chromatic karyotype differ by only one large inversion in chro-
mosome 3R fixed on the melanogaster lineage (Lemeunier
and Ashburner 1976; Begun et al. 2007). One or more

Table 4 The correlation in pw between D. melanogaster (MW or
RAL) and D. simulans (SIM) in 1000-bp windows

Chromosome MW-SIM RAL-SIM

X 0.469 0.298
Chr2L 0.450 0.393
Chr2R 0.385 0.361
Chr3L 0.328 0.338
Chr3R 0.336 0.328
All 0.375 0.367

Figure 7 r̂, estimates of 2Nr across chromosome arms X and 2L, generated by LDhat. Also shown for comparison are estimates of pw (blue) and dw
(red) as in Figures 5 and 6 (see Figure S7 for this type of plot for all five chromosome arms).
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cosmopolitan, large, derived paracentric inversions are
found at intermediate frequencies in each of the chromo-
some arms in African (Lemeunier and Ashburner 1976;
Aulard et al. 2002) and other tropical populations (Mettler
et al. 1977; Knibb et al. 1981). Studies of the sequence poly-
morphism within samples of several of these cosmopolitan
inversions reinforce the conclusion that all these chromo-
some rearrangements arose independently and recently
from the standard arrangement (Wesley and Eanes 1994;
Andolfatto and Kreitman 2000; Matzkin et al. 2005). As
Table 1 shows, inversion polymorphism in the MW sample
is high, as expected. The overall levels of inversion polymor-
phism in the RAL sample are typical of a temperate popula-
tion and previous sampling of this population (Langley et al.
1977; Mettler et al. 1977; Voelker et al. 1978). Much higher
frequencies of the standard arrangements are observed, ex-
cept on chromosome 3R. In the numerous prior surveys in
Raleigh, In(3R)P was consistently found at �12% frequency.
However, we found this inversion in only a single line. The
high-inversion polymorphism on 3R in the RAL sample is
now due to In(3R)Mo (�18%), previously very rare in this
and other temperate eastern North American populations
(Langley et al. 1977; Mettler et al. 1977). This dramatic
change in the frequencies of these two inversions is unex-
pected and deserves additional investigation.

Most inversions are at low frequencies in the RAL sample
and counts in the MW sample are inherently few; however,
the prevalence of In(3R)Mo in RAL invites a more careful
population genomic analysis of the pattern of polymorphism
relative to the inversion breakpoints. Due to suppression of
recombination in inversion heterozygotes, especially imme-
diately proximal to the inversion breakpoints, the inversion
can remain associated with the single haplotype in which
the inversion arose. Consistent with earlier observations in
melanogaster of In(3R)P and In(2L)t by Wesley and Eanes
(1994) and Andolfatto et al. (1999), respectively, Figure 8

shows that heterozygosity among In(3R)Mo chromosomes
immediately surrounding both breakpoints is almost com-
pletely lacking. This feature is consistent with the hypothesis
that single In(3R)Mo haplotypes were “captured” by the
unique rearrangement event. While the lack of polymor-
phism relative to the standard in these small breakpoint
regions indicates a recent origin for In(3R)Mo on the time-
scale of the mutation rate [similar to In(2L)t and In(3R)P],
the fact that p throughout most of the inverted segment is
much higher (yet not as high as a standard) indicates there
may have been many double exchanges with standard since
In(3R)Mo’s origin. Similarly there is evidence of exchanges
just outside the two breakpoints.

In addition to the small regions surrounding the break-
points, we found two other large regions of decreased poly-
morphism. The first is �0.5 Mbp and is located within the
inversion near the centromere-proximal breakpoint. Note that
the inversion places this region now telomere-proximal. The
second region, �1.5 Mbp, is actually between the distal break-
point and the telomere. Between the distal breakpoint and this
large block is .1 Mbp in which we observed increased poly-
morphism. While crossing over outside each breakpoint of the
inversion is no doubt suppressed in the In(3R)Mo heterokar-
yotypes, as with other rearrangements, the expected higher
frequency of single crossovers than of the double crossovers
required within the inversion and the intervening region of
high polymorphism demands a more complex explanation.
Recent hitchhiking events (Maynard Smith and Haigh 1974)
restricted to this gene arrangement are perhaps more prob-
able than an equilibrium between epistatic selection, recom-
bination, and genetic drift. In any case the replacement of In
(3R)P by In(3R)Mo and this unusual pattern of restricted
polymorphism are surprising. Obviously, considerable addi-
tional investigation of the population distribution and re-
combination patterns is needed to support any robust analysis
and interpretation.

Figure 8 Expected heterozygosity, pw

on 3R for the North American (RAL) sam-
ple. The dark blue line shows expected
heterozygosity, pw at the midpoint of
150-kbp windows (incremented every 10
kbp and Q30 sequence) for the “stan-
dard” arrangements in the RAL sample.
The light blue line is the comparable plot
for the In(3R)Mo arrangements of chromo-
some 3R in the RAL sample. The gray rect-
angle demarcates the inverted region in In
(3R)Mo. The two insets below are blow-
ups of the genomic regions surrounding
the two breakpoints marked by arrows
(Corbett-Detig et al. 2012).
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Linkage disequilibrium

A number of previous studies in D. melanogaster concluded
that the scale over which the magnitude (+ or 2) of linkage
disequilibrium decays is hundreds of base pairs (Miyashita
and Langley 1988; Long et al. 1998), although clear excep-
tions have also been noted (Aquadro et al. 1992; De Luca
et al. 2003; Takano-Shimizu 2004; Tatarenkov and Ayala
2007; Itoh et al. 2009). The North American (RAL) sample
studied here is the first opportunity to examine this question
on a full genomic scale. The average squared correlation
coefficient, r2, among pairs of SNPs within the indicated
intervals of separation (#20,640 bp) on the five chromo-
some arms in this sample is presented in Figure 9A. Note
that all but the first of these intervals increase twofold in
midpoint and width at each step. The midpoints of these
decay curves are indeed near 100 bp. The average r2 is
initially greatest for the closest pairs on the X, and it dis-
sipates to a level comparable to that of the other chromo-
some arms by 10 kbp while that of 3R remains higher. Also
note that all but the first three intervals involve pairs of
sites .40 bp apart, which are thus not likely to be attribut-
able to spurious correlations induced by read mapping or
basecalling.

Linkage disequilibrium can also be oriented based on
allele frequencies. Here, “positive” linkage disequilibrium
occurs when the alleles with frequencies .50% at a pair
of sites are positively correlated, while “negative” linkage
disequilibrium indicates that the more common allele at
one site is associated with the less common allele at the
second site (Langley and Crow 1974; Langley et al. 1974).
The direction of linkage disequilibrium can vary systemati-
cally under particular models: genetic drift with little or no
recombination (Golding 1984), equilibrium epistatic selec-

tion (Langley and Crow 1974), and hitchhiking (Stephan
et al. 2006). Figure 9B shows that the average correlation
coefficient between alleles with frequencies .0.5 (rv, see
Table 1) is �0 for the same intervals of distance. Note that
at the most proximal distances the X and 3R exhibit excep-
tionally high average rv . On 3R, rv merges with the other
autosomal arms but on the X average rv remains higher.
Figure 9C shows that this effect is at least partially attribut-
able to an increased proportion of SNP pairs with rv . 0, not
just increased magnitude of association in the positive di-
rection. Also note that while the average rv is near 0.0 for all
but the X (Figure 9B) for pairs of SNPs .1000 bp apart, the
proportion of positive rv in Figure 9C dips below 50% for the
last three intervals, 2560 to 5120 to 10,340 to 20,640. It is
unclear whether this result is related to the original obser-
vations of negative rv between allozyme loci and polymor-
phic inversions in Langley et al. (1974) and the model of
natural selection proffered in Langley and Crow (1974).

In Figure 10A, the decay of averages of positive and of
negative rv at different ranges of distance and allele fre-
quencies is plotted for each chromosome arm. The X chro-
mosome is observed to have higher levels of linkage
disequilibrium than the autosomes at all allele frequencies.
Arms 2L, 2R, and 3L have very similar patterns of decay with
distance. 3R is generally intermediate between the other
autosomal arms and the X chromosome. However, the mag-
nitude of linkage disequilibrium at long distances (.5000 bp)
is greater for 3R than for any other arm. This pattern can be
attributed to 3R’s high levels of inversion polymorphism (see
below) that can suppress crossing over.

The observation of high levels of linkage disequilibrium
over short distances, .100 bp, is consistent with that in
earlier studies. But the strong tendency toward rv . 0 has

A B C

Figure 9 (A–C) The decay of linkage disequilibrium with physical distance on the chromosome arms in the North American sample (RAL) of D.
melanogaster. The average r2 between all pairs of Q30 SNPs with minor allele frequency (MAF) $0.167 separated by contiguous ranges of base pairs
is plotted in A against the midpoint of each range (indicated by the dots on the abscissa). The ranges are [1, 10] and (si21, si], for 1 , i # 12, where si =
10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10,240, and 20,480. The lines for the X and 3R are distinct from those for 2L, 2R, and 3L and are
labeled. B shows the distribution of the average allele-frequency–oriented correlation coeffficent, rv over the same intervals for each chromosome arm
(see Table 1 for the definition of rv). And C shows that much of the shift toward more positive rv is attributable to an increase in the proportion of pairs
of SNPs with rv . 0.
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not been noted in studies of fewer sites in selected genomic
regions. Only two theoretical hypotheses can be proffered
for this pattern. The first is recent admixture (Cavalli-Sforza
and Bodmer 1971, p. 69). The western hemispheric popu-
lations of D. melanogaster are believed to be founded by
colonizing flies from both Europe and West Africa in the
18th and early 19th centuries. Assuming an asymmetric ad-
mixture contribution and a loss of ancestral polymorphisms
in the recognized bottleneck associated with the out-of-
Africa diaspora, linked SNPs with highly differentiated fre-
quencies may still exhibit rv . 0. Simulation analyses (data
not shown) demonstrate that demographic processes such
as admixture and population bottlenecks may account for
a portion of the observed skew in rv.

The alternative theoretical explanation is based on the
analysis in Stephan et al. (2006) of the impact of hitchhiking
on linkage disequilibrium. While the most striking result was
the demonstration that the linkage disequilibrium between
sites on opposites sides of the selected locus is destroyed,
they also established a wide parameter domain in which
rv . 0. In addition to the recognized loss of variation asso-
ciated with hitchhiking, there are drastic and correlated
changes in the frequencies of SNPs in the flanking regions.
In particular, rare SNPs that happen to be associated with
the rare, selectively favored variant (mutant) will rise in
frequency together. If tightly linked (and if on the same side
of the selected locus), they tend to recombine as a haplotype
away from the selected site and remain at similar frequen-
cies (.0.5 or ,0.5), yielding rv . 0. Therefore, the ob-
served bias in rv may be attributable (at least partially) to
the hitchhiking effect.

Linkage disequilibrium along the chromosome
arms and r̂, an estimate of the population
recombination parameter 2Nr

Studies of linkage disequilibrium in human population geno-
mic surveys have successfully identified and quantitatively
mapped systematic patterns in the rate of recombination

(McVean et al. 2004; Myers et al. 2010). This advance is based
on deep genotyping (.400,000 SNPs) in large samples and on
the application of practical statistical approximations (Hudson
2001) in computationally scaleable software (McVean et al.
2004). These maps of estimated recombination in the ancestry
of the sampled human genomes revealed a striking pattern of
punctate recombination that has been independently verified
in both sperm-typing experiments (Jeffreys et al. 2001; Tiemann-
Boege et al. 2006) and pedigree-based investigations (Coop
et al. 2008; Kong et al. 2010).

Figure 7 shows the fine-scale estimates of the population
recombination parameter r̂ across chromosomes X (top) and
2L (bottom; also see Figure S7 for the patterns on all the
chromosome arms) along with those for average pw and dw
in 150-kbp windows (note highly smoothed versions of r̂ are
shown in Figure 3 for comparison to r̂15). The genomic pat-
tern of these local estimates is expected to reflect via linkage
disequilibrium the actual per meiosis recombination rates in
a randomly mating, finite population at equilibrium for se-
lectively neutral mutation and genetic drift. Comparable
SNP genotyping-based analyses of larger human samples
indicate that the fit to an equilibrium neutral model is re-
markably good for most of that genome (McVean et al.
2004). And even other demographic sources of linkage dis-
equilibrium such as population size fluctuations, geographic
differentiation, and subsequent admixture fit well into this
selection-free modeling of human population genomics.

But the pattern of linkage disequilibrium in a much more
abundant species such as D. melanogaster may be determined
more by linked selection than by genetic drift (Maynard
Smith and Haigh 1974; Stephan et al. 2006). Because of
the larger species population size of D. melanogaster, one
must consider that while the genomic scale of an individual
hitchhiking event will be on the order of the selection co-
efficient s (Maynard Smith and Haigh 1974; Stephan et al.
2006), the rate of adaptive substitutions may increase
rapidly with population size. Two mechanisms affect this
increase: proportionate increase in the rate at which favorable

Figure 10 The distribution of positive and negative average rv at different distances (bp) for pairs of Q30 SNPs in the North American (RAL) sample. The
left plot shows the pattern for the five large chromosome arms, orange is the average rv . 0, and olive is the average rv , 0, where the MAF $ 0.167.
Solid circles mark the X, while open circles are 3R. The other three chromosome arms are hardly distinguishable. The right three panels are plots similar
to the first (left) but for chromosome arms X, 3R, and 2L. The different lines of rv . 0 (orange) and rv , 0 (olive) correspond to subsets in which p(12 p)
q(1 2 q), the product of the SNP allele frequencies at each locus (p and q) fall in the following intervals, respectively (increasing in rv): 0.0255–0.0383,
0.0383–0.0468, 0.0468–0.0531, 0.0531–0.0582, and 0.0582–0.0625.
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mutations arise and the numbers of favored variants immune
from the impact of genetic drift after the first few generations
(2Ns � 1) in generations other than the initial few (Fisher
1922; Wahl 2011).

Clearly the estimated values, r̂, of 2Nr in the centromere-
and telomere-proximal regions are substantially lower, consis-
tent with the highly smoothed (low-resolution) recombination
rate maps based on the genetic map (see the next section).
Hitchhiking and background selection (Charlesworth 1994) in
these large regions of reduced recombination may also con-
tribute to this relative reduction in values of r̂. The analysis of
the site-frequency spectrum below can address this issue fur-
ther. Outside these regions, a lower than average (per base
pair) estimate of 2Nr on the scale of $100 kbp might well
reflect lower meiotic crossing over per physical distance, or it
could reflect bias in r̂ caused by the contractions and distor-
tions of the gene genealogies due to recent hitchhiking. A
striking feature of these maps is the large spikes of high and

low r̂ that have withstood two restrictive filters, a high penalty
in the prior for the number of rate changes and replication in
two long independent chains. These are analyzed and inter-
preted in the context of much smaller nonoverlapping win-
dows below.

Comparison of the r̂ and the r̂ maps

To ask whether variation in the linkage disequilibrium-based
estimate r̂ of recombination reflects variation in the per
generation recombination rate, our estimates r̂ of the recom-
bination rate per base pair from the standard genetic map
can be compared with r̂. Table 5 shows the chromosome-
arm-wide average rates for r̂ and r̂. The smaller, acrocentric
X has a 24% higher r̂ than the average autosome, while the
longer chromosome 3 has a 15% lower r̂. The chromosome-
arm-wide average r̂ varies a great deal more. The average
estimate r̂ for the X is 1.8 times the autosomal average (note
the smaller centromere-proximal region of lower r̂ in Figure 7),

Table 5 Comparison of recombination per base pair based on the genetic map, r̂, and the population genomic estimate of 2Nr, r̂ (see text)

Genetic map: r̂ Population genomic map: r̂
Correlation

between r̂15 and r̂15Arm Euchromatic (bp) M M/bp Relative Relative Run 1 Run 2 Combined

2L 22,590,693 0.54 2.39 · 1028 1.0244 1.0755 0.00884 0.00885 0.00883 0.73 (0.80)
2R 20,972,991 0.53 2.53 · 1028 1.0830 1.0779 0.00892 0.00884 0.00885 0.78 (0.74)
3L 24,148,966 0.49 2.03 · 1028 0.8696 1.1985 0.00993 0.01012 0.00984 0.66 (0.78)
3R 28,652,412 0.56 1.95 · 1028 0.8376 0.7162 0.00589 0.00597 0.00588 0.81 (0.73)
X 22,775,017 0.66 2.90 · 1028 1.2419 1.8136 0.01474 0.01465 0.01489 0.57 (0.86)

The base pair-weighted correlation between r̂15 and r̂15 is shown (their logarithm in parentheses; see text and Table S15).

Figure 11 Common patterns of the genomic distribution of the two estimates of the rate of recombination per base pair, r̂15 and r̂15. (A) A scatterplot
of these two estimates in windows of variable sizes (all .104 bp) for each of the untrimmed chromosome arms. Eight outliers are off this plot (2R,
20.0027, 26.2 · 1029; X, 0.0321, 1.9 · 1028; 0.0375, 2.2 · 1028; 0.0400, 2.5 · 1028; 0.0404, 2.7 · 1028; 0.0373, 3.0 · 1028; 0.0314, 3.3 · 1028;
0.0275, 3.7 · 1028). B compares the base pair-weighted correlation logarithms of r̂15 and r̂15, rr̂;̂r among chromosome arms for both trimmed (light
green) and untrimmed (dark green). The parallels between the two measures are high, but reduced slightly when only the trimmed regions are
considered. This is not true for chromosome X, which shows much less correlation between the two estimates on the trimmed data.
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while the four autosomes range between 0.72 and 1.20 of
the autosomal average. Because the genomic resolution of
our estimates of r̂ is so much lower than that for r̂, we
smoothed both r̂ and r̂ to the same scale (loess span param-
eter = 15%). Figure 3 shows the distribution of these
smoothed versions r̂15 and r̂ across the five large chromo-
some arms. The coincidence of many features of these maps
indicates that these independent approaches identify com-
mon variation in the rate of recombination at this coarse
scale. Indeed Figure 11A, a scatterplot of the two estimates,
and Figure 11B, the weighted (by base pairs) correlations
between logarithms of these two measures, clearly indicate
that they are capturing a strong pattern of covariation,
which is most parsimoniously interpreted as reflecting
a common factor in recombination per base pair (see Table
5; note these correlations are among non–log-transformed
estimates of r̂15 and r̂15). This conclusion suggests that the
variation revealed by the higher-resolution r̂8 in Figure 3
and unsmoothed r̂ in Figure 7 and Figure S7 may also re-
flect the pattern of recombination per base pair on even
finer resolutions. However, it remains possible that hitch-
hiking or other forces may interfere with local estimates of r̂
and that these distortions are averaged out on the scale of
Figure 3.

Polymorphism and divergence at higher resolution

The densities of segregating and divergent sites in both the
RAL and the MW samples are sufficiently great that statisti-
cally meaningful analyses can be made on a much smaller
scale than depicted above at the 150-kbp resolution or that of
r̂15 or r̂15 . The average scale of linkage disequilibrium (mid-
point of decay over base pairs) in D. melanogaster is�500 bp
and most annotated gene elements are closer to this scale.
Smaller windows for x[log(pHAKl)] and other statistics can
provide higher resolution of detected outliers but the statisti-
cal power ultimately declines as the total number of variants
in a window decreases. On the other hand, very large win-
dows (�1000 variant base pairs) may exhibit one pattern of
deviation from the chromosome arm average because of the
aforementioned larger scale and systematic variation along
the chromosome arms, thus obscuring even strong local devi-

ations. Table 6 compiles the basic information on available
fine-scaled statistics, including pw, dw, and r̂.

While diverse approaches to many interesting questions
can start with these (or similar) high-resolution population
genomic statistics (annotations), we present three distinct
types here. The first is a view of these fine-scaled population
genomic statistics as additional annotations in the context of
a genome browser. The second is a systematic search for
associations of HKAl, TsD, and HKAl with annotated ele-
ments of gene structure and chromatin “states.” And the
third addresses the correlation across the genome of the
finer-scaled estimate of the rate of recombination, r̂ with
these deviations in the ratio of polymorphism to divergence
(as measured by HKAl), in the allele frequency spectrum (as
measured by TsD), in differentiation between populations
(HBKl), and in the proportion of shared polymorphism be-
tween species (WHl).

Genome browser annotations, pw, dw, r̂ , HKAl, TsD,
HBKl, and WHl

Arguably one of the most valuable uses of the measures
and test statistics derived from small windows is via their
visual juxtaposition in specific genomic regions with the
already rich and high-quality structural and functional
genomic annotations of D. melanogaster. The choice of
genome browser (applications) and specific settings used
can vary in a myriad of ways. Here we will show as exam-
ples two views of these statistics on chromosome (chr)2R
in the UCSC genome browser using a track data hub, but
the reader is encouraged to download and display them
via other tools, e.g., ENSEMBL and IGB 6.5 (Nicol et al.
2009). The coordinates and values of windows of pw, dw,
r̂ , HKAl TsD, HBKl, and WHl are available in BedGraph
file format at the URLs indicated in Table 6. Also note that
Ensembl provides a complete population genomic pre-
sentation of the Q30 sequence data (reported here) in
the context of Ensembl’s full gene-oriented annotation
of the D. melanogaster genome (FlyBase derived) that
can be of great value to those interested in the function-
ally annotated sequence variation at particular loci, e.g.,
Cullin-2.

Table 6 Fine-scale statistics

Name Symbol Window size Range Link

Expected heterozygosity pw $1000 bp (filter:coverage
.250 bp)

0.0 to 0.5 URL

Average lineage-specific divergence dw $1000 bp (filter:coverage
.250 bp)

0.0 to 1.0 URL

Population recombination parameter, 2Nr r̂ Variable (see text) 1025 to 10 URL
Test: segregating to divergent sites HKAl = 6x[log(pHKAl)] Segregating and divergent

sites = 50 bp
220 to +20 URL

Test: frequency spectrum TsD = 6x[log(pTsD)] Segregating sites = 50 Depends on the nos. of
sampling depths

URL

Test: geographic differentiation HBKl = 2log(pHKAl) Expected no. heterozygous
sites in window = 1.0

0 to 5 URL

Variation in shared polymorphism WHl = 2log(pWHl) Polymorphic and divergent
sites = 100

0 # URL
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Figure S9 shows a snapshot of the UCSC Genome Browser
based on the track data hub containing these fine-scale sta-
tistics. While the large-scale patterns (describe above) are
apparent, here we want to emphasize the potential interest
and value of these estimates and “tests” as annotations for the
specific genes in and around each window. For example, Fig-
ure S10 is a blowup of the 287 kbp beginning at 8 Mbp on
chr2R, also accessible as a session. In the center of this part of
chr2R is a cluster of 31 protein-coding and 6 noncoding
genes. It exhibits relatively low r̂ values, reduced numbers
of segregating sites relative to diverged sites (reflected in the
pattern of pw and in HKAl), and a strong skew in the site-
frequency spectrum in the RAL sample. The RAL and MW
samples exhibit a high amount of differentiation in this re-
gion, which is reflected in the high proportion of HBKl win-
dows that have the maximum value. The pw, dw, HKAl, and
TsD tracks for the MW sample are not shown in Figure S10,
but they are available and can be displayed from the track
data hub. Their distribution in this region is similar to that of
the RAL sample. Also included in Figure S10 are annotations
from the simulans sample. pw in this same gene cluster in the
SIM sample is also reduced and is consistent with the parallel
clustering of negative HKAl and lack of positive WHl values.
Among the 31 coding genes in this cluster are 2 for which
patterns of polymorphism have previously been interpreted as
evidence of recent strong selection, Cyp6g1 (Schlenke and
Begun 2004; Schmidt et al. 2010) and Hen1 (Kolaczkowski
et al. 2011a and references therein). Many other small,
but richly annotated regions of these genomes exhibit clusters
of deviant HKAl, TsD, HBKl, and WHl values. Indeed the sys-
tematic analysis below demonstrates clustering of deviant
population genetics statistics near gene and chromatin anno-
tations. Specific biologically interesting hypotheses supported
by these apparent associations can be addressed using the
available stocks from which these sequences were derived
and via gene-focused replications in the large remainder of
the RAL sample as well as in additional independent popula-
tion samples and phenotyping experiments (Ayroles et al.
2009; Clowers et al. 2010).

Evidence of linked selection in the large-scale genomic
associations with r̂15, r̂15 and r̂

Parallels between statistics that can reflect the impact of
linked selection (e.g., HKAl and TsD) and large-scale pat-
terns of recombination per base pair can be examined in
terms of overall correlations and from the perspective of
specific genomic regions. The centromere- and telomere-
proximal regions of strongly depressed recombination per
base pair (see Figures 3 and 7 and Figure S7) correspond
broadly to the regions of reduced pw and HKAl in Figures 5
and 6 and Figure S2, Figure S3, and Figure S4. The site-
frequency spectrum at this large scale also shows a strong
skew toward rare variants in regions of very low crossing
over per physical length; this is especially evident in the
larger RAL sample near the telomeres and proximal to the
centromeres of 2R, 3L, and 3R. And these patterns are quite

evident in the base pair-weighted correlations between r̂15
or r̂15 and pw, HKAl, and TsD. Of course, the strong and
consistent skew of the site-frequency spectrum (TsD � 0) in
these regions of low crossing over is more consistent with the
predictions of hitchhiking (Braverman et al. 1995) than back-
ground selection (Hudson and Kaplan 1994; Charlesworth
et al. 1995).

The contrast of polymorphism with divergence summa-
rized in HKAl exhibited the strongest association with r̂15 or
r̂15 (see Figure 12 and Table S15). Considering the whole
(untrimmed) chromosome arm, more than one-quarter of
the variation in HKAl can be explained by either of these
two measures. As can be seen in Figures 5 and 6 and Figure
S2, Figure S3, and Figure S4, HKAl plummets in the low- to
no-recombination regions proximal to the centromere and
telomere. While this result is expected from conclusions of
many articles in the last two decades, the magnitude and
genomic footprint of the effect is striking. For the two (most
certainly nonindependent) melanogaster samples, the corre-
lations of pw with r̂15 or r̂15 are almost as great as for HKAl.
The correlations of HKAl with r̂15 or r̂15 are large and com-
parable to each other in simulans (SIM), while the correla-
tions of pw with r̂15 or r̂15 are much weaker than in
melanogaster (see Figure 12). This is likely due to the large
differences in overall statistical power in the two species.
The power of the HKA test is sensitive to disparities in the
overall proportions of diverged and polymorphic sites (see
Table 3); these are more balanced in simulans, especially on
the X. Most noteworthy is the fact that the largest chromo-
some-arm–wide correlation of HKAl with r̂15 or r̂15 in sim-
ulans (SIM) is on the X (note that both recombination
statistics are estimated in melanogaster), while the X shows
the weakest correlation with these measures of the rate of
recombination in the melanogaster samples, RAL and MW.
This is at least partially attributable to the more drastic de-
pression of HKAl near the telomere of the simulans X and the
lower overall p on the melanogaster X relative to that on the
autosomes.

For the entire (untrimmed) autosomal arms, TsD mea-
sured in small (50 adjacent segregating sites) nonoverlapping
windows exhibits �20% correlation with both large-scale
estimates of the rates of recombination. Such a strong asso-
ciation is not as evident on the X. The correlation of TsD with
r̂15 or r̂15 is much weaker if the centromere- and telomere-
proximal regions are trimmed (see the stippled columns
of Figure 12 and Table S15). Because of the strong depen-
dence of Tajima’s D on the sample size, the correlations in
the MW sample are substantially weaker. Still all the chro-
mosome arms exhibit a positive correlation of r̂ with TsD
(untrimmed and trimmed). This, along with consistently
higher overall correlations of TsD with r̂ than with r̂15, sug-
gests that there may be considerably more information
about genomically local variation in rates of recombination
using r̂ and that this variation may influence patterns of
polymorphisms via hitchhiking (Braverman et al. 1995)
and perhaps even background selection (Charlesworth et al.
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1993, 1995). Alternatively, recurrent linked selection may
systematically bias LDhat estimation of 2Nr (McVean et al.
2004; Stephan et al. 2006)

If hitchhiking does indeed play a significant role in de-
termining the pattern of polymorphism in D. melanogaster,
variation in the rate of recombination could interact with the
selection and demography. For example, if we assume that the
establishment of the out-of-Africa diaspora involved a severe
bottleneck and subsequent local adaptation, the Hill–Robertson
effect may have led to more effective selection in regions of
high recombination. On the other hand, strong selection for
locally adaptive rare variants would yield a bigger impact in
regions of low crossing over. While HBKl exhibits weak and
inconsistent correlation with r̂15 or r̂15 in Table S15, it is
noteworthy that the more fine-scale r̂ correlates consistently
with increased evidence of SNP frequency differentiation
between RAL and MW. This supports the view that r̂ con-
tains additional information about local variation in recom-
bination rates and interactions with natural selection. This
evidence of a correlation between geographic differentiation
and local variation in the rate of recombination is revisited
in the gene-based analysis below. But it must be noted that
this pattern of weak association of geographic differentia-
tion with recombination contrasts starkly with the clear
negative correlation observed by Keinan and Reich (2010)

among continental samples of humans. The large differences
between humans and D. melanogaster in the genomic scale
and pattern of linkage disequilibrium and in ranges of re-
combination per base pair are no doubt relevant to this
apparent contradiction and deserve deeper investigation.

pw, dw, HKAl, HBKl, and r̂ by chromatin states
and gene elements

The structural and functional annotation of the Drosophila
genome provides a basis for the inference of natural selec-
tion as a primary mechanism shaping genomic patterns of
polymorphism and divergence. Here we consider the pat-
terns of polymorphism and divergence in the context of
the recent annotation of the D. melanogaster chromatin
states by the modENCODE Project members (Kharchenko
et al. 2010; Roy et al. 2010; Riddle et al. 2011). These states
identify functionally relevant, well-established combinato-
rial patterns of histone modifications and chromatin proteins
shared by diverse organisms, including the epigenetic signa-
tures associated with active transcription start sites (state 1),
transcriptional elongation (state 2), and Polycomb Group
(PcG) regulation (state 6). States 3 and 4 are enriched in
noncoding sequence in and around transcribed genes with
long introns. State 3 is distinguished by its association with
enhancers and potential role in gene regulation. State 4 is

Figure 12 Correlations between recombination rates and HKAl, pw, and TsD. r is the base pair-weighted Pearson’s correlation coefficient between TsD,
pw, and HKAl and the logarithm of r̂0 (olive), r̂15 (light olive), and r̂15 (orange) across the autosomes and the X chromosome. The three lower columns
to the right (lighter shades) are the corresponding correlations for the “trimmed” euchromatic regions (see text and Table S15 and Figure S8).
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similarly enriched in the noncoding sequences of genes
expressed at low levels. In addition, they identify chromatin
domains with specific importance in D. melanogaster, such as
the a- and b- heterochromatic domains flanking the centro-
meres (state 7) and state 8, a “heterochromatin-like”pattern
that also occurs in apparently tissue-specific interstitial
blocks. Regions of MSL-mediated dosage compensation on
the X are referred to as state 5. State 9, which represents
segments of the genome with no enrichment (of the 18
examined marks), covers approximately half the genomic
sequence included in the analysis, including large intergenic
stretches and many genes with very low expression.

Chromatin-mapping analysis was conducted in two male
tissue-culture lines: S2 cells, isolated from embryos, and
neuronally-derived BG3 cells. These array-based studies of
cross-linked chromatin have a resolution determined both
by the distributions of the sizes of DNA in the chromatin
fragments used for the chromatin immunoprecipitation and
variation in the observed intensities. Genome-wide intensity
maps of the 18 histone marks were partitioned into 200-bp
bins, and K-means clustering was applied to generate the
nine-state model (Kharchenko et al. 2010). There are limi-
tations to the utility of data derived from cell culture lines in
the investigation of patterns of polymorphism and diver-
gence. Cultured cells are somatic, whereas mutations lead-
ing to polymorphism arise in the germline. Cell lines can be
distinct from the tissues from which they are derived, exhib-
iting varying levels of aneuploidy, copy-number variation,
and altered transcriptional programs (Cherbas et al. 2011).
These two lines share in common the expression of a large
set of genes necessary for growth/proliferation and common
to all dividing cell types (Cherbas et al. 2011). However, it
has been observed that cultured cells often retain much of
the expression profile of their progenitors (Cherbas et al.
2011). Further, many chromatin domains are very similar
across cell types (Kharchenko et al. 2010). For example,
heterochromatin, dosage compensation, and PcG-regulated
regions are largely overlapping in the S2 and BG3 cell lines
and presumably in the diverse cells of the animal including
the meiotic germline. The chromatin state of different geno-
mic regions is obviously correlated strongly with function
and thus natural selection. But it is equally significant that
the chromatin states may strongly influence the fidelity of
DNA repair (Wellinger and Thoma 1997), recombination
(Alexeev et al. 2003; Heyer 2007), and the distribution
and pathways of meiotic recombination events (Wu and
Lichten 1994; Fan and Petes 1996; Baudat et al. 2010; Berg
et al. 2010; Myers et al. 2010; Pan et al. 2011) and are thus
central to population mechanisms.

An important property of these new chromatin annota-
tions is their relationship to the detailed gene annotation
already available. While chromatin state shows clear correla-
tion with the structure and expression patterns of individual
genes, the overlap of chromatin and gene annotation is
complex, consistent with the widely held view that chromatin
properties add an important and fundamental dimension to

genome function. These annotations of chromatin states
assign functionally relevant information to many previously
unannotated genomic regions (see below) and provide a
new resource for population genomic inference.

As presented above, the most prominent large-scale ge-
nomic feature of the population statistics is the relative
reduction in expected heterozygosity, pw , especially in the
large centromere-proximal regions that parallel the reduc-
tions in levels of recombination per base pair [see Figure 7
and Figure S7 as well as the tracks pi_RAL and log(2Nr/
100 bp) in Figure S9 and the corresponding UCSC genome
browser at the track data hub page zoomed out to the entire
chromosome arm]. Within those same regions are in fact the
most obvious concentrations of chromatin state windows
annotated with state 7 or state 8, bearing the histone marks
associated with a- and b-heterochromatin. This strong asso-
ciation between levels of polymorphism and crossing over
per physical length is attributed to the impact of linked
strong selection and is also apparent in Figures 13 and 14,
which show the box plots and empirical cumulative distri-
bution functions (respectively) of HKAl and r̂ in windows of
the nine states partitioned by coding, intronic, and inter-
genic. Clearly genomic segments annotated as state 7 in
S2 cells are highly enriched for low values of HKAl and r̂.
State 8, which is not limited to the regions flanking centro-
meres and differs by tissue, does not exhibit such clear en-
richment. The full sets of such plots (box plots and ecdfs
based on the inferred states for S2 cells) for pw (RAL,
MW, and SIM), dw (RAL, MW, and SIM), HKAl (RAL, MW,
and SIM), Dw (RAL), HBKl (RAL 4 MW), and r̂ (RAL) are
available in Figure S11 and Figure S12.

The molecular and evolutionary mechanism(s) responsible
for the strong suppression of meiotic crossing over in the
centromere- and telomere-proximal regions remains unclear
(Charlesworth et al. 1986; Westphal and Reuter 2002 and
references therein; Chiolo et al. 2011). Nevertheless the asso-
ciations of the density of repetitive sequences with reduced
crossing over and of these with characteristic heterochromatic
histone marks are clear here and are commonly observed in
other species. An interesting observation in this respect is the
apparent association of large b-heterochromatic regions only
with the most extreme reductions in recombination. In par-
ticular, neither chrX nor chr3L have large b-heterochromatic
blocks proximal to their centromeres in the “arm” assemblies
(distinct from the adjacent “Het” assemblies). The maps in Fig-
ure 3 of r̂ show evidence of recombination in the centromere-
proximal regions on these two arms, even though the remaining
three arms have no evidence of recombination in the corre-
sponding b-heterochromatic regions in the arm assemblies. It
is also worth noting that while the suppression of recombina-
tion proximal to the telomeres is comparably strong (see Figure
3), it extends over much smaller regions; state 7 (shown in
Figure S9) is not obviously concentrated in these regions of
suppressed crossing over. This discordance might be attributable
to a difference in the distribution of chromatin state 7 during
female meiosis.
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Similar to state 7 but on a finer scale is state 1, which
shows increased relative dw, decreased relative pw, conse-
quent negative HKAl, and local decreases in r̂. This elevated
divergence (see Figure S11 and Figure S12) can be parsi-
moniously attributed to either increased mutation or more
positive directional selection in these regions. Assays of
chromatin openness (nuclease sensitivity) indicate that state
1 (and state 3) DNA is more exposed (Kharchenko et al.
2010) and thus potentially more accessible to DNA-damaging
agents. Contradicting this attractive interpretation of the
increased divergence is the reduced relative pw and conse-
quent strongly negative distribution of HKAl in state 1 (Fig-
ure 13). Recurrent hitchhiking would yield a local depletion
in polymorphism and a skew in the site-frequency spectrum
that is evident in the TsD (labeled “D_w”) in the autosomal
panels of Figure S11 and Figure S12. Further evidence in
support of this explanation can be found in the skew toward
high HBKl windows overlapping with states 1 (and 2) on the
autosomes. States 1 and 2 are enriched over 59 regions of actively
transcribed genes, many of which are essential housekeeping
genes with broad developmental expression (Kharchenko et al.

2010; Cherbas et al. 2011). These intergenic and intronic
regions of elevated HBKl include core promoters and other
regulatory elements of these genes. Thus strong directional
selection for adaptive regulatory variants could account for
these state 1- and 2-associated patterns in HKAl and HBKl albeit
on potentially quite different timescales. Consistent with this
hypothesis of increased hitchhiking in the state 1 regions is
the relative reduction in r̂, since the genomic footprint of hitch-
hiking scales with the reciprocal of recombination rate. While
McVean et al. (2004) failed to find evidence that the LDhat
estimator itself is biased in a particular parameter range of a re-
current hitchhiking model, it remains possible that the contrac-
tion and distortion of the genomic genealogies in these regions
lead not only to fewer recombination events but also to a biased
estimate. In any case, these state 1-associated r̂ coldspots re-
quire further experimental and theoretical investigation.

Approximately 5% of the Drosophila genome is in state 6.
These blocks are enriched for the trimethylation of H3K27
and are bound by proteins from the Polycomb Group. Most
significantly the gene content of these special regions of
animals and plants is largely composed of fundamental

Figure 13 The distribution of (“untrimmed”) HKAl values in windows partitioned by chromatin state (inferred from S2 cells) and gene structure (coding,
intron, and intergenic). The top row shows box plots (boxes are the central two quartiles, the whiskers are 1.5 times those, and the dots with light
shading represent the outliers beyond the whiskers). The empirical cumulative distribution functions (ecdfs) in the bottom row give a perhaps clearer
alternative view of the differences in the distributions of HKAl between chromatin states in the coding, intronic, and intergenic regions. Also see Figure
S11 and Figure S12 for the box plots and ecdfs (respectively) for pw (RAL, MW, and SIM), dw (RAL, MW, and SIM), HKAl (RAL, MW, and SIM), HBKl, and
r̂. “all” in the box plots and “0” in the ecdfs refer to the sum of the chromatin states, 1–9.

Genomic Polymorphism and Divergence 559

http://www.genetics.org/cgi/data/genetics.112.142018/DC1/2
http://www.genetics.org/cgi/data/genetics.112.142018/DC1/20
http://www.genetics.org/cgi/data/genetics.112.142018/DC1/2
http://www.genetics.org/cgi/data/genetics.112.142018/DC1/20
http://www.genetics.org/cgi/data/genetics.112.142018/DC1/2
http://www.genetics.org/cgi/data/genetics.112.142018/DC1/2
http://www.genetics.org/cgi/data/genetics.112.142018/DC1/20


developmental regulators, usually transcription factors. These
often exhibit low and exquisitely determined, cell-specific ex-
pression affecting developmental fate. The cumulative distri-
butions (Figure 13, bottom) show that polymorphism and
divergence in state 6 regions are highly consistent (also see
Figure S11 and Figure S12). It is difficult to even speculate
about the possible genetic and population genetic mecha-
nisms that would predict this rather conservative pattern
other than the narrowest application of the neutral theory
(see discussion in Ohta 1992 and references therein). Perhaps
a solid clue, consistent with the hitchhiking hypothesis, for
states 1 and 7 is the fact that SNPs in state 6 exhibit markedly
less differentiation between the RAL and MW samples (see
HBKl panels of both autosomes and X in Figure S11 and
Figure S12). If temporal and spatial changes in specific envi-
ronmental factors drive the directional selection shaping ge-
nomic polymorphism and divergence, the PCG-regulated
genes, because of their deep positions in the developmental
and physiological pathways, may be most sheltered and
thus show less evolutionary response (Schwartz and Pirrotta
2008 and references therein). Interestingly, state 9 regions

also exhibit relatively higher levels of polymorphism and es-
timated recombination (see Figures 13 and 14, Figure S11,
and Figure S12). These regions include tissue-specific and
inducible genes, as well as noncoding sequence outside of
active gene clusters and PcG domains.

Gene-based analyses

Gene heterozygosity and divergence: Gene-based analyses
were focused on protein-coding regions. We used all sites
exceeding Q30 in this analysis. All major patterns in Q30
data were also observed at the more stringent Q40 quality
threshold. We restricted our analysis to genes for which
all alleles matched the gene model annotated in reference
D. melanogaster version 5.16 (see Materials and Methods).
This yielded a list of 9328 genes with Q30 data, which is
referred to as “golden genes” in the following analysis. Anal-
ysis of a subset of genes excluded due to variation in stop
codon position is presented in Lee and Reinhardt (2012).

Expected heterozygosity was estimated for nonsynony-
mous and synonymous sites from the MW and RAL samples
of D. melanogaster and from D. simulans (Begun et al. 2007).

Figure 14 The distribution of r̂-values in windows partitioned by chromatin state inferred in S2 cells and gene structure (coding, intron, and intergenic).
The top row shows box plots (boxes are the central two quartiles, the whiskers are 1.5 times those, and the dots with light shading represent the outliers
beyond the whiskers). The empirical cumulative distribution functions (ecdfs) in the bottom row give a perhaps clearer alternative view of the differences
in the distributions of r̂ between chromatin states in the coding, intronic, and intergenic regions. Also see Figure S11 and Figure S12 for the box plots
and ecdfs (respectively) for pw (RAL, MW, and SIM), dw (RAL, MW, and SIM), HKAl (RAL, MW, and SIM), HBKl, and r̂. “all” in the box plots and “0” in
the ecdfs refer to the sum of the chromatin states, 1–9.
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Results are shown in Table 7, and all comparisons between
populations, between species, and between synonymous vs.
nonsynonymous sites are highly significant by Mann–Whitney
U-tests (UMW, P , 10216). These results support the well-
known patterns that African populations of D. melanogaster
are more variable than U.S. populations (Begun and Aquadro
1993; Caracristi and Schlötterer 2003; Haddrill et al. 2005),
that D. simulans is more variable than D. melanogaster
(Aquadro et al. 1988; Andolfatto 2001; Andolfatto et al.
2011; but see Nolte and Schlötterer 2008), and that synon-
ymous variation is at least an order of magnitude greater
than nonsynonymous variation (Kreitman 1983; Begun et al.
2007; Sackton et al. 2009).

Nonsynonymous p and synonymous p were highly cor-
related, rS = 0.28 (MW), rS = 0.31 (RAL), and rS = 0.30
(D. simulans) (for each, P , 10216), consistent with the
larger-than-gene size scale of variance in heterozygosity
along chromosome arms. p was also significantly correlated
between species, rS = 0.55 (nonsynonymous, P , 10216)
and rS = 0.37 (synonymous; P , 10216). As lineage-specific
divergences are both correlated between species and between
nonsynonymous and synonymous estimates, we repeated the
analysis using divergence-adjusted polymorphism (polymor-
phism estimates divided by maximum-likelihood estimated
lineage-specific divergence; see Materials and Methods). We
observed similar levels of correlations. If the variation across
genes in divergence-adjusted standing nonsynonymous p

reflects patterns of average deleterious selections while that
for synonymous p is purely neutral (Ohta 1992), such a cor-
relation might arise, although its expected magnitude is un-
clear. Alternatively if the variation in divergence-adjusted
synonymous p reflects the impact of recent lineage-specific
linked directional selection and the variation in nonsynony-
mous p is due to random environment (or other balancing)
selection (Gillespie 1994), the observed difference would also
be expected. This striking result deserves further investigation.

Consistent with previous reports (Begun 1996; Andolfatto
2001), the ratio of nonsynonymous to synonymous p is higher
for autosomal genes than for X-linked genes in the African D.
melanogaster sample (UMW, P , 1028) but not statistically
different in D. simulans. Comparing the ratios of nonsynony-
mous to synonymous p between species, D. melanogaster
showed a higher value for the autosomes (UMW, P , 10216)
but not for the X chromosome (P . 0.05). This discrepancy of
between-species differences for autosomes and X chromo-
somes could be attributed to the combined effects of assumed
smaller effective population size of D. melanogaster and hemi-

zygosity of the X chromosome (McVean and Charlesworth
1999; Andolfatto 2001) and/or a greater impact of linked
selection on D. melanogaster autosomes due to the suppres-
sion of crossing over associated with polymorphic autosomal
inversions (Begun 1996). However, analyses contrasting
autosomal genes within 100 kbp distal and proximal to
the inversion breakpoints to other autosomal genes did
not reveal significant differences in the ratio of nonsynon-
ymous to synonymous p (UMW . 0.05). The small number
of genes in these inversion-breakpoint regions no doubt
reduces the statistical power to detect such an effect. Note
also that the young age of these polymorphic inversions
(Wesley and Eanes 1994; Andolfatto and Kreitman 2000)
severely restricts the possible scenarios under which the
impact of linked selection might greatly reduce standing
polymorphism.

In Table 8 are estimates of “polymorphism-adjusted” syn-
onymous (dS) and nonsynonymous divergence (dN) (taking
into account intraspecific variation; see Materials and Meth-
ods), showing strong correlations between dN and dS rS =
0.11 (D. melanogaster) and rS = 0.28 (D. simulans) (for
both, P , 10216), and between estimates on the D. mela-
nogaster and D. simulans lineages, rS = 0.62 (dN) and 0.10
(dS) (for both, P , 10216). The correlation between the two
lineages is stronger for dN than for dS even though correla-
tion with dN is expected to have lower statistical power
given its much smaller value than dS. In this context, the
systematic divergence in codon bias on the two lineages is
relevant; in particular, codon bias on the melanogaster line-
age is by several measures weaker than on the simulans
lineage (Akashi 1995). The dN/dS ratio, which is used to
detect accelerated rates of amino acid replacement and can
be used as an index for adaptive protein evolution, is also
strongly correlated between D. melanogaster and D. simu-
lans (rS = 0.45, P , 10216). Maximum-likelihood estimates
of dN/dS have large uncertainty when synonymous diver-
gence is low. Restricting the analysis to genes with dS esti-
mates .0.005 on both the D. melanogaster and D. simulans
lineages, we observed an even stronger correlation in rela-
tive rates of protein evolution between these two species
(rS = 0.55, P , 10216), implying similar selective pressures
between species in terms of constraint and/or directional
selection. Even though previous studies pointed to the
higher levels of polymorphism in suggesting that the effec-
tive population size of D. simulans may be greater than that
of D. melanogaster (Aquadro et al. 1988; Andolfatto 2001;
Eyre-Walker et al. 2002), in a recent study Andolfatto et al.

Table 7 Nonsynonymous and synonymous polymorphism estimates for North American (RAL), African (MW), and D. simulans
(SIM) samples

Nonsynonymous Synonymous

All Autosomal X-linked All Autosomal X-linked

MW 0.0015 0.0015 0.0013 0.019 0.019 0.021
RAL 0.0012 0.0012 0.0007 0.013 0.014 0.009
SIM 0.0023 0.0024 0.0017 0.033 0.035 0.020
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(2011), using X-linked genes, concluded that rates of adap-
tive evolution on the two lineages do not differ. Our dN/dS
estimates were greater on the D. simulans lineage than on
the D. melanogaster lineage (Wilcoxon’s paired rank test,
P , 10211 for the three comparisons, all genes, X-linked
genes, or autosomal genes). This apparently higher rate of
protein evolution on the D. simulans lineage is consistent
with the hypothesis of a larger effective population size.
Our investigation using the McDonald–Kreitman test to de-
tect adaptive protein evolution (see below) reached the
same conclusion that there has been more adaptive evolu-
tion on the simulans lineage.

The connection between base composition and synony-
mous divergence or heterozygosity in Drosophila has been
extensively investigated (Sharp and Li 1989; Moriyama and
Hartl 1993; Moriyama and Powell 1996). Those studies
interpreted their analyses as consistent with a mutation–
selection–drift model of codon bias (Bulmer 1991), in which
genes showing more codon usage bias are more functionally
constrained at synonymous sites, although the effect must
be weak, 2Ns of order �1. Our observations with D. simulans
data support this idea, as there are significant negative cor-
relations between GC content and synonymous p (partial
correlation controlling for lineage-specific dS which is corre-
lated with both variables; rS = 20.14, P , 10216). How-
ever, we observed the opposite pattern in D. melanogaster.
There were slight but significant positive correlations be-
tween GC content and synonymous p (partial correlation
controlling for dS rS = 0.07 and P , 10210 for MW; rS =
0.029 and P = 0.005 for RAL). One interpretation of this
difference is that the selection on codon bias is weaker or
even absent in D. melanogaster (Akashi 1995, 1996; McVean
and Charlesworth 1999; Nielsen et al. 2007). Alternatively,
codon preference may have shifted in particular away from
strict GC bias in the D. melanogaster lineage.

The analyses of polymorphism and divergence across the
genome in windows presented above confirm the emerging
picture in Drosophila that polymorphism across chromosome
arms is correlated with variation in crossing over per base
pair. The widely acknowledged interpretation of this pattern
is that the dynamic interactions between rare but strongly
selected variants and closely linked, selectively neutral poly-
morphisms lead to a relative reduction in the standing levels
of this latter category. But the relative contributions of linked,
strongly selective adaptive substitutions (the hitchhiking ef-
fect) and the linked selective effect of the much more common
deleterious mutations (background selection) to the levels of
selectively neutral polymorphism remain unclear. Among the

various potential approaches available to address this issue is
the comparison of synonymous and nonsynonymous polymor-
phism and divergence. Clearly, the substantial difference in
the average effects of newly arising synonymous and nonsy-
nonymous mutations could provide a gauge for the relative
impacts of linked selection. We first investigated the associa-
tion of synonymous and nonsynonymous p with variation in
the estimated rate of crossing over per base pair, M/bp (see
Materials and Methods). The apparent differences in the pat-
tern and impact of crossing over on the X led us to consider X-
linked and autosomal genes separately. Consistent with the
overall genomic analyses (above) and previous reports (Begun
and Aquadro 1992; Ometto et al. 2005; Presgraves 2005), we
observed significant correlations between the M/bp rate and
both pS and pN. The correlations for synonymous p [MW,
rS = 0.27 (X chromosome, X) and 0.45 (autosomes, A);
RAL, rS = 0.18 (X) and 0.41 (A); simulans, 0.25 (X) and
0.11 (A), each P, 1028] were of a similar magnitude to those
observed for the correlation of HKAl and 2Nr (above) and
uniformly greater than for nonsynonymous p [MW, rS =
0.08 (X) and 0.13 (A); RAL, rS = 0.11 (A); each P , 0.01
except for RAL X and D. simulans, which were nonsignificant].
The stronger correlations for pS point to the substantial
impacts of linked selection on these presumably more weakly
selected variants, while the weaker correlations for pN could
reflect mildly deleterious nonsynonymous variants reaching
higher frequencies in regions of low recombination. Alterna-
tively, the lower nonsynonymous polymorphism and thus
lower statistical power may have contributed to the pattern.
Linear regression analysis (see Materials and Methods) sug-
gested that a twofold increase of recombination rate (M/bp)
at the average autosomal locus yields a 38% increase in MW
pS [regression coefficients b= 1.98 · 105 (MW X), 2.71 · 105

(MW A), 7.49 · 104 (RAL X), 1.86 · 105 (RAL A), 1.94 · 105

(SIM X), and 9.15 · 104 (SIM A); permutation-based P ,
0.001 for all]. Obviously, many other factors (such as average
mutation rate and average functional constraint) could create
substantial variation among genes in the rates of synonymous
and nonsynonymous divergence as well as p. We also adopted
the convenient normalization for each gene of dividing p by
the lineage-specific divergence and found similar observations
(not shown).

Previous studies suggested that the influence of linked
selection may be most prominent in genomic regions with
strongly suppressed crossing over, e.g., near centromeres
and telomeres and on the neo-Y (Aguadé et al. 1989,
1994; Stephan and Langley 1989; Begun and Aquadro
1992; Langley et al. 1993, 2000; Bachtrog and Charlesworth

Table 8 Maximum-likelihood estimates of divergence excluding within-species polymorphism on D. melanogaster and D. simulans
lineages (see text)

dN dS

Lineage All Autosomal X-linked All Autosomal X-linked

melanogaster 0.0056 0.0055 0.0064 0.059 0.059 0.065
simulans 0.0051 0.0049 0.0063 0.037 0.036 0.041
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2002; Betancourt and Presgraves 2002; Bachtrog 2003;
Braverman et al. 2005; Presgraves 2005; Begun et al.
2007; Haddrill et al. 2007), which might be the major factor
driving our observations. To investigate such an effect, we
restricted the analysis to genes with recombination rates
above the 25th percentile [2.98 · 1028 M/bp (X) and
1.07 · 1028 M/bp (A), corresponding to removal of genes
in the very low-recombination bin in the below analysis].
We observed weaker, yet significant correlations between
pS and M/bp for D. melanogaster autosomal genes and
D. simulans X-linked genes [MW, rS = 0.26 (A); RAL, rS =
0.24 (A); simulans, rS = 0.13 (X); each P , 1024], support-
ing the idea that recombination rate variation also has an
appreciable effect on genes in genomic regions with nor-
mal rates of crossing over. For D. simulans autosomal and
D. melanogaster X-linked genes, the significant correlations
seem to be driven by genes with exceptionally low recombi-
nation rates. The discrepancy between D. melanogaster X-
linked and autosomal genes may be attributable to the overall
high-recombination environment on the X, within which the
effects of crossing over level off (see Figure S13). An opposite
pattern observed in D. simulans might be attributed to
the fact that these recombination rates were estimated in
D. melanogaster, and D. simulans may lack the degree of
suppression of crossing over in the centromere-proximal
regions (True et al. 1996).

Strong selection can quantitatively impede the selection
of more weakly selected variants at linked sites (Hill and
Robertson 1966). The difference in the impact of such linked
selection on synonymous and nonsynonymous polymor-
phisms may be reduced in regions of lower crossing over
per base pair, thus creating an opportunity for quantitative
investigation of the stochastic impact of linked selection in
the population genomic dynamics of D. melanogaster. The
ratio of nonsynonymous to synonymous p can be interpreted
as an indication of the effectiveness of purifying selection at
removing slightly deleterious amino acid mutations with the
assumption of no fitness impacts of synonymous variants. A
higher value suggests weaker effectiveness of purifying selec-
tion. We found such a ratio is significantly correlated with
recombination rate (M/bp) in all comparisons [MW, rS =
20.077 (X) and 20.12 (A); RAL, rS = 20.12 (X) and
20.18 (A); simulans, rS =20.062 (X) and20.033 (A); each
P , 10216 except simulans X (P = 0.03)]. Excluding genes
with low recombination rates (below the 25th percentile)
yielded a similar significant result for D. melanogaster auto-
somal comparison [MW, rS =20.076 (A); RAL, rS =20.096
(A); both P , 10216].

As shown in previous studies (Begun et al. 2007; Shapiro
et al. 2007) and below (see next section), directional selec-
tion is a significant factor in protein sequence divergence in
D. melanogaster and D. simulans. One therefore expects
a negative correlation between nonsynonymous divergence
and synonymous polymorphism (Maynard Smith and Haigh
1974; Kaplan et al. 1989; Andolfatto 2007; Begun et al.
2007; Sattath et al. 2011). We estimated partial correlations

between dN and synonymous p by controlling for mutation
rate (using dS on the D. melanogaster or D. simulans lineage
as a proxy) and found weak but highly significant correla-
tions for autosomal genes [rS = 20.081 (MW), 20.088
(RAL), 20.43 (SIM); P , 1023]. The reduction in statistical
power associated with the relatively small number of X-
linked genes and the reduction in overall level of polymor-
phism, especially in RAL, may result in the absence of such
patterns on the X. The effect of hitchhiking also depends on
the recombination environment around selected sites. We
investigated the effects of recombination by categorizing
genes into four recombination categories with the same
number of genes according to M/bp, very low, low, interme-
diate, and high for X-linked and autosomal genes separately
(see Materials and Methods and Figure S13), and found
a slightly stronger negative correlation between dN and syn-
onymous p for the very low-recombination category [MW,
rS = 20.099 (very low), 20.048 (low), 20.090 (interme-
diate), and 20.071 (high); RAL, rS = 20.11 (very low),
20.044 (low), 20.11 (intermediate), and 20.075 (high);
each P , 0.05]. Our observations of significant correlations
within the other three autosomal recombination categories
suggest that this hitchhiking effect associated with amino
acid substitutions extends to all recombination environ-
ments and that at least a subset of the associated selection
coefficients is of the magnitude of the map size of a typical
gene (Kern et al. 2002). But note that selection coefficients
driving recent hitchhiking events that are much larger
than the map size of a gene will actually weaken this
correlation.

Adaptive protein divergence: We used contrasts of poly-
morphic and fixed synonymous and nonsynonymous var-
iants to investigate recurrent adaptive protein divergence
(McDonald and Kreitman 1991). As we wish to infer such
divergence specifically in D. melanogaster, we carried out
polarized tests, using parsimony to infer the variants that
fixed in D. melanogaster since the split from D. simulans.
We used all sites exceeding Q30 in this analysis, as all major
patterns in Q30 data were also observed at the more strin-
gent quality threshold Q40. Only genes with sufficient var-
iation (expected value for each cell of the 2 · 2 table greater
than one) were included in this analysis.

The source population of the MW sample is less likely
(than that of the RAL sample) to have been perturbed by the
strong selection and demographic phenomena associated
with recent colonization of temperate environments. We
thus focused on the MW sample. However, we also obtained
MK results for the RAL sample (File S1), to include genes
that lacked sufficient coverage in the MW sample (see Mate-
rials and Methods for thresholds). Of the 4774 genes that
meet filtering criteria in the MW sample, 7.73% are signif-
icantly heterogeneous in the 2 · 2 contingency table at the
critical value of P, 0.05. Under the premise that synonymous
sites experience considerably weaker selection than nonsynon-
ymous sites, we can determine whether the significant genes
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reject the null hypothesis as a result of excess amino acid
divergence: 66.4% of significant genes reject in this direction.
This is highly unusual (P , 0.001, by simulation with the
observed marginal counts), suggesting an important role for
recurrent directional selection on proteins in this species. The
20 most significant genes in D. melanogaster showing excess
protein divergence are shown in Table 9; named genes in this
list of 20 genes are Trc8 (negative regulation of growth), apt
(organ and neuromuscular system development), Sk1 (phos-
phorylation), and inx7 (gap junction channel). Similar analy-
ses using D. simulans data had more genes (n= 6011) passing
filtering criteria, which can be explained by the higher level of
polymorphism and thus statistical power in D. simulans. Of
these, 10.65% of genes rejected the null hypothesis (at P ,
0.05) and a majority of these significant genes (96.21%)
exhibited an excess of amino acid fixation.

An excess of low-frequency slightly deleterious amino
acid polymorphisms can lead to overly conservative con-
clusions regarding the prevalence of adaptive protein di-
vergence using the McDonald–Kreitman framework (Fay
et al. 2001; Charlesworth and Eyre-Walker 2008). To ad-
dress this issue, we analyzed the data after removing all
singleton variants. In this reduced data set (n = 2428 MW
genes), 5.3% of the tests had P , 0.05. This is approxi-
mately the number expected under the null hypothesis.
However, of these 5.3%, almost 83% reject the null hypoth-
esis in the direction of excess protein divergence, which is
highly unusual (P , 0.001, by simulation with the observed
marginal counts), again pointing to an important role of
directional selection on protein sequences.

Several models of natural selection predict an excess of
adaptive divergence on the X chromosome (Charlesworth
et al. 1987). Enrichment of significant tests (P , 0.05) on

the X chromosome in the MW sample for the entire data set
was not observed. However, among the top 1% (n = 477) of
genes with the smallest MK test P-value (singletons in-
cluded), there was an enrichment of X-linked genes (FET,
P , 0.003), suggesting a chromosomal influence on the
most rapidly adapting protein-coding regions. If most of
the slightly deleterious amino acid variants are partially re-
cessive, there should be fewer such polymorphisms segre-
gating on the X chromosome because of its hemizygosity.
Indeed, we observed the proportion of significant MK tests
having excess amino acid replacement is higher on the X
chromosome than on autosomes (FET, P , 0.0001). Restrict-
ing our comparison to significant MK tests with excess non-
synonymous fixations, we again observe X-linked enrichment
of genes under adaptive protein evolution (FET, P , 0.03).

Genes experiencing recurrent directional selection but
that retain sufficient polymorphism for carrying out MK tests
are expected to be biased toward smaller selection coef-
ficients of beneficial mutations. If most new beneficial
mutations are weakly selected, a greater proportion of such
new mutations may fix in regions of higher recombination
(Hill and Robertson 1966), in which average linkage to
other selected variants is reduced. There was no significant
correlation observed between MK P-values and recombina-
tion rates. However, as mentioned above, a gene can have
an excess of either nonsynonymous substitutions or nonsy-
nonymous polymorphisms. Indeed, we observed significant
negative correlations between recombination rates and MK
P-values of genes with excess nonsynonymous fixations
(rS = 20.10, P , 1027) and positive correlations for genes
with excess nonsynonymous polymorphisms (rS = 0.15, P,
10210), consistent with the idea that selection is facilitated
by recombination. To further investigate the effect of recom-
bination on adaptive protein evolution, we categorized
genes according to recombination category using the above
methods and compared the proportion of genes with signif-
icant MK tests in each recombination category. While the
proportion of autosomal genes with significant MK tests is
not statistically different between recombination categories,
the proportion of genes with significant MK tests due to
excess of amino acid divergence was strongly influenced
by recombination rate (Table 10). These results are con-
sistent with previous reports suggesting recombination facil-
itates the spread of weakly selected favorable alleles
(Betancourt and Presgraves 2002; Presgraves 2005). Previ-
ous investigations of the impact of the recombination envi-
ronment on MK tests focused primarily on the contrast of
genes in regions with no evidence of meiotic exchange with
those in the remainder of the genome with normal levels of
crossing over (Bachtrog and Charlesworth 2002; Bachtrog
2003, 2005; Haddrill et al. 2007; Betancourt et al. 2009).
Even with the genes in the very low-recombination category
excluded, there remains a positive relationship over the
remaining three categories with the proportion of MK tests
exhibiting a significant excess of nonsynonymous fixations
(x2-test, P , 0.01). These results suggest that not only the

Table 9 The top 20 genes with most significant evidence of
adaptive protein evolution (significant MK tests and excess of
nonsynonymous fixations)

FlyBase ID Symbol Chr P-value

FBgn0032136 CG15828 2L 1.57 · 10209

FBgn0029697 CG15570 X 2.56 · 10209

FBgn0031078 CG11943 X 2.89 · 10206

FBgn0030594 CG9509 X 7.12 · 10206

FBgn0031868 Rat1 2L 1.12 · 10205

FBgn0028887 CG3491 2L 1.20 · 10205

FBgn0039207 CG5789 3R 1.37 · 10205

FBgn0039668 Trc8 3R 2.59 · 10205

FBgn0015903 apt 2R 4.25 · 10205

FBgn0030320 CG2247 X 8.15 · 10205

FBgn0030091 CG7065 X 2.62 · 10204

FBgn0030300 Sk1 X 3.08 · 10204

FBgn0259168 mnb X 3.31 · 10204

FBgn0005617 msl-1 2L 3.51 · 10204

FBgn0030504 CG2691 X 4.18 · 10204

FBgn0035657 CG10478 3L 4.91 · 10204

FBgn0052654 Sec16 X 4.97 · 10204

FBgn0027106 inx7 X 5.24 · 10204

FBgn0033955 CG12866 2R 6.36 · 10204

FBgn0031377 CG15356 2L 6.56 · 10204
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“presence” but also the extent of crossing over increases the
effectiveness of selection for advantageous amino acid var-
iants. Parallel analysis with X-linked genes did not show any
significant heterogeneity for these comparisons, potentially
due to many fewer genes in each recombination category
(�300) and thus lower statistical power.

Using the related approach of Smith and Eyre-Walker
(2002), to obtain an estimate for the proportion of adaptive
amino acid substitutions, a, for each gene, the median val-
ues on the autosomes and the X chromosome were 0.128
and 0.463, respectively. a exhibited a positive correlation
with the recombination rate, r̂15 for autosomal genes [rS =
0.14 (all genes) and 0.10 (genes with very low-recombina-
tion regions removed); P , 1029]. Parallel analysis with
X-linked genes found similar, though statistically nonsignif-
icant, trends.

Turning for a moment to the differences between mela-
nogaster and simulans in the amount of centromere-
proximal suppression of crossing over mentioned above
(True et al. 1996), Figure 15 (top) shows that the difference
in ps between the two species is significantly greater in
centromere-proximal regions (Wilcoxon’s rank test, P ,
10216). The between-species differences in the estimated
proportion of adaptive amino acid fixations (a) are also
greater for genes in regions with centromeric suppression
(Wilcoxon’s rank test, P , 1029; see Figure 15, bottom).
D. melanogaster genes located in genomic regions of centro-
meric suppression show greater effects of linked selection and
may contribute disproportionately to the between-species dif-
ferences in overall levels of polymorphism.

To investigate general biological patterns associated with
MK tests showing a significant excess of amino acid
fixations, we used GO enrichment analysis. Retaining only
GO categories that contained at least five genes with MK
tests, we obtained P-values by permutation. Table 11 shows
those biological process terms most strongly enriched for
significant MK tests in the MW sample, including cystoblast
division, ubiquitin moieties addition, sodium ion transport,
male meiosis, protein import into nucleus, chromatin orga-
nization, and downregulation of translation. Consistent with
previous findings, GO categories associated with reproduc-
tion [male meiosis, spermatogenesis, spermatid develop-
ment, oocyte fate determination, and oogenesis (Swanson

et al. 2001, 2004)] and stem cell maintenance [germ cell
development, germ cell fate determination, and germline
stem cell self-renewal (Bauer Dumont et al. 2007)] include
a large number of genes showing adaptive protein evolution.
Several GO terms related to neural and neuromuscular de-
velopment (neural muscular synaptic transmission, regula-
tion of synaptic growth at neuromuscular junctions, axon
genesis, and axon guidance) are also enriched for genes with
significant MK tests. Significant molecular function terms in Ta-
ble 11 included adenylate cyclase activity, sodium ion channel

Table 10 The proportions of significant MK tests, of significant MK tests with excess of nonsynonymous fixations, and, among significant
MK tests, of genes with excess of nonsynonymous fixations for each recombination category

Recombination categories x2 P-value

Very low (%) Low (%) Intermediate (%) High (%) “All” category Without “very low” category

Proportion Autosome X Autosome X Autosome X Autosome X Autosome X Autosome X

MK tests with P , 0.05 7.20 10.53 6.56 10.15 7.67 9.80 7.24 13.56 0.8 0.66 0.61 0.47
MK tests with an excess of

nonsynonymous fixations
1.77 9.21 2.70 9.14 6.26 9.15 5.65 12.49 1.82 · 1027 0.67 3 · 1024 0.5

MK tests with an excess of
nonsynonymous fixations
among those with P , 0.05

24.56 87.50 41.18 90.00 81.61 93.33 78.05 91.671.12 · 102140.95 4 · 1028 0.94

Figure 15 Comparisons of the levels of synonymous polymorphism (ps)
and the proportions of amino acid fixations driven by positive selection (a)
in centromere-proximal and distal regions of the autosomes of D. mela-
nogaster (shown in olive) and D. simulans (shown in orange). Using the
r̂15-smoothed map of the recombination rate, the boundaries between
the centromere-proximal and distal regions were chosen to be the first
interval where r̂15 . 1.8 · 1028 M/bp, 4,714,046 for 2L, 9,716,832 for
2R, 2,350,586 for 3L, and 13,015,705 for 3R.
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activity, lipid binding, nucleotide binding, translation repres-
sion, and calmodulin binding. Significant cellular location
terms (see Table 11) included chromatin, complex for im-
port/export of cells, peroxisomal membrane, proteasome
complex, spindle, mitochondrial envelope, neural–neural
or neural–muscular junctions, and nuclear pore.

A comparable GO enrichment analysis of D. simulans
showed some interesting overlaps. Due to the fact that many
genes have an associated MK test in only one of the species,
we restricted the analysis to 2467 genes with both D. mela-
nogaster and D. simulans MK test results (see Table 12).
Overlapping significant terms included germ cell develop-
ment, male meiosis, spermatogenesis, ovum development,
and microtubule-based movement (biological); microtubule
motor activity, lipid binding, and chromatin binding (molec-
ular); and chromatin and spindle (cellular). Among these
genes, 6.1% (n = 150) and 6.6% (n = 163) showed evi-
dence of adaptive protein evolution (with excess of amino
acid replacement) on the D. melanogaster and D. simulans
lineages, respectively. There were 126 genes significant in
both species (MK P, 0.05 and an excess of nonsynonymous

fixations), which is significantly greater than the expected
number of overlapping genes [0.061(0.066)(2467) = 10;
x2-test, P , 10216]. There is also a slight but significantly
positive correlation in species MK P-values (rS = 0.06, P ,
0.003). Restricting analysis to genes with an excess of amino
acid fixations showed even stronger correlations of MK P-
values (rS = 0.13, P , 1024). Consistent with results based
on windowing analysis (see below), we observed evidence
supporting the idea that certain biological functions are
likely under persistent directional selection in multiple
linages.

Genetic differentiation between temperate and tropical D.
melanogaster populations: The observations of differences
between MW and RAL D. melanogaster populations can be
attributed to demographic changes associated with the ex-
pansion out of Africa. Alternatively, the colonization of the
new temperate habitat by the RAL population could have
led to strong selective forces and result in a greater extent
of selection in the RAL population. Consistent with the
window-based analysis (see below), a large proportion of

Table 11 The top 10 biological, molecular, and cellular GO categories enriched with genes having evidence of adaptive protein evolution

GO category
Proportion of

significant genes P-value Description

Biological
GO:0007282 0.600 1.00E-04 Cystoblast division
GO:0016567 0.600 1.00E-04 Ubiquitin moieties addition
GO:0006814 0.231 4.00E-04 Sodium ion transport
GO:0007140 0.300 7.00E-04 Male meiosis
GO:0007281 0.300 1.40E-03 Germ cell development
GO:0007274 0.333 2.40E-03 Neuromuscular synaptic transmission
GO:0007283 0.211 3.40E-03 Spermatogenesis
GO:0007294 0.286 3.40E-03 Germarium-derived oocyte fate determination
GO:0006606 0.286 3.70E-03 Protein import into nucleus
GO:0051056 0.286 4.10E-03 Regulation of GTPase-mediated signal transduction.

Molecular
GO:0004016 0.500 1.00E-04 Adenylate cyclase activity
GO:0005272 0.294 1.00E-04 Sodium channel activity
GO:0008289 0.267 6.00E-04 Lipid binding
GO:0000166 0.175 1.60E-03 Nucleotide binding
GO:0000900 0.400 1.60E-03 Translation repressor activity, nucleic acid binding
GO:0005516 0.286 3.50E-03 Calmodulin binding
GO:0015450 0.286 4.20E-03 Active carrier-mediated of protein transportation

across a membrane
GO:0004842 0.182 5.20E-03 Ubiquitin-protein ligase activity
GO:0016887 0.200 6.10E-03 ATP hydrolysis
GO:0003729 0.136 8.30E-03 mRNA binding

Cellular
GO:0000785 0.200 7.00E-03 Chromatin
GO:0043190 0.167 1.94E-02 ATP-binding cassette (ABC) transporter complex
GO:0005778 0.200 2.26E-02 Peroxisomal membrane
GO:0000502 0.200 2.65E-02 Proteasome complex
GO:0005819 0.167 3.25E-02 Spindle
GO:0005740 0.143 3.33E-02 Mitochondrial envelope
GO:0005741 0.167 3.51E-02 Mitochondrial outer membrane
GO:0016020 0.077 3.55E-02 Lipid bilayer
GO:0045202 0.167 3.60E-02 Neural–neural or neural–muscular junctions
GO:0005643 0.133 3.91E-02 Nuclear pore
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genes have significant amino acid FST; 46% of the genes
have permutation-based FST P-values ,0.05. X-linked genes
tend to be more strongly differentiated than autosomal
genes (UMW test, P = 10216 for FST value and P , 10216

for P-values associated with FST). It is worth noting that
there is a strong correlation between amino acid FST and
nonsynonymous p, presumably due to the fact that genes
with higher polymorphism have more statistical power to
detect nonzero values and thus showed more differentiation
[rS = 0.47 (with FST) and 20.39 (with FST P-values), P ,
10216 for both comparisons]. Accordingly, the contrast be-
tween X and autosome should be conservative given the
lower level of polymorphism on the X before correction for
population size (UMW test, P , 10216). The stronger differ-
entiation on the X is consistent with the predicted (Charles-
worth et al. 1987) and observed excess of adaptive evolution
on the X chromosomes (see above). But note that similar
predictions are also made by a range of demographic models
(e.g., Hutter et al. 2007; Pool and Nielsen 2008). To further
confirm that the observed geographic differentiation of
amino acid sequences is the result of selection instead of
solely driven by demography, we compared the per-site FST
for synonymous and nonsynonymous sites. To ensure equal
statistical power, we binned synonymous and nonsynony-
mous SNPs into categories with marginal frequencies of
[0, 0.15), [0.15, 0.3), and [0.3, 0.5]. For the category that
has the greatest statistical power and showed the greatest
differentiation ([0.3, 0.5]), nonsynonymous sites have sig-

nificantly larger Fst than synonymous sites (Wilcoxon’s rank
test, P, 10216). This result is robust to using either weighted
(by sample size) or unweighted marginal allele frequency.

Because of the large number of genes having significant
amino acid FST, we restricted our GO enrichment analysis to
genes having FST P-value ,0.001 (15.7% of all the golden
genes). There are 80 biological GO categories highly
enriched (P , 0.05) with genes that are highly differenti-
ated (see Table S16). Top biological GO categories include
response to damaged tissue, metabolism of nitrogen com-
pounds, and exocytosis. Interestingly, several GO categories
related to immunity, hemocyte development, recombination,
and perception of and reactions to sensory cues show signif-
icant enrichment of highly differentiated genes. Significant
cellular GO categories include chromosome condensin com-
plex, nuclear plasm, and nuclear pore (see Table S17). The
most enriched molecular categories include metal ion bind-
ing, taste receptor activity, helicase activity, and phospho-
lipid binding (see Table S18).

It is interesting to investigate whether genes under
recurrent adaptive evolution (long-term adaptive evolution)
are also the target of selection for the local adaptation to
temperate habitat (short-term adaptive evolution). We
compared between-population amino acid FST and MW MK
tests of 4758 genes that have results for both tests. Almost
1% of genes (0.7%) had both significant excess of amino
acid fixations and between-population differentiation (FST,
P , 0.001), which is not significantly different from the
expected 0.9% [multiplication of 5.8% (genes have signifi-
cant MK test) and 15.7% (genes have FST P-values ,0.001);
x2-test, P . 0.05]. Our observations could be explained by
both the differences in timescale that can be detected by
these two tests and/or the fact that genes that are under
local adaptation to the temperate habitat are fundamentally
different from genes that are under recurrent directional
selection in the tropics. Consistent with this, we observed
little overlap of GO terms enriched with either set of the
significant genes. Only two biological GO terms (negative
regulation of Notch signaling pathway and meiotic recom-
bination) showed both enrichment among genes with evi-
dence of adaptive evolution and strong African–North
American differentiations. Nucleoplasm is the only signifi-
cant cellular GO term, while there are no molecular GO
terms that have significant enrichment in both MK and FST
analyses. Window-based analysis can reflect these observa-
tions as well if rare variants are the primary substrate of
such adaptation, thus producing a hitchhiking effect (see
below). On the other hand, if much of the selective geo-
graphic differentiation involved frequency changes in preex-
isting (amino acid) polymorphisms at linkage equilibrium
with surrounding SNPs, the detectable changes might well
be limited to actual selected sites (Hermisson and Pennings
2005).

Shared nonsynonymous polymorphisms: Shared ancestral
amino acid polymorphism maintained by balancing selection

Table 12 The top biological, molecular, and cellular GO categories
enriched with genes having evidence of adaptive protein
evolution in both D. melanogaster and D. simulans

GO category Description

Biological
GO:0007140 Male meiosis
GO:0007281 Germ cell development
GO:0007283 Spermatogenesis
GO:0009790 Embryonic development
GO:0048477 Ovum development
GO:0007018 Microtubule-based movement
GO:0030097 Hemopoiesis
GO:0006333 Chromatin assembly or disassembly
GO:0009190 Cyclic nucleotide biosynthetic process
GO:0035071 Salivary gland cell death
GO:0006511 Ubiquitin-dependent protein

catabolic process

Cellular
GO:0000785 Chromatin
GO:0043190 ATP-binding cassette (AB) transporter

complex
GO:0005819 Spindle

Molecular
GO:0003777 Microtubule motor activity
GO:0008289 Lipid binding
GO:0042626 ATP hydrolysis
GO:0003682 Chromatin binding
GO:0003774 Motor activity
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has been well documented in several cases, such as theMHC
locus of vertebrates (Figueroa et al. 1988 and references
therein) and the S locus of plants (Ioerger et al. 1990 and
references therein). Examples of such polymorphisms have
not yet been reported for D. melanogaster and D. simulans.
We looked for genes with exceptional levels of shared an-
cestral polymorphism between D. melanogaster and D. sim-
ulans. Specifically, we compared the ratio of the number of
sites that have two alternative states shared between the
two species to the total number of variable sites of a focal
gene with those of the overall golden gene set (seeMaterials
and Methods). In total, we observed 539 nonsynonymous
and 6886 synonymous shared polymorphisms, which are
0.98% and 3.98% of the observed corresponding polymor-
phic sites in D. melanogaster genes. As we are mainly in-
terested in shared polymorphisms that are more likely to
have functional and/or phenotypic effects, we considered
only nonsynonymous changes in the following analysis. As-
suming that the proportion of nonsynonymous polymor-
phisms is constant, 133 genes exhibit a significant (P ,
0.05; seeMaterials and Methods) excess. Thirty-nine of these
genes (all among the significant set) have two or more
specific amino acid replacement polymorphisms shared be-
tween D. melanogaster and D. simulans. It is highly unlikely
to observe 39 genes with more than one shared nonsynon-
ymous polymorphic site (simulation-based P , 0.007).

Eight of the 39 genes also have an excess of shared
synonymous polymorphism, which might have been main-
tained by balancing selection, perhaps due to selection on
the shared nonsynonymous polymorphisms. Consistent with
the overall short scale of linkage disequilibrium (see above),
we did not observe any haplotypic structures in any of the
39 genes (results not shown) as has been described for the
vertebrate MHC or S locus of plants. Sequencing errors are
unlikely to be the sole source of these 39 genes, since 37 of
these genes have at least one nonsynonymous shared
polymorphism that is not a singleton in D. melanogaster.

Consistent with a biological explanation for this unusual
set, the levels of both nonsynonymous and synonymous
polymorphism of these 39 genes are higher than those of
other genes (Wilcoxon’s rank test, P , 0.001 for both tests).
We cannot exclude the possibility that the excess of shared
nonsynonymous variations observed is due to conserved lo-
cus-specific higher mutation rates, especially to specific
alleles. Accordingly, instead of arguing that the observed
shared nonsynonymous polymorphism is truly ancestral
and maintained by balancing selection, our following anal-
ysis briefly identifies and discusses the gene-specific biology
of named genes likely to be relevant (see Table 13). These
observed shared polymorphisms across species could poten-
tially be the result of systematic, correlated mismapping in
both species. This may especially be a problem for genes
with several ancestral paralogs. We searched in the D. mel-
anogaster genome (using BLAT) in the 1-kbp region sur-
rounding each of the shared nonsynonymous polymorphic
sites in each the 39 genes. For most genes, the “noncanon-

ical” BLAT hits are short (20 bp) and far from the shared
sites. Exceptions are Ugt36Ba, rhi, and Ino80. Yet, in these
genes, the noncanonical BLAT hit that spanned the shared
sites had low sequence identity (,70%); reads are unlikely
to be mismapped. Additionally, if most of the observed
shared polymorphisms were the result of mismapping, we
expect to see increased linkage disequilibrium among these
sites. However, the r2 between pairs of shared sites (either
nonsynonymous or synonymous) do not have a significantly
higher level of linkage disequilibrium than those of other
pairs of SNPs in the same set of genes. Thus, mismapping
can be excluded as the probable cause of the identified
shared polymorphisms.

Genes with the largest numbers (four) of shared poly-
morphic sites are Lectin-24Db (codes for a mannose and
fucose binding protein) and the RNA-edited Cpn (codes for
a photoreceptor-specific calcium-binding protein (Stapleton
et al. 2006). Several aspects of their shared nonsynonymous
variants suggest a long-term role of natural selection. For
both Lectin-24Db and Cpn, at least two nonsynonymous
polymorphisms have their two shared states present in mul-
tiple individuals, suggesting they are neither rare nor se-
quencing errors. The alternative states of one of the Cpn
shared sites were present in D. yakuba and D. erecta. Fur-
thermore, these two genes both possess one shared amino
acid polymorphism encoded by different codons in the two
species, consistent with parallel balancing selection for spe-
cific alleles.

Based on the functions of these named genes in Table
13, there are three potential scenarios in which shared
amino acid polymorphisms could be attributed to balanc-
ing selection. The antagonistic interaction between Dro-
sophila and pathogens/parasites is an obvious one. Muc11A
is a gene predicted to be involved in the metabolism of
chitin. Chitin is an essential component of the exo- and
endoskeleton of Drosophila, including the gut and trachea,
which are entry points for fungal pathogens via their deg-
radation of the chitin (Lemaitre and Hoffmann 2007 and
references therein). vir-1, which is upregulated during the
infection of Drosophila C virus via the Jak-STAT pathway
(Dostert et al. 2005), is another good candidate for bal-
ancing selection. The two alternative states at the three
shared nonsynonymous sites of vir-1 are present in multi-
ple individuals and in both MW and RAL populations.
In addition, for one shared nonsynonymous site, one of the
states was observed in D. yakuba while the other was in
D. erecta.

In addition to external parasites, the interactions be-
tween Drosophila and genomic parasites, such as transpos-
able elements and Wolbachia, can be another cause for the
observed shared ancestral polymorphism. Most transpos-
able-element families annotated in D. melanogaster are also
detected in D. simulans (Begun et al. 2007; Bartolomé et al.
2009) as is Wolbachia. rhi and perhaps Brca2 have a role
for host–transposable-element interactions. Brca2 (Breast
cancer 2, early onset homolog), a homolog of human tumor
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suppressor Brca2, is essential for double-strand break repair
via homologous recombination and the activation of the
meiotic recombination checkpoint (Klovstad et al. 2008).
Thus Brca2 may interact with double-strand breaks associ-
ated with transposable-element activity. Two of the three
shared nonsynonymous polymorphic sites of Brca2 have
nonsingleton alleles that are present in both MW and RAL
populations. Apparent partial loss-of-function mutations of
rhi (rhino), a HP1 paralog, have recently been shown to in-
fluence the generation of piRNAs, which regulates the trans-
position of transposable elements (Klattenhoff et al. 2009).
Evidence of positive selection in rhi has been reported for both
the D. melanogaster and the D. simulans lineages (Vermaak
et al. 2005). The different fates of germline and somatic cell
lineages of Drosophila gonads create an opportunity for an
arms race between host and pathogens/parasites (Blumenstiel
2011 and references therein). For example, pathogens/
parasites that can target the oocyte rather than nurse cells
of the female germline have a higher chance of being verti-
cally transmitted and, thus, greater fitness advantage. Genetic
variation in fs(1)Yb [female sterile (1) Yb, responsible for fe-
male germline stem cell maintenance] and asp (abnormal
spindle, a microtubule-associated protein that is involved in
spindle pole organization in both mitosis and meiosis) may
interact with transposable elements and other germline trans-
mitted pathogens, leading to balancing selection.

Another interesting finding is that among the named
genes in Table 13 are two predicted UDP-glycosyltrans-
ferases (UGTs), Ugt36Ba and Dot (Dorothy). The transfer
of glycosyl group to hydrophobic molecules increases their
hydrophilicity, thus enhancing their secretion. In insects,
UGTs participate in detoxication of plant chemicals, cuticle
formation, pigmentation, and olfactions (Luque and O’Reilly
2002 and references therein). The specific mechanisms of
possible interactions of Drosophila UGTs with plants and
pathogens are not known, but it is interesting to note that
in both Ugt36Ba and Dot, there is at least one shared poly-
morphic site located in the domain with glycosyltransferase
activity.

Copy-number variation

In addition to single-nucleotide polymorphisms, individual
Drosophila differ by large duplications and deletions of DNA.
Bridges (1936) was the first to identify one such duplication
at the Bar gene. Subsequent genetic and molecular genetic
analyses (Tsubota 2009 and references therein) implicated
unequal crossing over as the main underlying mechanism
and estimated such events as a major component of sponta-
neous mutation (Montgomery et al. 1991 and references
therein). Recently whole-genome array studies have identi-
fied many more naturally occurring copy-number variants
(Dopman and Hartl 2007; Emerson et al. 2008; Turner
et al. 2008; Cridland and Thornton 2010).

Across all lines we detected 3631 duplications and 3953
deletions. Largely due to slight differences in the location of
breakpoints called by the HMM when run on different lines,Ta
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identical structural variants may have been called as distinct
CNVs. We therefore devised a simple algorithm to combine
overlapping calls believed to represent the same polymor-
phism for the purposes of analyses of CNV length and
frequency presented in this section (See Appendix B). This
resulted in a set of 2588 duplications and 3336 deletions.
The average size of duplicates was 2069 bp and the average
size of deletions was 617 bp; the longest duplication
detected was 121,910 bp and the longest deletion was
31,885 bp. Overall, we were able to confirm 85–86% of
deletions and 82–85% of duplications (the ranges are de-
fined by values for the two lines). The confirmation rate for
duplications is similar to that found in previous studies (86%
in Emerson et al. 2008), while our deletion confirmation
rate is higher than they reported, 53% (see Appendix B).

We did observe a deficit of duplications on the X chromo-
some, but this could be due in part to lower average coverage
on the X vs. the autosomes. We observed no significant differ-
ence between the lengths of CNVs on the X and those on the
autosomes. Within each chromosome, there was also obvious
variation in the density of duplications and deletions, with both
types of events found in larger numbers in subcentromeric
regions (see Figure 16).

Between any two lines from MW there is an average of
738.5 CNV differences; equivalent comparisons between
RAL lines gave 657.2 CNV differences. This difference in
copy-number heterozygosity between populations mirrors
the difference in SNP diversity between MW and RAL. Given
the average length of CNVs in our data set, this number of
CNV differences implies a total of 764 kbp (0.64% of the
genome) that vary in copy number between any two inbred

lines from RAL, compared to 869 kbp (0.73% of the
genome) in MW. There are a number of reasons why these
values may underestimate the true extent of copy-number
heterozygosity, including the fact that derived deletions and
duplications in the reference genome are not queried (see
Materials and Methods) and that we have used a minimum-
length cutoff to define CNVs. Nonetheless, we estimate that
the total number of base pair differences between individu-
als contained within CNVs found here is on the same order
as the total number of SNP differences (�1 Mb across the
genome). This result is in stark contrast to studies in humans
that suggest that the total number of bases contained within
genomic regions varying in copy number between any two
individuals is roughly an order of magnitude larger than the
total number of SNP differences between individuals
(McCarroll et al. 2008; Conrad et al. 2010). We note, how-
ever, that p for SNPs is much higher in Drosophila and that
the CNV ascertainments may not be sufficiently comparable.

We examined the distribution of both duplication and
deletion CNVs with respect to genes in the Drosophila ge-
nome. Similar to the results found by Emerson et al. (2008),
we found an excess of deletions in intergenic regions and
introns (Figure 17). Deletions that contain entire genes are
especially rare, likely due to the deleterious effects of such
mutations. Nevertheless, we do find many CNVs overlapping
genes (29 deleted genes and 301 duplicated genes), with an
average of 41.48 whole genes differing in copy number be-
tween any two inbred lines from RAL. Using GOEAST
(Zheng and Wang 2008) to find biological processes over-
represented in genes varying in copy number, we find that
deleted genes are enriched for response to chemical stimulus

Figure 16 The distribution of duplications and deletions in 1-Mbp windows spaced every 100 kbp across the X and autosomes. To smooth the
underlying count data from independent nonoverlapping 100-kbp windows, windows .3 standard deviations from the mean and with ,40%
consensus sequence coverage were filtered. These nonoverlapping windows were then averaged using a 1-Mb sliding window spaced every 100 kbp.
The genomic distribution of r̂15 is added for comparison.

570 C. H. Langley et al.



and nuclear mRNA splicing via the spliceosome. We find that
duplicated regions are enriched for the following biological
processes: fatty acid beta-oxidation, regulation of hormone
levels, response to insecticide, protein amino acid glycosyla-
tion negative regulation of the cellular catabolic process, cel-
lular response to hydrogen peroxide, detection of chemical
stimulus involved in sensory perception of smell, and detec-
tion of pheromone. Significant expansions in gene families
involved response to toxins, response to hydrogen peroxide,
and olfactory perception were also found in an interspecific
study of copy number in the genus Drosophila (Hahn et al.
2007). Also notable is a common deletion that was found in
the mthl-8 gene, although this may be due to recurrent mu-
tational events (Kern and Begun 2008).

When examining regions most commonly found to be
aneuploid in the RAL inbred lines, we found a large region
on chromosome 3L identified as elevated in copy number
in .75% of the lines. This region was found to contain
several chorion genes (Cp15, Cp16, Cp18, and Cp19) as well
as several other genes (CG13306, CG6511, CG32022,
SrpRbeta, and Prm). We concluded that, rather than being
a large genomic duplication, this stretch of aneuploidy cor-
responds to a genomic region known to be amplified in
follicle cells in association with increased chorion gene ex-
pression and eggshell development (Spradling 1981). This
amplified region was also detected in the genome-wide CNV
scan conducted by Dopman and Hartl (2007), implying that
read-depth or array-based CNV scans will often detect such
amplifications. Indeed, we also detect a less common region
elevated in copy number, containing the genes CP7Fa,
CP7Fb, and CP7Fc, corresponding to a different chorion clus-
ter that is also known to be amplified (Spradling 1981;

Turner et al. 2008). These results show that read-depth or
array-based CNV detection methods can identify regions of
the genome that are aneuploid due to amplification or to
underreplication in terminally differentiated cell types (Sher
et al. 2011).

We examined the allele frequencies of CNVs and found
that duplications were skewed toward lower frequencies
than are deletions (P, 2.2 · 10216, UMW), a result that runs
counter to the expectation that deletions are on average
more deleterious than duplications and therefore subject
to stronger negative selection, which has received support
in a study of humans CNVs (Locke et al. 2006). This result is
most likely an artifact of the lower power to genotype dupli-
cations than deletions.

We noted a significant negative correlation between CNV
length and frequency for both duplications (rS = 20.259,
P , 2.2 · 10216) and deletions (rS = 20.366, P , 2.2 ·
10216), implying that larger duplications and deletions are
likely to be deleterious, as also appears to be the case in
humans (Itsara et al. 2009). Next, we compared the allele
frequencies of CNVs containing entire genes, containing
some exonic sequence, containing only intronic sequence,
or located within intergenic regions, notably finding that
whole-gene duplications were constrained to lower allele
frequencies than duplications in exonic or intergenic regions
(P = 0.036 for duplications and P = 0.0071 for deletions,
UMW). Interestingly, the frequencies of gene duplications
were not significantly lower than those of intronic duplica-
tions (P = 0.097). This may be due to the lower frequencies
of intronic duplications relative to intergenic duplications,
a trend that is only marginally significant in our data (P ,
0.083) but has been observed previously (Emerson et al.
2008). These results suggest that whole-gene duplications,
and perhaps intron duplications as well, are subject to stron-
ger purifying selection than intergenic duplications. Al-
though the same trend has previously been observed for
exonic duplications in a previous study (Emerson et al.
2008), we find no such pattern here. When examining dele-
tions, we found that intronic deletions had lower allele fre-
quencies than intergenic deletions (P = 4.8 · 1028).
Strangely, this was not the case with exonic deletions, which
appear at higher frequencies than intronic deletions, al-
though this difference is not significant. Our data set con-
tained too few whole-gene deletions to compare their
frequencies to other classes of deletions. Finally, we com-
pared the allele frequencies of CNVs on the X chromosome
to those on the autosomes and found no significant differ-
ence for either duplications or deletions.

While most new duplicates in Drosophila are located in
proximity (i.e., tandem) and in head-to-tail orientation rel-
ative to the locus they are copied from, a significant number
of gene duplicates are located far away on the same chro-
mosome or even on different chromosomes (Meisel et al.
2009). We used two methods to try to identify nontandem,
“dispersed” duplication events. First, we compared levels of
linkage disequilibrium between flanking SNPs and CNVs due

Figure 17 The proportion of duplications (solid bars) and deletions (open
bars) containing at least one entire gene, containing a portion of an exon
(coding or noncoding), containing an intronic segment, or containing only
intergenic regions. Note that deletions are far less likely than duplications
to contain whole genes or exonic segments. Instead, deletions are dis-
proportionately found within intergenic regions. Duplications, on the
other hand, do not appear to be biased toward intergenic regions (which
make up �35% of the genome).
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to both duplications and deletions. Because duplication
polymorphisms may be located a long distance from the
parental locus, SNPs flanking this locus will not be in linkage
disequilibrium (LD) with the CNV; the same is not true for
deletions, as the location of the CNV polymorphism is
known exactly (Schrider and Hahn 2010). Results for 50
SNPs flanking each CNV (or, more precisely, the location
of the identified polymorphism in the reference genome)
showed that LD was in fact lower around duplications than
around deletions: the average maximum-r2 value among the
50 SNPS for duplications was 0.35 while for deletions it was
0.56. These results suggest that some duplications are lo-
cated far from their parental loci, but they do not tell us how
far away. Second, we developed a novel method for identi-
fying polymorphic retrotransposed duplicates (“retroCNVs”)
from the Illumina data (Schrider et al. 2011). Because of the
crenellated patterns of read depth associated with ret-
roCNVs—only the exons will show excess read depth, but
not introns—these polymorphisms will be missed by the
HMM. We identified 34 retroCNVs among the RAL lines,
some at quite high frequency (Schrider et al. 2011). Because
retrogenes are inserted in a seemingly random pattern
across the genome, this class of duplicative CNV also repre-
sents a source of dispersed duplicates. We also detected nine
intron deletion polymorphisms among the RAL lines, which
are described in detail by Schrider et al. (2011).

CNVs and recombination rates: Recombination is expected
to be an important element in both the origin (Montgomery
et al. 1991) of CNVs and their population dynamics via both
linked selection (Hill and Robertson 1966) and gene con-
version (Johnson-Schlitz and Engels 1993; Presgraves
2006). Thus we investigated the distributions of deletions
and duplications among the RAL genomes in regions with
different estimates of the crossing over per base pair (quar-
tiles of the logarithm of r̂15). The mean count of duplications
per window increases by .75% when comparing the high-
est to the lowest recombination rate categories (see Table
14). Deletions also increase by 30% when comparing the
same two quartiles. At face value this would seem to support
the hypothesis that both types of CNVs are more effectively
eliminated by natural selection with increasing crossing
over. Also supporting this hypothesis is the observation that
heterozygosity showed similar trends. There is an 88% in-
crease of expected heterozygosity for duplications when
comparing the highest to the lowest recombination quartiles

and a 15% increase for deletions. The mean count of dupli-
cations per window drops by more than one-third between
the lowest and the highest recombination rate categories
(see Table 14). Deletions also decline by .50%.

CNVs and origins of replication: Functional origins of
replication initiate at a subset of ORC binding sites (MacAlpine
et al. 2010 and references therein). And the regulation of
interactions among the arising bidirectional forks is com-
plex, with multiple pathways functioning on the scale of
both the genomic neighborhood and the cell (Natsume
and Tanaka 2009; Blow et al. 2011). Stalled adjacent repli-
cation forks pose a particularly serious challenge to genome
replication, give rise to error-prone recovery, and have been
proposed as a major source of human CNVs (Lee et al.
2007). Thus we tested whether our detected deletions and
duplications were enriched near (6500 bp) annotated ORC
binding sites. Table 15 compares the number of deletions
overlapping the annotated ORC binding regions with a ran-
domly derived control set of genomic regions (see Materials
and Methods). The relative number of deletions increases
with the number of cell lines exhibiting ORC binding at
a site. Pooling all three categories, there is a 1.5-fold in-
crease (P , 0.0001) of deletions near ORC binding sites.
Similarly Table 16 shows the relationship between numbers
of identified duplications and ORC binding sites. The overall
proportion of ORC binding regions overlapping with dupli-
cations is 1.34 times that in the control regions (P , 0.001).
These results support the hypothesis that the distribution of
origins of replication contributes to genomic variation in
CNV density. With much less power we failed to detect
any difference in the expected heterozygosity of CNVs or
the relative enrichment of deletions vs. duplications near
ORC binding sites.

CNVs and replication time: It has also recently been
proposed that the timing of DNA replication affects the
probability of a CNV arising, although this relationship may
differ for duplications and deletions (Cardoso-Moreira and
Long 2010; Cardoso-Moreira et al. 2011). These authors
found that regions dense in duplication CNVs tended to be
associated with later replication times, while regions dense
in deletion CNVs were associated with earlier replication
times (Cardoso-Moreira and Long 2010). We used our
high-quality set of CNVs in RAL lines and the replication
timing data from Schwaiger et al. (2009) to further test

Table 14 Mean counts and heterozygosities of duplications and deletions in 100-kbp windows with estimated
crossing-over rates in one of four categories (see text)

Recombination quartile

Very low Low High Very high

Mean duplication count 2.04 1.28 0.90 1.15
Mean deletion count 2.65 2.36 2.42 2.03
Mean duplication heterozygosity 0.040 0.023 0.024 0.021
Mean deletion heterozgosity 0.069 0.058 0.063 0.060
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the generality of this relationship. Following Cardoso-Mor-
eira and Long (2010), we compared the replication time of
the 100-kbp windows containing the greatest number of
deletions and duplications to the remaining windows in
each category. Our analyses alternatively included (and ex-
cluded) the pericentromere regions and consistently ex-
cluded those CNVs associated with the chorion genes.
Another notable difference between our approach and the
approach of Cardoso-Moreira and Long (2010) is the
smaller number of windows considered in the analysis; we
targeted the maximum resolution at which our data would
support independent windows. We did find that windows
within the 90% quantile for duplication count tended to be
later replicating compared to the rest of the data set. This
observation was significant for the Cl8 cell line for all dupli-
cations (P = 0.0048) and when excluding those within the
pericentromere (P = 0.022). In contrast to Cardoso-Moreira
and Long (2010), we observed that windows within the
90% quantile for deletion count also tended to be later rep-
licating. This was consistent for both cell lines regardless of
whether the pericentromere was excluded. However, the
difference was not significantly different from the rest of
the genome for any of these four cases. We also compared
the replication time of deletions to that of duplications. We
observed mixed outcomes. The only significant observed dif-
ference in replication time was for the Kc cell line when in-
cluding all CNVs in the analysis. In this case, deletions tended
to be slightly later replicating than duplications (Wilcoxon’s
P = 0.0015). This observation maintained directionality, but
was not significant when the pericentromeric CNVs were ex-
cluded. Similarly, for state classifications, we found that dele-
tions were more often classified as later replicating over
earlier replicating than deletions using the HMM classifica-
tion of Schwaiger et al. (2009) for the Kc cell line (see Mate-
rials and Methods). This observation was significant for all
CNVs (FET P = 0.0148) but lost significance when the peri-
centromeric regions were excluded from the analysis. Given
our earlier reported results on the higher average deleterious
effects of deletions relative to duplications, we think that the
biases in the location and timing of CNVs we observe are
likely due to the fact that there also happens to be a higher
density of genes in early-replicating portions of the genome.
This implies a selective rather than a mutational cause for the
observed bias in the location of CNVs.

Genes and functional sequences affected by natural
selection: As the gene-based analysis presented above
focused on the coding regions, window-based analysis along
the chromosomes is complementary in several ways. While
the window-based analyses capture none of the powerful
inference associated with the distinction between non-
synonymous and synonymous changes, the more uniform
statistical power associated with the equal numbers of
polymorphic-plus-diverged sites in the case of the HKAl
and comparable normalizations in the HBKl and TsD analyses
should not suffer from the same potential biases of gene-
based analysis, in which genes with longer coding regions
tend to have larger statistical power. Furthermore, window-
based analyses are likely to identify the target of selection if it
is located away from coding regions or if only part of a gene is
under adaptive protein evolution. This is because the signals
of directional selection are highly likely to be diluted by other
nonselected variation in the same gene in gene-based analy-
sis, while the window-based statistics leverage the linkage-
mediated impacts of selection and/or demography. Thus
the following analysis based on the intersection of the high-
resolution window-based statistics and the structural and func-
tional annotation presented here approaches a similar set of
questions from a distinct, complementary angle.

The HKAl statistic was calculated for windows of 50 seg-
regating or divergent sites in the MW sample. Although the
MW sample size is small, it should still provide reasonable
local estimates of sequence diversity, and its relatively stable
demographic history may allow the effects of selection to be
clearly observed. Windows among the lowest 2.5% of HKAl
values (evaluated separately for the autosomes and the X
chromosome) were classified as outliers with sweep-like pat-
terns of diversity.

Low HKAl outliers might reflect either low diversity due
to a recent sweep or elevated divergence due to many
ancient recurrent sweeps. The strongest signals of selection
in the genome often span multiple genes, and their targets
are thus difficult to ascertain. Cases where an extended
sweep signal appeared to center on a specific gene included
CENP-meta (involved in chromosome segregation during mi-
tosis and male meiosis I) and Dicer-2 (antiviral function via
RNA interference), the latter being consistent with the find-
ings of Obbard et al. (2006). A full list of HKAl outlier
regions is presented in Table S19.

Table 15 Numbers of deletions overlapping ORC binding sites
compared to a comparable control region 10 kbp away (see text)

ORC score Deletions Control regions Ratio

0 2615 0.91 2699 0.94 1.50
1/3 118 0.04 68 0.02 1.73
2/3 52 0.02 37 0.01 1.40
1 82 0.03 63 0.02 1.30
Total 2867 2867

The “ORC score” indicates in how many of three studied cell lines the ORC binding
site was called. The first value in the ratio column (in italics) is the ratio for the union
of three ORC score categories.

Table 16 Numbers of duplications overlapping ORC binding sites
compared to a comparable control region 10 kbp away (see text)

ORC score Duplications Control regions Ratio

0 1459 0.85 1526 0.89 1.34
1/3 91 0.05 67 0.04 1.35
2/3 73 0.04 47 0.03 1.55
1 98 0.06 81 0.05 1.21
Total 1721 1721

The “ORC score” indicates in how many of three studied cell lines the ORC binding
site was called. The first value in the ratio column (in italics) is the ratio for the union
of three ORC score categories.
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For each HKAl outlier region, the closest gene was defined
as the gene with an exon (including UTRs) closest to the
center of the HKAl outlier window. Outlier windows,10 kbp
apart were considered jointly, and the signal was deemed to
center in the middle of the window with the lowest x[log
(pHKAl)] value. Note that these are imprecise localizations of
the targets of directional selection (especially with regard to
functional elements, see below), yet they may be sufficiently
informative to reveal genome-wide patterns. GO analysis
was undertaken to identify functional categories overrepre-
sented among these outlier genes. Statistical significance was
assessed by randomly permuting the windows identified as
low HKAl outliers (thus accounting for the effect of gene
length on the likelihood of random detection). Cellular com-
ponents implicated by this analysis included the nucleus,
chromatin, spliceosome, and polytene chromosome puff
(Table S20). Molecular functions included many related to
nucleic acid binding, along with kinase activities, ATP bind-
ing, zinc ion binding, and microtubule motor activity. Bio-
logical functions with the lowest GO P-values included
neuron development, chromatin silencing, mRNA splicing,
and centrosome organization. Other biological functions
with P , 0.05 pertained to transcription and translation,
along with RNA interference, oogenesis, and spermatogen-
esis (Table S20).

Using the low HKAl outlier central positions and closest
genes identified above, a striking pattern was noted with
regard to the positions of putative sweep targets along gene
regions. It was found that, relative to random expectations,
sequences near the beginning and ending of genes were
highly enriched for sweep signals (Figure 18A). On average,
exons were targeted by outliers considerably more often
than introns or distal intergenic regions (those .2 kbp from
a gene). Notably, 59-UTRs and 39-UTRs, along with proximal
intergenic regions, were more likely to be targeted by HKAl
outliers than protein-coding exons. As noted above, no sin-
gle localization by this method can be taken with confi-
dence, and some UTR-centered windows could instead
result from adaptive substitutions in nearby exons or non-
coding regions. However, given that the strongest genome-
wide HKAl enrichments in Figure 18A are for gene position
bins outside exonic regions, it seems unlikely that adaptive
protein-coding substitutions are the primary drivers of the
HKAl enrichment observed in UTRs and nearby regions.
These results are parallel to the chromatin state 1 patterns
presented above and could indicate a particular importance
of UTRs and nearby functional elements in the recent adap-
tive history of D. melanogaster (Kolaczkowski et al. 2011b).

UTRs may contain sequences that interact with regulatory
proteins or micro-RNAs to regulate mRNA stability or trans-
lation (Kuersten and Goodwin 2003; Pickering and Willis
2005) and hence have the potential to influence gene regula-
tion. Genome-wide, 87% of HKAl outliers appeared to center
on introns (43%), intergenic regions (38%), or UTRs (6%).
Despite the inherent uncertainty of the localizations, these
results suggest ample potential for adaptive cis-regulatory

changes in the D. melanogaster genome. With regard to
the types of genes affected by directional selection, GO en-
richment analysis of HKAl outliers implicated a striking
number of biological processes related to gene regulation
at multiple levels, including transcription, translation, and
splicing (Table S20). Processes related to RNA interference
and chromatin silencing showed similar enrichments and
may offer additional avenues for regulatory evolution (Levine
and Begun 2008; Kolaczkowski et al. 2011a). Functional
changes to genes involved in any of these processes could
alter the regulation of many other genes, suggesting the pos-
sibility that relatively “higher-order” trans-regulatory changes
may have a strong importance in Drosophila evolution.

Aside from implicating genes involved in gene regulation,
GO enrichment analyses of HKAl and MK outliers provided
further evidence for the adaptive importance of several
previously suggested biological processes, including male
and female reproduction. “Neuron development,” on the
other hand, has not been a major focus of research on Dro-
sophila adaptive evolution, and yet this GO category was the
most significantly enriched biological process for HKAl out-
liers. Furthermore, the most enriched biological process for
diversity ratio outliers (identifying candidates for recent
adaptation in non-African populations, see below) was “neg-
ative regulation of neuron apoptosis.” One biological expla-
nation for these results would be the evolution of resistance
to insecticides, many of which target the nervous system.
However, the prevalence of neural genes among MK outliers
(a signal that is unlikely to be driven by extremely recent
adaptation alone) suggests that other selective pressures
may be at work. An alternative explanation would be a
strong adaptive importance of behavioral evolution via mod-
ification of the nervous system. Detailed molecular and evo-
lutionary studies will be needed to evaluate this and other
hypotheses motivated by the data and analyses presented
here.

Similar analyses were undertaken with regard to high
HKAl outliers, which represent regions of excess polymor-
phism relative to divergence. High HKAl outlier regions
were generally narrower than low HKAl windows (Table
S21) and concentrated in coding exons but not UTRs (Fig-
ure 18, C and D). GO categories enriched for high HKAl
outliers included terms related to myosin and muscle attach-
ment, transmembrane and vesicle transport, and cellular
junctions (Table S22). Further investigation is needed to
determine whether these results indicate the selective main-
tenance of protein-coding variation at some genes or simply
the presence of low-frequency deleterious variants.

Potential signals of adaptation specific to the temperate
sample: Both D. melanogaster and D. simulans have ex-
panded their ranges from tropical Africa and Madagascar
to inhabit temperate environments (Lachaise et al. 1988;
Dean and Ballard 2004). Regions of the genome with un-
usually low diversity in the RAL sample, relative to the MW
sample, may contain targets of adaptation to temperate
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environments (Schlötterer and Dieringer 2005). Diversity
ratios (pRAL/pMW) were calculated for 5-kbp windows,
moved in 1-kbp increments. Outliers and putative target
genes were identified as described above for MW HKAl. A
comparable analysis excluding outliers for pMW gave very
similar results to those described below (not shown).

By far the strongest signal of non-African adaptation in
the highly recombining portions of the genome comes from
the region that includes Cyp6g1. This selective sweep, which
has been linked to insecticide resistance (Daborn et al. 2002;
Schmidt et al. 2010), has strongly reduced nucleotide diver-
sity across �85 kbp in the RAL sample and was also associ-
ated with a large differentiated region in the Australian
latitudinal cline (Kolaczkowski et al. 2011b). The previously
described signal covering unc-119 (Glinka et al. 2006) is also
apparent, covering at least 35 kbp. Other broad sweep sig-
nals ($20 kbp) include the genes jaguar (multifunctional,
with roles in oogenesis and sperm motility), Pcf11 (mRNA

cleavage), CG5278 (regulation of alternative splicing),
Pi3K92E (regulation of growth), PGRP-SA (regulation of
antimicrobial peptides), and Stat92E (multifunctional, with
roles in immunity and oogenesis), among others (Table
S23).

GO analysis was conducted for diversity-ratio outliers in
the same manner as described above. Many biological terms
with P , 0.05 pertained to metabolism, regulation of
growth, or behavior (see Table S24). Other terms included
negative regulation of neuron apoptosis, oogenesis, and re-
sponse to DNA damage stimulus. The set of GO terms im-
plicated by this analysis (Table S24) was largely different
from the MW HKAl results. Among the terms implicated by
both analyses were the biological processes nuclear mRNA
splicing via spliceosome and chromatin silencing, the cellu-
lar components precatalytic spliceosome and nuclear pore,
and the molecular processes nucleic acid binding and micro-
tubule motor activity.

Figure 18 The distribution of HKAl outliers along gene regions and among functional classes of sites. The number of outlier windows centering on each
gene position bin (A and C) or functional element (B and D) was compared against the total number of analyzed windows centering on each of these
categories for MW HKAl, for low outliers (A and B) and high outliers (C and D). Over- and underrepresentation of each category was calculated such that
a value of 1 matches the random genome-wide expectation, while a value of 2 indicates twice as many HKAl outliers in this category as expected randomly.
Gene positions (A and C) were defined with regard to the beginning of the 59-UTR and the end of the 39-UTR. “kbp” bins indicate distance upstream or
downstream of these limits, while genic bins indicate relative position between these limits and encompass 59-UTR, coding exon, intron, and 39-UTR
sequences. These categories are depicted separately, along with proximal intergenic (within 2 kbp of a gene) and distal intergenic regions, in B and D.
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Signals of reduced diversity shared between populations
and species: A simple metric was employed to scan the
genome for regions of reduced diversity that may have resulted
from recent selective sweeps: p/min(divl, divg), where the de-
nominator indicates the lesser of local divergence and global
average divergence (evaluated separately for the X chromo-
some and autosomes). This statistic is expected to yield low
values after a recent selective sweep, but not due to selective
constraint or elevated ancestral polymorphism. The statistic
was evaluated for 5-kbp windows in 1-kbp increments. Win-
dows within the bottom 2.5% quantile of the empirical distri-
bution were noted, and these “valleys” of diversity were
merged for outliers ,10 kbp apart. A more restrictive set of
cutoffs was identified for centromeric and telomeric regions
(visually, based on nucleotide diversity along the chromosome
in each sample) to exclude an influence of these regions on the
windows identified (boundaries are listed with the relevant
tables below).

Of the diversity valleys observed in the RAL sample, 44%
overlapped with a valley in the MW sample. Many of these
genomic regions may have experienced selective sweeps in
Africa prior to the worldwide expansion of the species. More
surprising was the proportion of diversity valleys shared
between D. melanogaster and D. simulans (data from Begun
et al. 2007). Of the RAL sample’s valleys, 24% overlapped with
a valley inferred from the D. simulans data. And the MW
D. melanogaster sample shared 28% of its diversity valleys with
D. simulans. Based on random permutation of valley locations
within the genome, the expected overlap due to chance for
each of these comparisons is �0.3%, and each result cited
above significantly exceeds this threshold (P , 0.0001).

While regions of reduced recombination were not included
in the above outlier analyses, we nevertheless tested for
a correlation between recombination rate and the locations of
shared outliers between species. Shared valleys of diversity
between MW and D. simulans did not show lower recombi-
nation rates than the full analyzed regions, as estimated by
broad-scale mapping data via r̂15 (1.88 · 1028 vs. 1.69 ·
1028). Although Drosophila is not known to have a hotspot-
like pattern of recombination along chromosomes, it is possi-
ble that recombination or gene conversion rates are locally
reduced across some of the shared diversity valleys, increas-
ing the influence of linked positive or negative selection and
potentially influencing fine-scale estimates of r̂. Although we
cannot formally exclude background selection as a contributor
to these results, this process has not been predicted to
strongly reduce diversity in higher-recombination regions of
the Drosophila genome. And in light of our divergence cor-
rection, selective constraint is not expected to account for the
above pattern.

Instead, genes that fall within diversity valleys in both D.
melanogaster and D. simulans may have been affected by
recent directional selection in both species. Such genes
might have contributed to the recent adaptation of both
species to a human commensal ecological role. Alternatively
they could simply represent isolated loci or dense gene clus-

ters of frequent adaptive importance in general, analogous
to the “hotspots of positive selection” detected in primates
by Enard et al. (2010). As might be predicted from the
single-species results, the 116 diversity valleys shared be-
tween MW D. melanogaster and D. simulans include genes
related to RNA interference, male and female reproduction,
chromatin organization, and regulation of transcription and
splicing (Table S25).

Four genes involved in the nuclear pore complex (CG8219,
Nup153, Nup214, and Nup358) were identified, consistent
with previous data from Nup153 and other nuclear pore
genes (Presgraves and Stephan 2007) in a population genetic
survey of interactors of the hybrid incompatibility gene
Nup96. Another hybrid incompatibility gene, Lhr (Brideau
et al. 2006), also contained overlapping diversity valleys be-
tween species. Additionally, Hmr (Barbash et al. 2003) ap-
peared on the list of MW HKAl outliers, and OdsH (Ting
et al. 1998) was among the diversity ratio outliers. These data
are in agreement with the hypothesis that hybrid incompati-
bilities in Drosophila often result from genes subject to recur-
rent positive selection.

Genes that contributed to the adaptation of temperate
populations to cooler climates may show a low ratio of
diversity between temperate and tropical populations. “Di-
versity ratio valleys” were defined in the same manner as
described above. For D. melanogaster, the ratio of nucleotide
diversity between the RAL sample and the MW sample was
assessed. For D. simulans, the ratio of diversity was com-
pared between the two U.S. strains on one hand (sim 4/6
and w501) and the three lines from Africa/Madagascar
(MD106TS, MD199S, and C167.4) on the other. The
D. simulans data thus consisted of very small samples and
relatively low coverage. However, most 5-kbp windows met
the threshold of having at least 2500 sites covered by two or
more lines in each set.

Despite the limitations of the divided D. simulans data
set, this species shared 6% of the diversity ratio valleys ob-
served in D. melanogaster (P , 0.0001 compared to random
expectation, calculated by permutation as described above).
Thus, some of the same genes may contribute to temperate
adaptation in D. melanogaster and D. simulans (Table S26).
Cyp6g1 appears on this list, in agreement with the conclu-
sion of Schlenke and Begun (2004) and Schmidt et al.
(2010) that the evolution of insecticide resistance has oc-
curred at this locus in D. simulans as well. The 28 genes
flagged by shared diversity-ratio valleys between species
also included nompC (perception of sound), shep (gravi-
taxis), Sirt2 (determination of adult life span), and klingon
(olfactory learning, long-term memory).

X-linked vs. autosomal polymorphism and divergence:
With regard to X-linked vs. autosomal polymorphism and
divergence, we begin by focusing on the ancestral-range
population (MW). In an equilibrium population with equal
numbers of males and females, equal X-linked and autoso-
mal mutation rates, and no natural selection, the expected
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ratio of X-linked vs. autosomal diversity is 3/4. In the African
sample of D. melanogaster, however, we observed X-linked
expected heterozygosity to be �10% higher than the autoso-
mal average (Table 3), consistent with previous results from
sub-Saharan populations (e.g., Kauer et al. 2003; Hutter et al.
2007). The X chromosome shows an even greater excess of
divergence (�20% higher than the autosomes; Table 3). To-
gether, these observations might be taken as evidence for a
higher X-linked mutation rate. However, this hypothesis is not
supported by empirical data: Keightley et al. (2009) found no
significant difference between X-linked and autosomal muta-
tion rates, and the point estimate for the X-linked mutation
rate was actually �30% lower than the autosomal estimate.
Thus, we are left without a plausible interpretation for a large
portion of X-linked divergence in D. melanogaster based solely
on the strong assumption that substitutions have no fitness
effects.

The elevated X-linked polymorphism in African D. mela-
nogaster also remains unexplained by mutational factors. One
conceivable demographic explanation for this pattern is an
extreme excess of females over males in the breeding popu-
lation (Charlesworth 2001). However, a simple calculation
indicates that �40 females per male would be required to
generate the observed X-to-autosome (X/A) diversity ratio.
In principal, background selection might also lead to elevated
X/A diversity ratios (Charlesworth 1996). Deleterious muta-
tions may reach higher frequencies on the autosomes (being
purged more efficiently on the X chromosome due to male
hemizygosity), and this may lead to a greater autosomal di-
versity reduction under background selection. However, back-
ground selection has not been predicted to strongly influence
diversity in regions of the Drosophila genome subject to mod-
erate or high rates of recombination. Perhaps the most plau-
sible explanation for elevated X-linked diversity in African
D. melanogaster is the one advanced by Vicoso and Charlesworth
(2006). These authors found that differences in recombina-
tion rates (generally higher on the X) could account for
observed deviations from a 3/4 X/A diversity ratio. Under
this view, the autosomes’ lower recombination rates lead to
a greater diversity reduction due to linked selection. Impor-
tantly, the high levels of autosomal inversion polymorphism
observed in many D. melanogaster populations, particularly
in Africa (Aulard et al. 2002), may exacerbate recombination
rate differences between the X and the autosomes in natural
populations, beyond what would be indicated by laboratory
mapping experiments.

Relative to the African population, the North American
sample showed a very different pattern of X-linked vs. auto-
somal variation. Here, the X/A diversity ratio was 0.67, with
the North American sample retaining only 47% of the X-
linked diversity present in the ancestral range population,
but retaining 76% of the autosomal diversity observed in the
African population [consistent with previous findings (Kauer
et al. 2003; Hutter et al. 2007)].

The difference between the North American and African
populations in the ratio of X-linked vs. autosomal variation

was assessed using the ratio of X/A diversity ratios, defined
as (RAL X-linked p/RAL autosomal p)/(MW X-linked
p/MW autosomal p). This statistic will be equal to one if
both populations have the same ratio of X-linked vs. autoso-
mal nucleotide diversity. Instead, this ratio was equal to 0.61
for the empirical data. Demographic events such as popula-
tion bottlenecks or founder events may lead to a dispropor-
tionate reduction in X-linked diversity (Wall et al. 2002;
Pool and Nielsen 2008). Pool and Nielsen (2008) examined
a model of founder events with multiple mating, finding that
such histories could produce lower X/A diversity ratios than
population bottlenecks. However, the lowest ratio observed
in that study for any demographic parameter combination
was 0.67. Further, the effect of African admixture, if selec-
tively neutral, would be to bring the RAL sample’s X/A
diversity ratio closer to 1. Hence, proposed neutral demo-
graphic models cannot account for X-linked and autosomal
variation in the non-African sample.

One explanation for the X chromosome’s stronger diver-
sity reduction in the non-African population is a stronger
effect of hitchhiking on the X chromosome relative to the
autosomes. The X chromosome’s hemizygosity may allow
more recessive (and even underdominant) beneficial muta-
tions to become visible to selection (Charlesworth et al.
1987; Orr and Betancourt 2001; Betancourt et al. 2004).
Alternatively, even if beneficial mutations have fixed at sim-
ilar frequencies on the X chromosome and the autosomes,
a higher proportion of X-linked sweeps may have been
driven by newly occurring variants (hard sweeps), whereas
relatively more autosomal adaptation may have occurred via
natural selection on standing genetic variation (“soft sweeps,”
with more than one haplotype linked to the beneficial muta-
tion). An additional possibility is that African introgression
into the U.S. population may have been more extensive on
the autosomes than on the X chromosome, potentially due to
stronger or more efficient selection against African X chromo-
somes entering temperate American environments, mirroring
the interpretation of Kauer et al. (2003) in their study of gene
flow into Africa.

Conclusion

Our results are consistent with a significant role for positive
selection in shaping patterns of polymorphism in Drosophila.
This threatens to undermine the rationale for conducting
standard demographic inference in this species, since the
effects of natural selection may skew demographic parame-
ters estimated under the assumption of selective neutrality.
Indeed, a strong case could be made to place natural selec-
tion and population history on equal footing in modeling the
dynamics shaping patterns of genomic variation in Drosoph-
ila. For species with large population sizes, it may prove
essential to estimate parameters of selection and demogra-
phy jointly, to have plausible inferences regarding either of
these processes. The recurrent evidence of nonneutral evo-
lution in our data stands in stark contrast to the view that
human genomic variation can largely be explained without
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invoking hitchhiking (Hernandez et al. 2011 and references
therein). One important objective for comparative population
genomic analyses (along with theoretical and simulation stud-
ies) is investigation of the extent to which differences among
species in the genome-wide prevalence of recurrent hitchhik-
ing can be explained by population size (Maynard Smith and
Haigh 1974; Gillespie 1999). Such investigations offer prom-
ising opportunities to address classic questions concerning the
nature and impact of selection in shaping levels and patterns
of genetic variation. The expansion of population genomic
surveys to include geographic sampling on the relevant de-
mographic and ecological scales allows even broader popula-
tion biological investigations. The merger of the deepening
knowledge of structures and functions of genomes (annota-
tion) with full descriptions of genomic variation in natural
populations represented by our analyses is an important ex-
pansion of the scope and approach of biological research.
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Note added in proof: See Corbett-Detig et al. 2012 (pp. 131–
137) for a related work. In addition, subsequent to the sub-
mission of this article a related paper, Mackay et al. (2012),
appeared. While the scopes of that and this article precluded
a systematic analysis and integration during the prepublica-
tion period, we note two notable differences. We report a finer
genomic scale for the correlation between rates of crossing
over and polymorphism. And Mackay et al. (2012) report
a greater amount of between-species divergence in introns.
We think both of these differences are likely attributable to
differences in methodology.
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Appendix A: Genome Assemblies

Creating MAQ Assemblies

Lanes that passed quality-control filters were subsequently aligned to the BDGP 5 reference genome, using MAQ v 0.6.8 (Li
et al. 2008). For nonpaired reads MAQ uses a Bayesian calculation to determine a maximal a posteriori ungapped alignment
of each read to the reference genome. To accomplish this task effectively for large problem instances, MAQ implements an
approximate matching heuristic based on hash indexes. By default, MAQ indexes the first 24 bp of the read, which are
typically the most accurate. The indexing scheme guarantees all alignments with at most two mismatches to the reference
genome in the first 24 bp of the read will be evaluated. The hashing scheme MAQ implements allows for the possibly of
additional mismatches in the first 24 bp, but the probability that they are evaluated drops off steeply. MAQ identifies and will
retain the multiplicity and alignment locations of reads that align with 0 or 1 mismatch to multiple loci. We considered
a locus to be unique if all reads used to determine its consensus nucleotide were mapped to only one location. All nonunique
loci were masked at this stage from our subsequent analyses of the consensus sequence.

Two MAQ consensus sequences

For each genome, we used MAQ to determine two consensus sequences, diploid and a haploid, from the aligned reads. More
specifically, the diploid consensus sequence was created solely to evaluate genetic anomalies and annotate regions of residual
heterozygosity for subsequent masking from population genomics analyses. For our diploid consensus sequences, we left the
MAQ consensus sequence parameters at their default settings. Since the diploid assemblies are an intermediate datatype
used only for genetic quality control, we did not spend time optimizing these parameters.

Ultimately we resolved to create a haploid consensus sequence of each genome for subsequent population genetics
analyses. The haploid model is representative of the single genome of a successfully inbred strain. We implemented a haploid
consensus sequence or “assembly” by using the prior probability distribution to eliminate the heterozygous outcome from the
model selection.

Two postprocessing steps are applied specifically to the haploid consensus sequences. Under the haploid model, true
heterozygosity obviously leads to lower quality scores and higher consensus error rates. To prevent this, regions of residual
heterozygosity are identified and filtered from the haploid consensus sequences. We also performed a postprocessing of the
quality scores to improve both their accuracy and their ability to discriminate. These are described in more detail below. The
results across all D. melanogaster lines are shown in Table A1.

Evaluating the Consensus Quality of Haploid MAQ Assemblies

To evaluate the quality of the Drosophila genome assemblies produced by this sequencing method and the MAQ assembly
software, we sequenced and assembled two replicate libraries of the reference D. melanogaster strain, ycnbwsp (Adams et al.
2000) (see Table 1). In principle, evaluating the assembly of the genome with known sequence, such as the reference
D. melanogaster strain, can provide information regarding the accuracy of the assembly process.

The fact that the sequenced genomes targeted by our project for population genetic analysis are different from the
reference genome sequence means that the act of assembling the reference genome to the reference genome’s sequence
provides little information on the effect of natural variation on assembly quality. In other words, assembling the reference
strain against its own genome does not address all issues and sources of error.

We wanted to simulate the sequencing and assembly of novel D. melanogaster genomes, but in a controlled environment.
To accomplish this we introduced “evolutionary divergence” into the reference sequence at rates consistent with expected
pairwise divergence values, using the MAQ module fakemut (Li et al. 2008).

An alternative, but flawed, approach would be to introduce the evolutionary divergence into the reads to change the
haplotype of the DNA sample. This can be done only by knowing precisely where the reads are located with respect to each
other and consequently within their genome. Since this involves an additional layer of simulation and assumption, we
deemed the simpler approach to be the best. Rates of divergence were chosen based on average heterozygosity and
divergence reported in previous surveys (Pool and Aquadro 2006; Andolfatto 2007; Begun et al. 2007): 0.009 nucleotide
substitutional variants, 0.0005 small insertions, and 0.0005 small deletions.

Recall that two ycnbwsp genomic DNA preparations were independently sequenced to our target read length of 36 bp and
approximate target coverage of 10-fold redundancy (Table 1). For each ycnbwsp DNA sample we used the method described
above to align and assemble the reads into a haploid assembly.

Formally, for each ycnbwsp sample the resulting haploid consensus sequence is denoted s = (s1, . . . , sn), where s 2 (A, C,
G, T). For each consensus sequence s there is a corresponding quality-score sequence Q = (Q1, Q2, . . . , Qn), where Q 2 Z+

produced by MAQ. Each quality score Qi is defined in terms of the probability that the nucleotide si is incorrect. If the MAQ
predicted error probability is ei, then Qi = 210 log10(2i).
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These data have two remarkable features: first, the reference sequence is no longer the same as the genome being
sequenced. This allows for a greater possibility of alignment error. Second, the sequence of the DNA sample is known,
allowing us to evaluate assembly errors. We analyzed the accuracy of the consensus quality scores of these two assemblies
against the “diverged” reference sequence upon which MAQ built them.

Empirical quality analysis

A mismatch to this modified or diverged high-quality BDGP 5 reference genome was considered an error. For each assembled
ycnbwsp genome we ranked the consensus nucleotides by their MAQ quality scores and defined quantiles on this ranking.
Within a quantile K, let errorK be the number of observed errors. The size of each quantile was expanded until errorK was
greater than a threshold parameter t chosen to provide a good nonzero estimate of the quantile-specific error rate estimate
2K ¼ errorK=jKj. An empirical consensus quality score Q̂ is computed from the observed error rate ê in each quantile, using
Q̂ ¼ 210 log10ð2KÞ. Similarly, the MAQ predicted consensus quality score Q for a quantile K was determined from the
expected value of the MAQ predicted error rate for that quantile eK. More specifically eK ¼ ð1=KÞPk2K10

2Qk=10 and
Q ¼ 210 log10ðeKÞ. Figure A5 plots the empirical quality score Q̂ vs. the MAQ predicted consensus quality score Q for each
quantile.

The comparison in Figure A5 indicates that the MAQ consensus quality scores are optimistic in this setting. MAQ includes
a model parameter designed to compensate for dependent errors in the aligned data at a locus. The observed result,
however, is likely a combination of multiple factors: optimistic quality scores from the Illumina basecaller, nonindependence
of errors in the aligned data at a locus, and alignment errors not modeled by MAQ. To address these issues, we implemented
an empirical approach to recalibrate the raw MAQ consensus quality scores.

Quality Score Recalibration

Following Ewing and Green (1998; Ewing et al. 1998), we can characterize quality scores in two ways. The accuracy of
a quality score assignment measures how different the observed error rate is from the error rate predicted by a quality score
such as Q. While a single metric is sufficient to characterize the overall accuracy of the quality scores across an assembly, we
characterize the quantitative relationship between these over their domains. In Figure A5 we examine the accuracy of MAQ
quality scores Q by comparing them to the observed error rate Q̂ in quantiles.

The utility of an assignment of quality scores in the discrimination of correctly and incorrectly called bases is perhaps more
important than accuracy. This discrimination of a quality score assignment measures how effective the quality score’s ranking
is of correct basecalls over erroneous basecalls. This characterization is formally discussed in Ewing and Green (1998). As an

Table A1 Numbers of assembled Q30 and Q40 base pairs and allelic depths for the MW and RAL samples on the X and autosomes

Q $ 30 Q $ 40

MW RAL MW RAL

All chromosomes

bp 109,883,720 110,963,890 108,943,964 110,681,459
Maximum allelic depth 7 36 7 36
Mean allelic depth 5.35 31.76 4.82 28.69
Coding maximum allelic depth 7 36 7 36
Coding mean allelic depth 5.40 31.99 4.73 27.70

Autosomes

bp 89,468,274 90,351,443 88,727,797 90,144,978
Maximum allelic depth 6 36 6 36
Mean allelic depth 5.10 31.73 4.61 28.99
Coding maximum allelic depth 6 36 6 36
Coding mean allelic depth 5.19 32.05 4.55 28.15

X chromosome

bp 20,415,446 20,612,447 20,216,167 20,536,481
Maximum allelic depth 7 35 7 35
Mean allelic depth 6.45 31.91 5.75 27.37
Coding maximum allelic depth 7 35 7 35
Coding mean allelic depth 6.66 31.61 5.81 24.95
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example, if our assembly has an average error rate of 1 in 100, assigning a quality score of 20 to each nucleotide would be
a highly accurate quality score assignment but leave the user of the sequence little ability to select a subset of the data with
lower error rates.

Our goal in recalibrating the quality score assignments was to achieve better accuracy while at the same time maintaining,
if not improving, the discrimination. Increased accuracy could be achieved by recalibrating the MAQ consensus sequence
quality scores, using a monotonic transformation of the values. However, since we were also interested in better
discrimination, we developed a richer model of consensus sequence errors specific to our experimental design.

Applying a generalized linear model

We used a generalized linear model (GLM) to determine the recalibrated quality scores. The GLM, as introduced by Nelder
and Wedderburn (1972), consists of a single response variable and one or more predictor variables. The response variable
is free to change in response to the predictor variables or predictors of the model. The response variable is modeled as
a random variable and the predictor variables are nonrandom observations. When the distribution of the response variable
can be modeled by a member of the exponential family of probability distributions, maximum-likelihood parameter estimates
can be obtained via a standard linear regression technique. In contrast to the more general class of nonlinear models, the
GLM is appropriate for large data sets because parameter estimation has the same computational complexity as linear
regression.

Two components are needed to adapt the iterative weighted least-squares regression algorithm to perform maximum-
likelihood estimation of the model parameters (Charnes et al. 1976). The link function describes the relationship between
the expected value of the response variable and additive linear predictor terms. The variance function describes the variance
of the predictor variable as a function of its mean. The variance function is completely specified by choosing the probability
distribution for modeling the response variable. There is typically a natural link function for most exponential probability
distributions.

In our case, we modeled the error rate, for a particular class of base pair, as the parameter of a Poisson distribution. We
fitted the model on a table of error counts by classes determined by the predictor variables. The Poisson distribution is
frequently chosen for modeling count data of this type (Chambers and Hastie 1992; Dobson 2001).

Modeling a Poisson-distributed response variable: Our model follows a standard form for a Poisson GLM. Below we
demonstrate that the observed data fits this model well. A map s / 1, . . . , n assigns each base pair to a class. The number of
base pair classes is determined by the resolution of the m predictor variables and the structure of the model. Each predictor
variable has a finite number of states. Each class represents a unique combination of the states of the m predictor variables
(interaction terms were not considered). The error rate ei for the class of nucleotides indexed by the subscript i can be
described by the following function of the predictor variables:

ei ¼ eb0
Ym
j¼1

exjbj : (A1)

It is typical to represent this in a linear form by applying the link function to both sides of the model:

lnðeiÞ ¼ b0 þ
Xm
j¼1

exjbj : (A2)

Relationship to the null hypothesis: Our null hypothesis can be written in the form of Equation A2. Under
the null hypothesis, that a consensus quality score Qi is correct, the error rate ei for all base pairs labeled with i is a function
of Qi:

ei ¼ 102Qi=10: (A3)

If 2i is modeled as a Poisson random variable, then we have

lnðeiÞ ¼ bQi (A4)

lnðerroriÞ ¼ lnðcountiÞ þ bQi; (A5)

where b is a proportionality constant. If the quality scores are “correct,” then b = ln(10)/10 and a b̂ estimated by maximum
likelihood from data would not be significantly different from its expectation, b = ln(10)/10.
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Constructing a conservative alternative hypothesis: The primary predictor of the error rate was the MAQ consensus quality
score Q, which by definition is proportional to the log of the “predicted” error rate. We note that the GLM link function for
the Poisson error rate parameter is also the log, and thus no transformation of Q is required. A Poisson GLM using Q as the
sole predictor variable results in a linear transformation of the quality scores, improving accuracy but, of course, not their
ability to discriminate.

Let counti be the number of nucleotides with quality score Qi and errori be the number of those that are errors. Let 2i be
the error rate of all nucleotides with quality score Qi and note that it denotes the actual error rate. For data based on counts
of rare events, we model the number of errors observed in all base pairs with quality score Qi as a draw from a Poisson
distribution specified with parameter ei (Dobson 2001). This implies our beginning model has the form

lnðeiÞ ¼ b0 þ b1Q (A6)

lnðerroriÞ ¼ lnðcountiÞ þ b0 þ b1Q; (A7)

where

Q9 ¼ 210 log10ðeiÞ ¼ 210
�
b̂0 þ b̂1Q

�
: (A8)

Equation A6 represents the model, where Equation A7 is a restatement of the model in terms of the actual observed data.
Equation A8 computes the recalibrated quality score Q’ after model parameters have been estimated. This model was
considered along with richer ones during the selection process.

Richer alternative hypotheses: We recognized, as have others, that local assembly errors are also a driver of consensus
sequence errors. We evaluated additional predictor variables to extend the model of Equation A6. These are defined in the
following list:

• Depth is the number of aligned reads covering the nucleotide. We expect lower-depth parts of the assembly to be
associated with higher error rates (Bentley et al. 2008; Keightley et al. 2009).

• InDel is either 0 or 1 for a nucleotide depending on whether MAQ’s indel detector (indelsoa) covers the nucleotide with
a predicted insertion or deletion event.

• MinQ1 for a nucleotide is the minimum MAQ quality score of the nucleotide and its two adjacent neighbors.
• MinQ5 for a nucleotide is the minimum MAQ quality score in the window within a distance including five nucleotides in

either direction along the consensus sequence.
• An interior score is defined for each position in a read as the distance to the nearest edge. It follows that each nucleotide in

the consensus sequence has a corresponding set of interior scores that overlap it. Three summaries of the overlapping
interior scores were computed for each nucleotide. They are illustrated in Figure A1.

• MaxIS is the maximum interior score.
• AveIS is the average interior score.
• SumIS is the sum of interior scores.

Parameter estimation, model selection, and model adequacy

For a proposed model, the parameters were estimated using the glm module of the R package for statistical computing (R
Development Core Team 2010). Our training data consisted of the two independent ycnbwsp assemblies described above.
When evaluating the adequacy of the model during the model selection phase, a cross-validation approach was used
whereby the model was trained on one of the two ycnbwsp assemblies and tested on the other.

The base model considered was the initial model using only the MAQ quality score, Q (Equation A7). More descriptive
models of the data were considered incrementally, evaluating additional predictor variables and retaining those that

Figure A1 Interior score MaxIS. An interior score is de-
fined for each position in a read (open boxes) as the dis-
tance to the nearest edge. It follows that each nucleotide
in the consensus sequence has a corresponding set of in-
terior scores that overlap it. To compute MaxIS, the con-
sensus sequence (shaded boxes) inherits the maximum
max() of the interior scores of the overlapping reads.
SumIS and AveIS are defined by replacing the max() func-
tion with sum() and ave(), respectively.
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significantly improved the fit as well as the models’ ability to discriminate between nucleotides with correct and incorrect
assignments. A number of methods are available to determine whether a model adequately explains the data (Chambers and
Hastie 1992; Dobson 2001; Cohen and Cohen 2008). Because of the extremely large amount of data in the training set, all of
the candidate predictor variables showed significant changes in residual deviance. The remaining criterion used to determine
whether a predictor variable should be included was a quantitative improvement in discrimination.

Receiver operator characteristic (ROC) curve: To evaluate the ability of a proposed quality score assignment to discriminate
between nucleotides with correct and incorrect assignments, we used an implementation of the ROC curve. We are
ultimately interested in choosing a quality score cutoff to separate high-quality (mostly correct) nucleotides from low-quality
(likely incorrect) nucleotides. Our classification of the data is parameterized by quality score cutoff. Two concepts are
important in evaluating the effectiveness of a binary classification. In our context, sensitivity measures the ability of our
classifier to identify correct nucleotides, while specificity measures the ability of our classifier to identify incorrect nucleotides
so they can be filtered from the correct nucleotides. A ROC curve is used to simultaneously evaluate the sensitivity and
specificity of a classifier over a range of cutoff parameters (Cohen and Cohen 2008; Hastie et al. 2009). Our ROC curve plots
the cumulative coverage vs. the cumulative error rate. Each point on this parametric curve is a quality score cutoff. The area
under an ROC curve is interpreted as a quantitative summary in which better classifiers have a larger area. A perfect
classification of the data occurs when incorrect nucleotides all have lower quality scores than correct nucleotides. Similarly,
in our ROC curve, maximal area is achieved by a quality score assignment that maximizes coverage without errors.

In Figure A2 we assess the base model, using only the MAQ quality score Q, and all of the single variable extensions, using
the ROC curve. Surprisingly, the only candidate predictor variable that did not improve the discrimination ability of the MAQ
consensus quality score alone was the consensus sequence depth. This is consistent with Figure SA1, which shows a large
correlation between depth and MAQ quality score Q.

In using an ROC to evaluate model performance, it is possible that an additional predictor variable will have a significant
fit, but will not significantly affect the ROC (Cook 2007). All of the predictor variables evaluated significantly reduced
residual deviance from the glm analysis; however, Depth does not improve the ROC. Our objective was to add only additional
predictors that improved discrimination ability; hence we did not consider Depth.

Interpretation of parameter estimates: For a binary predictor variable xj, a fitted model parameter bj can be interpreted in
terms of the following ratio of expectations for the Poisson-distributed response variable errori:

expðbjÞ ¼
E
�
errori

��xj ¼ 1
	

E
�
errori

��xj ¼ 0
	: (A9)

The interpretation is similar when xj is an integer. For each unit increase in the observed value of xj, there is a quantitative
increase of exp(bj).

Figure A2 ROCs for the simple models (see text). Cumu-
lative coverage (y-axis) vs. observed error rate (x-axis) is
plotted for the model based only on Q (red) and the seven
extensions based on the addition of a single (indicated)
predictor variable. Note the improvement of the discrimi-
nation achieved with several of the extensions.
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The model correctly represents the binary predictor variable InDel because the ratio of expectations in Equation A9 is well
defined and expected to be greater than one. For the integer predictor variables on our list we confirmed the linear
relationship between the predictor and the log error rate. The log-linearity property is clearly demonstrated for Q in Figure
A5. Figure A3 additionally demonstrates that this property is well reflected in the observed data for the other predictor
variables chosen for the final model (see below).

Improved consensus quality scores

The final form of our Poisson GLM is as follows:

log
�
ej
	 ¼ b0 þ b1Qþ b2InDelþ b3MinQ5þ b4MaxIS: (A10)

Given the high correlation with the two groups of predictors (MaxIS, AveIS, SumIS) and (MinQ1, MinQ5), only one was
chosen from each group to avoid overfitting. Of the models considered, our final model maximized the area under the curve.
Once the final model was determined, the two reference libraries were combined and divided in half for the final training
and cross-validation.

As expected, the final model parameters indicated that the detected indel events (InDel) were positively correlated with
error rate. It predicted the probability of an error was .14 times greater in the context of an InDel (see Equation A9). All
other model parameters were negatively correlated with the error rate. The model chose to weight the consensus quality
score (Q) and the minimum proximal quality score (MinQ5) similarly. This penalizes abrupt decreases in depth and proximal

Figure A3 Quantile error rates for predictor variables: right, Q̂ vs. depth; center, Q̂ vs. MinQ5; and left, Q̂ vs. MaxIS. The mean empirical quality score Q̂
(y-axis) was calculated in quantiles large enough to estimate Q̂ (see text). The quantile mean of predictor variables is plotted on the x-axis.

Figure A4 ROC for selected model (cumulative coverage
vs. cumulative error rate, parameterized by the quality
score cutoff). The final quality score model and three ear-
lier models incorporating the individual components are
compared to the initial MAQ quality scores Q.
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decreases in quality. This is consistent with our hypothesis that context, in this case the nominal quality, is associated with
assembly errors.

In Figure A4 we evaluate our final model alongside the previously considered models. When comparing two quality score
assignments, the one that gives the lower error rate for the same amount of coverage is clearly better in the practical range.
The inclusion of simpler models provides details of the relative contribution of each of the predictors to the improved
discrimination. MaxIS gives the largest contribution in discrimination. The striking improvement in discrimination of our
model over the unprocessed MAQ consensus quality scores Q (Figure A4) validates our approach and indicates that it is
possible to use additional assembly information to significantly improve MAQ consensus quality scores.

The improved accuracy of our model is evaluated in Figure A5, where we plot the empirical quality score computed from
the estimated error rate determined from the validation data vs. our improved quality scores along with the unprocessed
MAQ consensus quality scores Q. Under the ideal scenario of perfect accuracy, the estimated quality score should be equal to
the empirical quality score (red line in Figure A5).

Application to RAL and MW genomes

In Figure SA1 we illustrate the linear relationship between depth and quality score. All lines sequenced demonstrated this
linear relationship, which is due to the additive effect of evidence on the consensus quality score. We define a quality score
depth profile for a DNA sample as the two parameters describing the best fit of Q = a0 + a1 depth. The RAL and MW
genomes were normalized to the training profile in a parametric manner by computing each quality score depth profile and
applying a linear transformation to the consensus quality scores to give them a profile identical to the training profile. This
was done using the glm module of R. Finally, the recalibrated quality score Q’ is computed from the model-predicted 2i, using
the estimated model parameters b0, . . . , b4, and predictor variables are computed on the consensus sequence derived from
each sampled genome. The standard Phred definition of a quality score Q9 = 2log10(2) is used to assign a recalibrated
quality score from the predicted 2. The mean quality score for all genomes decreased upon recalibration.

Implications of improved quality scores

These improved aspects of the data enable more robust downstream population genetics analysis. In any standard
population genomic analysis, sequencing errors can critically bias estimations of important population genetic parameters
and invalidate tests of statistical hypotheses; e.g., consider the impact of singleton errors on Tajima’s D (Tajima 1989).
Therefore, a critical aspect of most genomic analyses, including population genomic analyses, is the ability to censor based on
accurate estimates of error. Since its debut (Ewing and Green 1998; Ewing et al. 1998), the Phred scaled quality score has
been the most direct and widely accepted way to do this. To better establish this utility on our genomic assemblies, we
recalibrated the MAQ consensus quality scores to correctly reflect the error properties. The resulting increased accuracy
means that the error properties of the data above a particular Q value are estimated better. Furthermore, by increasing the
discrimination of our recalibrated quality scores using additional assembly information, we have increased the amount of

Figure A5 Empirical quality (y-axis) vs. the consensus
quality score Q (x-axis) from the MAQ assemblies of both
ycnbwsp assemblies (one purple and one orange). The
ideal relationship between the idealized quality score
and the empirical quality is shown with the red line. The
final recalibrated consensus quality scores for both
ycnbwsp assemblies are plotted in green and blue. The
recalibrated consensus quality scores show improved ac-
curacy as they are much closer to the ideal relationship.
See text.
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data that can be included in analyses at a specified error tolerance. While the specific model developed here is specialized in
terms of its technological and biological assumptions, we think the modeling procedure should be useful in different settings.

Appendix B: Annotating Segmental Aneuploidy

Our goal was to determine intervals of segmental aneuplody along the genomes of the sequenced D. melanogaster stocks. We
examined the depth of sequenced reads at each position of the genome in each sequenced line to detect copy-number
differences among inbred lines. Characteristically, duplications are detected as regions of significantly increased depth, while
deletions are inferred based on significantly decreased depth. Following similar results for hybridization-based studies using
microarray technology, we used a HMM to segment the genome of each line into regions of euploidy and aneuploidy as we
describe below. Our approach was an adaptation of the ergodic model used by Colella et al. (2007) for our specific
technology and genetic scenarios.

Compositional Characteristics of Illumina Libraries

In our characterization of segmental aneuplody we considered the ycnbwsp reference genome as euploid or normal copy
number, and we were interested in determining deleted or duplicated intervals relative to the reference genome. Our
approach was to detect the changes in read depth or expected fold coverage that arise from such an event. An important
initial step in annotating regions of aneuplody was to develop a model for euploid read depth.

It has been previously observed that the representation of the library is not uniform across the range of the genomic G+C
content. We observed that genomic DNA with %G+C content in the range of 20–60% was well represented in the library.
However, as the %G+C gets below 20 or above 65, there is a sharp decrease in the representation of the genomic DNA in the
library. This overall effect can be observed in Figure B1. Variation in the library’s compositional profile across samples can
also be observed in the differences in the overall %G+C content of the library (Figure SB1).

Library-Specific Sequence Composition Profiles

Since we observed that %G+C content has such a large effect on the expected fold coverage, it is an important factor to
consider in modeling expected fold coverage or read depth. To better quantify the local %G+C content effect we estimated
representational enrichment in windows as a function of %G+C.

In our setting, all reads have length l= 36 bp. Read depth was measured as the number of reads in windows of width w=
100 bp. A read contributes depth only to the window overlapping its leftmost coordinate. Windows overlapped by l2 1 ¼ 35
bp. The counting scheme and overlap were chosen to make depth measurements conditionally independent given the model
parameters observed in the window.

Figure B1 PL(g) vs g (see Equation B1). The solid line
represents the mean of the G+C profiles of all stocks in
the CNV analysis. The dashed lines are 61 standard
deviation.
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To characterize representational enrichment for each library, we computed a library-specific G+C profile that maps the
local G+C content to a rate ratio indicative of how much the local fold coverage is expected to be higher or lower. The
specific rate ratio is the ratio of the expected read depth in the window given the local %G+C content g to the overall
expected read depth in a window marginalizing %G+C. Formally, for a library L, its library-specific compositional profile PL
maps the local %G+C content g to the following ratio of expectations:

PLðgÞ ¼ Eðread depth in windowjwindow %Gþ C ¼ gÞ
Eðread depth in windowÞ : (B1)

The G+C profile for each line was computed using only the autosomal chromosomes to avoid the expected reduction in fold
coverage due to a lower representation of the X chromosome in the library (due to mixtures of male and female individuals).
The library-specific ratio of X chromosomes to autosomes is estimated in a subsequent phase. Figure B2 shows our library-
specific autosomal compositional profiles for all libraries.

Modeling Read Depth

To model read depth, it was natural to appeal again to GLMs that utilize the analytical methods of linear regression to obtain
maximum-likelihood parameter estimates for models with a single response variable, in our case read depth, and one or
more predictor variables (Nelder and Wedderburn 1972). The theoretical distribution for the number of reads falling in an
interval along the genome is modeled as a Poisson random variable (Lander and Waterman 1988). It is also standard
practice to use the Poisson distribution in the GLM framework to model count data (Dobson 2001). Our final model (see
below) incorporates estimated deviations from this ideal Poisson model.

Utilizing our library-specific compositional profile PL, we constructed a simple model to explain the windowed read count
d = {d1, . . . , dn}. We modeled the dependence of the Poisson parameter li from which di is drawn on the explanatory
variables g and X as

li ¼ expðb0 þ b1   lnðPLðgiÞÞ þ bXXiÞ: (B2)

Here we introduce the Boolean explanatory variable X that is 1 if the window falls on the X chromosome and 0 if the window
falls on an autosomal chromosome. Recall that PL(gi) is the rate ratio for window i with %G+C = gi as given by Equation B1.
The estimated parameter b0 should be interpreted as the natural log of the expected windowed read depth across the entire
sample; this is also the denominator of Equation B1. Thus, the expected read depth for a window is simply the overall
expected read depth multiplied by a %G+C enrichment factor and potentially an X chromosome depletion factor. The
resulting GLM for this model is

Figure B2 PL(g) vs g (see Equation B1). The lines represent
the library specific G+C profiles of all stocks in the CNV
analysis.
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lnðliÞ ¼ b0 þ b1   lnðPLðgiÞÞ þ bXXi: (B3)

The model parameters of Equation B3 were estimated for each library, using the glm package in R.

The X/A Ratios

For the binary predictor variable X, the fitted model parameter bX can be interpreted in terms of the following ratio of rates
for the Poisson-distributed response variable windowed read depth on the X chromosome and on the autosomes (A).

expðbXÞ ¼
Eðread depth in windowjwindow is on XÞ
Eðread depth in windowjwindow is on AÞ: (B4)

We can use Equation B4 as an estimate for the library-specific X/A ratio. Figure B3 shows our estimates of the X/A ratio
across all stocks; as expected, the values fell between 1 (all females) and 0.75 (one-half females).

Additional Features

We developed a more descriptive model by including additional terms to incorporate information about the alignment as
well as the reference libraries. This more descriptive model adds two alignment features computed from the MAQ output.
We considered the number of single-nucleotide differences from the reference genome sequence in the window (SNPs). We
also considered the number small indels computed by the MAQ indelsoa program (indels). These are summarized in Table
B1.

We noted that SNPs had a small but noticeable effect. The median estimate across all stocks was a 2% reduction for each
SNP when there were fewer than four of them in a window. For the few windows where there were four or more SNPs read
depth was low and the windows were treated as missing data. For windows with indels predicted by MAQ the median
estimate across all stocks was a 14% reduction in read depth per indel per window.

Aberrant Stocks and Overdispersion

Two quality-control steps were used to remove stocks from subsequent analysis of segmental aneuploidy. The first criterion
was to identify stocks by eye with compositional profiles that were very atypical. This yielded the three stocks shown in
Figure B4 that all showed a significant departure from the canonical profile of Figure B1.

The second phase involved estimating a dispersion parameter h for each stock (Figures B5 and B6). Under the ideal
model, the mean l and variance s2 of the windowed read depth should be the same. This follows from the Poisson
distribution. Unfortunately, this is not the case. However, we do find that the variance in read depth can be approximated

Figure B3 X/A ratios. Here we plot Eðread depth
in windowjwindow is on XÞ=  Eðread depth in windowj
window is on AÞ estimated for all stocks. Values fall in
the expected range between 1 (all females) and 3/4
(50% males).

Table B1 Estimates of additional model parameters across all stocks

Description of explanatory variable V Median estimate of bV Median exp(bV)

MAQ SNP count 20.02 0.98
MAQ indel 20.15 0.86
Log reference depth 0.16 NA
Log sample depth 0.81 NA
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well for a library as a function of the mean using s2 = hl, as shown in Figure B5. For each particular library, the dispersion
parameter h was then estimated by regression through the origin. Our estimates for h ranged from 1.6 on the low end to 5.0
on the high end. As we describe in more detail later, in addition to being an important quality control indicator, these
dispersion parameters can be useful for implementing robust emission probability distributions for the HMM.

Our second criterion for removing stocks from the analysis was to define a threshold h = 4. This threshold was chosen
because it was the lowest cutoff required to eliminate all stocks identified by phase one. As shown in Figure B6, the threshold
of h = 4 eliminated the three phase-one stocks as well as four stocks that were not identified by phase one. These additional
four stocks were also removed from the analysis on the basis of overdispersion.

Segmentation Using a Hidden Markov Model

To find and annotate regions of segmental aneuploidy, a four-state HMM was used. The path of hidden states through this
HMM that maximized the probability of the observed read depth under the model is the basis for the annotation segmenting
the genome into regions of euploidy and aneuploidy.

Figure B4 Shown here are the aberrant library composi-
tional profiles PL(g) vs g (see Equation B1) for RAL-379,
RAL-313, and MW9-1. These were removed from subse-
quent analysis of copy-number variation.

Figure B5 Variance in windowed read depth (y-axis) vs
the predicted mean read depth (x-axis) for RAL-689 using
Equation B3. Overdispersion was quantified by estimating
a dispersion parameter h where s2 = hl. The dispersion
parameter h was estimated by regression through the or-
igin. In the case of RAL-689, h = 2.03.
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Operationally, we defined euploidy as copy-number 1. While two copies of each chromosome exist, they have been inbred
to identity. Aneuploidy in this context refers to deletions and duplications of a segment on both copies of the inbred
chromosome. Further aneuploidy is defined with respect to euploid regions of the reference.

Hidden states

Our HMM has four hidden states (Table B2). State 1 corresponds to the default state of euploidy, or single copy number.
State 0 corresponds to a deletion, state 2 corresponds to a duplication of the interval, and state 3 was a catchall for segments
of high copy number.

Emission probabilities

Rather than using the theoretically ideal Poisson distribution, a negative binomial distribution was used to account for the
additional dispersion observed in the read depth. It is convenient to specify the two-parameter negative binomial distribution
in terms of a mean l and the ratio of the variance to the mean h = s2/l. The probability mass function for this parame-
terization is

Pðcounts ¼ kÞ ¼ Gðkþ rÞ
k  !  GðrÞ ð12pÞrpk; (B5)

where the classic parameters p and r are stated in terms of the mean l and a dispersion parameter h:

p ¼ 12
1
hl

and r ¼ 1
hð12hlÞ: (B6)

The particular utility of the negative binomial distribution for approximating read depth and why we preferred it to the
Poisson distribution is illustrated in Figure SB2. We compare the histogram of read depth for the ycnbwsp1 reference library

Figure B6 Dispersion parameter (h) estimates for all
stocks. The stocks removed due to aberrant G+C profiles
are labeled and cluster above h = 4. Using that informa-
tion as an empirical guideline, all stocks with h . 4 were
removed from subsequent analyses on the basis of
overdispersion.

Table B2 The hidden states of the HMM, their biological interpretation, and the mean and variance parameters used
for the negative binomially distributed emission probabilities of observed read count

Hidden state (copy no.) Emission probability Description

1 NB(l, hl) Normal (euploid)
0 NB(el, ehl) Deletion
2 NB(2l, 2hl) Duplication
3 NB(3l, 3hl) High copy no.
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to two probability density functions estimated by maximum likelihood from the same data. The negative binomial more
closely approximates the observed distribution. Figure B7 shows the linear relationship between mean and variance for all
lanes sequenced in the data set.

In the context of our HMM, the mean read depth l for a particular stock is modeled as a window-specific parameter, using
the observable dependent variables for that window. The dispersion parameter n is assumed to be constant for a stock across
all windows.

Transition probabilities

The transition matrix for our HMM is completely specified by two parameters, the frequency of an aneuploidy fa and the
mean length of an aneuploidy la. The transition matrix of hidden states between adjacent windows i and j is given by

pðstþ1 ¼ jjst ¼ iÞ ¼

8>>>><
>>>>:

12 fa when i ¼ j ¼ 1
fa when i 6¼ 1;   j ¼ 1
1=fa when i ¼ j 6¼ 1
12 1=la when i ¼ 1;   j 6¼ 1
0 otherwise

9>>>>=
>>>>;
: (B7)

This transition matrix implies that the length distributions of excursions from the euploid state will be modeled by the
geometric distribution where la is the expected length of a segmental aneuploidy.

Determining an optimal sequence of states

We are interested in finding the sequence of hidden states p* that maximizes the probability of the observed read-depth data
r under the model with parameters u:

p* ¼ argmax pðrjp; uÞ:

The standard Viterbi algorithm, a tabular approach to computing the optimum probability using dynamic programming, was
applied to each stock. A subsequent traceback of the dynamic programming table yielded the optimal sequence of hidden
states p*.

Scoring segmental aneuploidy: Potential aneuploidy events were defined as excursions from the reference state 1 with
a duration greater than a minimum length threshold lmin observed in the state sequence p* given by the Viterbi algorithm.
Thus, each potential aneuploidy event is characterized by an interval from i to j with copy number k. We associated each
aneuploidy event with the following likelihood ratio:

Figure B7 Scatterplot showing the association of the var-
iance with the mean of read depth.
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pa ¼
p
�
d
��pi  :  j ¼ k

	
X3
k¼0

p
�
d
��pi  :  j ¼ k

	 : (B8)

This posterior probability pa compares the evidence for the region uniformly being in the hidden state k to the possibility that
the region has a uniform copy number other than k. To determine a convenient score by which to filter and rank aneuploidy
events we computed a Phred-scaled quality score, assuming that the error probability is the probability that one of the other
models is correct:

Qa ¼ 2 10 log10ð12 paÞ: (B9)

This allowed us to ignore certain events below a user-defined threshold. It is also used to determine the frequency of an
aneuploidy event across multiple samples.

Model calibration: The parameter lmin was adjusted for an acceptable predicted rate of false discovery. The first method-
ology employed was to use Monte Carlo sampling of observed read depth from the HMM and subsequent scoring to
determine a false discovery rate for the chosen parameter settings. We increased lmin to 4 at which no false positive deletions
were reported and the expected rate of false positive duplications was ,0.5 per genome. This false positive rate was further
decreased by more than one-third by conditioning on a minimum Q of 30.

The reference genome also allowed us to provide calibration of our user-settable model parameters in an attempt
to minimize the number of false positives. We applied the HMM to the reference genome and then examined the detected
aneuploidies. In this manner we determined a small number of apparent positives on the reference sequence with lmin set at
4, including chorion genes that are expected to be quantitatively amplified in our libraries constructed from genomic DNAs
isolated from collections of both females and males (Spradling 1981).

Genotyping CNVs Across Lines

For frequency-spectrum analyses, we genotyped the discovered CNVs using a more sensitive method. For each CNV interval,
we calculated the most probable copy number (0, 1, 2, or 3) in each line. Equation B9 was used to quantify our confidence in
the genotype as a quality score Q. When any individual line was assigned a genotype with Q , 30, this line was considered
missing data for this CNV. Thus, when determining the minor allele frequency of a discovered CNV, genotyping calls that had
a quality score ,30 were ignored in both the numerator and the denominator of the calculation.

Clustering independently discovered CNVs

Due to the fact that CNVs were discovered independently in each inbred line, the same polymorphism may not always be given
identical breakpoints. To summarize individual events, we clustered the discovered CNVs, using a single linkage clustering.
Two CNVs in different lines were identified if at least 50% of one interval overlapped with the other and vice versa. We believe
that this process was effective at combining CNV calls corresponding to the same polymorphism, since the genotypes agreed
�97% of the time for identified pairs. To facilitate length and frequency analyses of this data set, each clustered CNV was
assigned the median length and the median minor allele frequency (as calculated above) of its respective component CNVs.

Overlap with earlier studies

We compared our set of CNVs to three prior data sets collected using different D. melanogaster strains (Dopman and Hartl
2007; Emerson et al. 2008; Cridland and Thornton 2010). Two of these previous studies used microarray technologies to
detect CNVs, one with a spotted cDNA array (Dopman and Hartl 2007) and one with an Affymetrix tiling array (Emerson
et al. 2008). While the comparison of CNV ascertainment on different strains with different platforms is problematic, we did
expect that our data would have greater resolution because the entire genome is covered. We identified 76 of the 438
duplications (17.4%) and 67 of the 1107 deletions (6.1%) called by Dopman and Hartl (2007) in our own data and 280 of
the 2211 duplications (12.7%) and 312 of the 1427 deletions (21.9%) called by Emerson et al. (2008) in our own data. The
third data set used low-coverage paired-end data to detect possible duplications and inversions (Cridland and Thornton
2010). We looked for overlap between our duplication calls and tandem duplications detected in the Cridland and Thornton
data, as nontandem duplication breakpoints could not be inferred from the data, and this data set does not contain any
deletion calls. To remove likely false positives or nonduplication events from the Cridland and Thornton data, we examined
only putative tandem duplications ,10 kbp in length. Duplications in our data set overlapped with 173/477 (39.9%) of
these putative tandem duplications in the Cridland and Thornton set—a considerably higher number than in the two array
data sets.
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Validating (discovered) CNVs using paired-end data

For two of the lines, RAL-437 and RAL-765, we had �3.5· and �2.8· of paired-end coverage, respectively, with 45-bp reads
and average insert sizes of �250 bp. Since paired-end reads provide an alternative method of detecting CNVs (Korbel et al.
2007), these data were used to provide independent validation of discovered duplication and deletion polymorphisms.
Paired ends were mapped to the reference genome using MAQ. Since few paired ends (,2%) mapped .350 bp away from
one another, read pairs mapping at least this far apart and spanning a putative deletion were considered to confirm the
deletion, while pairs having one read mapping outside of the putative deletion and one read mapping within the deletion
were considered to refute it. Of the putative deletions meeting these criteria, 159 of 177 events discovered in RAL-437 were
confirmed; in RAL-765, 133 of 150 were confirmed. To correct for spurious confirmation, we repeated this process 1000
times, randomizing locations, and found that on average 6.4/226 and 5.9/205 of the permuted deletions were confirmed by
paired ends in RAL-437 and RAL-765, respectively. Subtracting the estimated number of spurious confirmations, we estimate
that �86% (152.6/177) and �85% (127.1/150) of the discovered deletions called in RAL-437 and RAL-765 are true
deletions. We also sought to confirm discovered duplications by examining read pairs exhibiting an abnormal inferred insert
size [for nontandem duplications (Korbel et al. 2007)] or orientation [for tandem duplications (Cooper et al. 2008)]. Using
the data, we confirmed 66 of 95 duplications discovered in RAL-437 and 64 of 87 duplications in RAL-765. We then
randomized the coordinates of these putative duplications 1000 times, confirming 5.25/95 and 9.77/87 permuted duplica-
tions on average and yielding corrected confirmation rates of 64% (60.75/95) and 62% (54.23/87). As with deletions, we
wished to determine the fraction of rejected duplications. However, because there is no way to reject a duplication using
paired-end data, we assumed that the same fraction of duplications could be confirmed or rejected as deletions (78% for
RAL-437 and 73% for RAL-765). After correcting the number of confirmable duplications, we estimate the true positive rates
of duplications discovered in RAL-437 and RAL-765 to be 82% and 85%, respectively—nearly as accurate as the putative
deletions. If we increase our minimum-length cutoff to l = 7, or �500 bp, the confirmation rate increases to �90% for both
duplications and deletions. Thus this data set provides a largely independent and highly accurate representation of the CNVs
in natural populations of D. melanogaster.
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SUPPORTING MATERIAL

File S1. Demographic simulation methods. The following command lines were used to generate 
simulated data under demographic models.  “msafe” refers to a version of ms (HUDSON 2002) 
modified to implement founder events with multiply mated females (courtesy of R. Hudson) and 
instantaneous admixture, available from A. Kern.  Pairs of command lines are given for (1) the 
simulations used for diversity ratio analyses, and (2) the simulations used for LD analyses.  
Command lines are given separately for X-linked and autosomal loci.  “+admix” refers to a 
modified version of each published model that includes 10% African admixture into the U.S. 
sample 1250 generations ago.  Arguments after the admixture flag (-eA) refer to the timing (in 
coalescent units), destination population for admixture, source population for admixture, and 
admixture proportion.  Arguments after the founder event flag (-eF) refer to timing, population 
affected, inheritance (0 for autosomal, 1 for X-linked), multiple mating parameter (number of 
males that each female in the founder party had mated with), the number of founder events, and 
then a series of numbers indicating the number of females present in each of those founder 
events.  Further details regarding the founder event model can be found in (POOL and NIELSEN 
2008).  Additional information about these simulations, including the assumptions needed to 
implement each model, is given in the Materials and Methods section.

Simulations using the model of (THORNTON and ANDOLFATTO 2006).

X:
./msafe 39 10000 -t 8.4 -r 57.6 1000 -I 2 32 7 0 -en 0.0042 1 0.029 -en 0.0192 1 1 
-ej 0.0192000001 1 2 ./msafe 32 1000 -t 194 -r 1328 23040 -eN 0.0042 0.029 -eN 
0.0192 1 

A:
./msafe 38 10000 -t 8.4 -r 38.1 1000 -I 2 32 6 0 -en 0.00315 1 0.029 -en 0.0144 1 1 
-ej 0.0144000001 1 2 ./msafe 32 1000 -t 194 -r 879 23040 -eN 0.00315 0.029 -eN 
0.0144 1 

X+admix:
./msafe 39 10000 -t 8.4 -r 57.6 1000 -I 2 32 7 0 -eA 0.00067 1 2 0.1 -en 0.0042 1 
0.029 -en 0.0192 1 1 -ej 0.0192000001 1 2 ./msafe 32 1000 -t 194 -r 1328 23040 -I 2 
32 0 0 -eA 0.00067 1 2 0.1 -en 0.0042 1 0.029 -en 0.0192 1 1 -ej 0.0192000001 1 2

A+admix:
./msafe 38 10000 -t 8.4 -r 38.1 1000 -I 2 32 6 0 -eA 0.0005 1 2 0.1 -en 0.00315 1 
0.029 -en 0.0144 1 1 -ej 0.0144000001 1 2 ./msafe 32 1000 -t 194 -r 879 23040 -I 2 
32 0 0 -eA 0.0005 1 2 0.1 -en 0.00315 1 0.029 -en 0.0144 1 1 -ej 0.0144000001 1 2
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Simulations using the models of (LI and STEPHAN 2006) and (HUTTER et al. 2007). 
X:
./msafe 39 10000 -t 37 -r 254 1000 -c 5 86.5 -I 2 32 7 0 -en 0 1 0.124 -en 
0.0044912 1 0.000256 -en 0.00459 1 1 -ej 0.00459000001 1 2 -eN 0.0174 0.2 ./msafe 
32 1000 -t 852 -r 5842 23040 -c 5 86.5 -eN 0 0.124 -eN 0.0044912 0.000256 -eN 
0.00459 1 -eN 0.0174 0.2

A:
./msafe 38 10000 -t 37.6 -r 171 1000 -c 5 86.5 -I 2 32 6 0 -en 0 1 0.183 -en 
0.0037281 1 0.000377 -en 0.00381 1 1 -ej 0.00381000001 1 2 -eN 0.0145 0.2 ./msafe 
32 200 -t 866 -r 3933 23040 -c 5 86.5 -eN 0 0.183 -eN 0.0037281 0.000377 -eN 
0.00381 1 -eN 0.0145 0.2

X+admix:
./msafe 39 10000 -t 37 -t 852 -r 5842 -c 5 86.5 -I 2 32 7 0 -en 0 1 0.124 -eA 
0.0000363 1 2 0.1 -en 0.0044912 1 0.000256 -en 0.00459 1 1 -ej 0.00459000001 1 2 
-eN 0.0174 0.2 ./msafe 32 1000 -t 1150 -r 7880 23040 -c 5 86.5 -I 2 32 0 0 -en 0 1 
0.124 -eA 0.0000363 1 2 0.1 -en 0.0044912 1 0.000256 -en 0.00459 1 1 -ej 
0.00459000001 1 2 -eN 0.0174 0.2

A+admix:
./msafe 38 10000 -t 60.2 -r 171 1000 -c 5 86.5 -I 2 32 6 0 -en 0 1 0.183 -eA 
0.0000301 1 2 0.1 -en 0.0037281 1 0.000377 -en 0.00381 1 1 -ej 0.00381000001 1 2 
-eN 0.0145 0.2 ./msafe 32 1000 -t 866 -r 3933 23040 -c 5 86.5 -I 2 32 0 0 -en 0 1 
0.183 -eA 0.0000301 1 2 0.1 -en 0.0037281 1 0.000377 -en 0.00381 1 1 -ej 
0.00381000001 1 2 -eN 0.0145 0.2

Simulations using a model from (POOL and NIELSEN 2008).
X:
./msafe 39 10000 -t 8.4 -r 57.6 1000 -c 5 86.5 -I 2 32 7 0 -en 0 1 0.746 -eF 
0.00597 1 1 5 4 4 1 1 1 -ej 0.0059700001 1 2 ./msafe 32 1000 -t 194 -r 1328 23040 
-c 5 86.5 -eN 0 0.746 -eF 0.00597 1 1 5 4 4 1 1 1 -eN 0.0059700001 1

A:
./msafe 38 10000 -t 8.4 -r 38.1 1000 -c 5 86.5 -I 2 32 6 0 -eF 0.005 1 0 5 4 4 1 1 
1 -ej 0.0050000001 1 2 ./msafe 32 1000 -t 194 -r 879 23040 -c 5 86.5 -eF 0.005 1 0 
5 4 4 1 1 1 -eN 0.005 1

X+admix:
./msafe 39 10000 -t 8.4 -r 57.6 1000 -c 5 86.5 -I 2 32 7 0 -en 0 1 0.746 -eA 0.0008 
1 2 0.1 -eF 0.00597 1 1 5 4 4 1 1 1 -ej 0.0059700001 1 2 ./msafe 32 1000 -t 194 -r 
1328 23040 -c 5 86.5 -I 2 32 0 0 -en 0 1 0.746 -eA 0.0008 1 2 0.1 -eF 0.00597 1 1 5 
4 4 1 1 1 -ej 0.0059700001 1 2

A+admix:
./msafe 38 10000 -t 8.4 -r 38.1 1000 -c 5 86.5 -I 2 32 6 0 -eA 0.0005 1 2 0.1 -eF 
0.005 1 0 5 4 4 1 1 1 -ej 0.0050000001 1 2 ./msafe 32 1000 -t 194 -r 879 23040 -c 5 
86.5 -I 2 32 0 0 -eA 0.0005 1 2 0.1 -eF 0.005 1 0 5 4 4 1 1 1 -ej 0.0050000001 1 2
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Figure_S1. — Regions of residual heterozygosity in RAL-335_1.  The proportion of sites called as heterozygotes in the “diploid” 
assembly RAL-335_1 in 100 kbp windows plotted every 5 kbp on the major euchromatic chromosome arms.  The bars of at the 
top indicate the segments designated as “residually heterozygous” and thus filtered from further analyses.
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Figure_S2. — Expected heterozygosity, divergence and HKAl on the chr2R for the North American (RAL), African (MW) and 
simulans (SIM) samples.  The (blue) expected heterozygosity, π at the midpoint of 150 kbp windows (incremented every 10 kbp, 
minimun coverage = 0.25 and Q30 sequence).  The (red) lineage specific, average Q30 divergence in 150 kbp windows 
(incremented every 10 kbp and minimum coverage of 0.25).  A preliminary application of HKAl on the Q30 data in windows of 
4096 contiguous polymorphic or divergent sites identified centromere- and telomere-proximal regions (orange bars) in which the 
each window exhibited a deficiency of polymorphic sites relative to the chromosome-arm arm average.  Then HKAl was applied 
again on the Q30 data in windows of 512 contiguous polymorphic or divergent sites (excluding these centromere-and telomere-
proximal regions from calculation of the chromosome-arm-wide expected proportions, pc and dc.  The (olive) χ[log(pHKAl)] is the 
log of the p-value associated with HKAl plotted with the sign of the difference between the observed number and the expected 
number of polymorphic sites in the window.
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Figure S3. — Expected heterozygosity, divergence and HKAl on the chr3L for the North American (RAL), African (MW) and 
simulans (SIM) samples.  The (blue) expected heterozygosity, π at the midpoint of 150 kbp windows (incremented every 10 kbp, 
minimun coverage = 0.25 and Q30 sequence).  The (red) lineage specific, average Q30 divergence in 150 kbp windows 
(incremented every 10 kbp and minimum coverage of 0.25).  A preliminary application of HKAl on the Q30 data in windows of 
4096 contiguous polymorphic or divergent sites identified centromere- and telomere-proximal regions (orange bars) in which the 
each window exhibited a deficiency of polymorphic sites relative to the chromosome-arm arm average.  Then HKAl was applied 
again on the Q30 data in windows of 512 contiguous polymorphic or divergent sites (excluding these centromere-and telomere-
proximal regions from calculation of the chromosome-arm-wide expected proportions, pc and dc.  The (olive) χ[log(pHKAl)] is the 
log of the p-value associated with HKAl plotted with the sign of the difference between the observed number and the expected 
number of polymorphic sites in the window.
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Figure S4. — Expected heterozygosity, divergence and HKAl on the chr3R for the North American (RAL), African (MW) and 
simulans (SIM) samples.  The (blue) expected heterozygosity, π at the midpoint of 150 kbp windows (incremented every 10 kbp, 
minimun coverage = 0.25 and Q30 sequence).  The (red) lineage specific, average Q30 divergence in 150 kbp windows 
(incremented every 10 kbp and minimum coverage of 0.25).  A preliminary application of HKAl on the Q30 data in windows of 
4096 contiguous polymorphic or divergent sites identified centromere- and telomere-proximal regions (orange bars) in which 
the each window exhibited a deficiency of polymorphic sites relative to the chromosome-arm arm average.  Then HKAl was 
applied again on the Q30 data in windows of 512 contiguous polymorphic or divergent sites (excluding these centromere-and 
telomere-proximal regions from calculation of the chromosome-arm-wide expected proportions, pc and dc.  The (olive) 
χ[log(pHKAl)] is the log of the p-value associated with HKAl plotted with the sign of the difference between the observed number 
and the expected number of polymorphic sites in the window.
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Figure S5. — False discovery rates for different HKAl  window sizes, chromsome arm and samples of genomes.  The numbers of 
windows, k with nominal p-values < k*0.05/n, (where n is the total number of windows on the chromosome arm) is plotted 
against window sizes: 16, 32, 64, 128, 256, and 512 bp for the African sample (MW, olive), North American (RAL, blue) and 
simulans (SIM, red).  The different chromosome arms are plotted separately.  
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Figure S6. — The distributions of expected heterozygosity, divergence and number of sites at various (allele) sampling depths for 
Q30 data.  Chromosome arms: X – blue, chr2 – red and chr3 – olive.  Number of sites – black.
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Figure S7. — The genomic distribution of ρ̂  (olive), an estimate of the population recombination parameter 2Nr along with expected heterozygosity (blue, πw ) and lineage 
specific divergence (red, !w).
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Figure S8. — Correlations between recombination rates and HKAl, πw & TsD.  r is the bp-weighted Pearsons correlation 
coefficient between TsD, πw & HKAl and the logarithms of 0 (olive),  (light olive) and  (orange) across the autosomes and 

X chromosome.  The three lower columns to the right (lighter shades) are the corresponding correlations for the “trimmed” 
euchromatic regions. 
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Figure S9. — Presentation in the UCSC Genome Browser of the distributions across chr2R of the population genomic statistics, 
πw , δw, ρ̂ , HKAl and TsD for the RAL sample as well as HBKl, and WHl. At the top are chromatin states 1 through 8, followed 
by the Flybase annotated protein coding genes and then by noncoding genes.  The eleventh track (down) begins the “custom” 
tracks from this study with log (ρ̂ /100) .  At the bottom are three standard UCSC Genome Browser annotation tracks, 
phylogenetic “Conservation,” “RepeatMasker” and “Simple Repeats.”  Note the large reduction in  log (ρ̂/100) , estimated 
2Nr in the centromere-proximal 6 Mbp and the distal, telomere-proximal 1 Mbp.  πw  (but not δw and thus), HKAl , TsD and WHl 
(not HBKl) all follow this pattern. In the intervening 14 Mbp of the euchromatic chr2R the patterns are on smaller scales.  The 
region starting at 8 Mbp is an example local patterns that likely reflect the recent evolution of 31 genes in the cluster including 
strong geographic differentiation.  This area is expanded in Figure S10.  Access to these tracks over the entire genome of the MW, 
RAL and SIM samples is available through this   track data hub   containing these fine-scale statistics (this figure is obtained by 
expanding the view to the entire chromosome arm). Gap arise primarily for two reasons: a large repetitive region in the reference 
sequence(s) or gaps in the multispecies alignment.  
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Figure S10. — Presentation in the UCSC Genome Browser of the distributions in the 260 kbp Hen1 (Pimet) and Cyp6g1 region 
of the population genomic statistics, πw , δw, ρ̂ , HKAl and TsD for the RAL sample as well as HBKl, and WHl.  At the top are 
chromatin states 1 through 8, followed by the Flybase annotated protein coding genes and then by noncoding genes.  The 
eleventh track (down) begins the “custom” tracks from this study with log(ρ̂ /100) , where ρ̂ is an estimate of 2Nr.  At the 
bottom are three standard UCSC Genome Browser annotation tracks, phylogenetic “Conservation,” “RepeatMasker” and “Simple 
Repeats.”  The browser page from which this figure was extracted can be access via this track data hub.  Gaps arise primarily for 
two reasons: a large repetitive region in the reference sequence(s) or gaps in the multispecies alignment.  In the region around 
Cyp6g1 gaps are also attributable to the known structural polymorphisms (SCHMIDT et al. 2010).  Note that the local scales of the 
various statistics or “tracks” are adaptive and thus variable depending on the range of the variation in the particular window.
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Figure S11.— Boxplots of the distributions of    π  w, !w,   HKAl,   TsD  ,   HBKl   and   log(ρ̂)  in genomic exonic, intronic and intergenic 
regions annotated as chromatin states 1 through 9.  
Boxplots of the distributions of windows (weighted by bp) of πw (RAL, MW and SIM), !w (RAL, MW and SIM), HKAl (RAL, MW 
and SIM), TsD (RAL), HBKl (RAL ↔ MW) and ρ̂ (RAL) partitioned by chromatin state and gene structure (coding, intron and 
intergenic). The boxes are the central two quartiles, the whiskers are 1.5 time those, while the transparent light blue dots 
represent the outliers beyond the whiskers.  The axes are labeled: “div” for !w ; “pi” for πw ; “HKAl” for HKAl ; “D_w” for TsD ; 
“HBKl” for HBKl ; and “2Nr” for ρ̂  .

Figure S12.— ECDFs (epirical cumulative distribution functions) of   π  w,   !  w,   HKAl  ,   TsD  ,   HKAl   and   log(ρ̂)  in genomic exonic, 
intronic and intergenic regions annotated as chromatin states 1 through 9.  Empirical cumulative distribution functins of 
windows (weighted by bp) of πw (RAL, MW and SIM), !w (RAL, MW and SIM), HKAl (RAL, MW and SIM), TsD (RAL), HBKl (RAL 
↔ MW) and ρ̂ (RAL) partitioned by chromatin state (see legend in each central panel) and gene structure (coding, intron and 
intergenic).  The axes are labeled: “div” for !w ; “pi” for πw ; “HKAl” for HKAl ; “D_w” for TsD ; “HBKl” for HBKl ; and “2Nr” for 

ρ̂  .
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Figure S13. — The distribution of recombination rates of genes estimated by loess smoothed genetic maps, r̂15 in bins of 
0.25 cM/Mbp.  Autosomal and X-linked genes are classified into four recombination categories, which are represented with 
different colors (see text and methods). Darker the color, higher the recombination rate.  The bins are for the purpose of showing 
the variations of recombination rates within each recombination categories. 
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Figure SA1. —  A two dimensional histogram showing the relationship between consensus quality score and read depth.  The 
MAQ consensus quality score Q is plotted versus the MAQ consensus sequence depth (number of aligned reads contributing to 
the consensus). The more nucleotides that fall into a bin, the hotter (red –> yellow).
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Figure SB1.—  Box plots of G+C content by flow cell lane for all stocks.
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Figure SB2.— Empirical and theoretical distributions of read depth illustrating the utility of the negative binomial distribution to 
model read depth. The histogram for observed read counts (top) for the library ywcnbwsp1 compared to two probability mass 
functions (bottom). The Poisson distribution with λ  = 21.6 is shown in black. The negative binomial distribution with λ  
= 21.6 and η = 4.29 is shown in blue.
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Table S1.  
Chromosome segments identified as residually heterozygous in the indicated stock/assembly. 

DPGP stock chromosome 
arm

begin end

RAL-301_1 chr2L 1 23011544

RAL-301_1 chr2R 1 7300000

RAL-301_1 chr3L 4800001 7600000

RAL-304_1 chr3L 1 1500000

RAL-304_1 chr3L 21200001 24543557

RAL-304_1 chr3R 1 8200000

RAL-306_1 chr3R 16000001 27905053

RAL-306_1 chr3R 7000001 9800000

RAL-307_2 chr2R 15100001 21146708

RAL-307_2 chr3R 24400001 26300000

RAL-307_2 chrX 20700001 22422827

RAL-315_1 chr2L 1 3800000

RAL-335_2 chr3L 10300001 19900000

RAL-335_2 chr3R 1200001 5500000

RAL-335_2 chr3R 8500001 10000000

RAL-357_1 chr2L 11600001 13000000

RAL-357_1 chr2L 15100001 16600000

RAL-357_1 chr2R 6600001 8500000

RAL-357_1 chr2R 16900001 21146708

RAL-358_1 chr2R 16200001 18400000

RAL-360_1 chr2L 2000001 3200000

RAL-360_1 chr3L 12800001 15900000

RAL-375_1 chr3L 15000001 19300000

RAL-375_1 chr3L 8100001 11400000

RAL-375_1 chr3R 10900001 16700000

RAL-380_2 chr2R 16700001 18600000

RAL-391_2 chr2L 5000001 6000000

RAL-391_2 chr2R 11300001 17500000

RAL-399_1 chr3R 20200001 21300000

RAL-486_1 chr2L 1 3800000

RAL-639_1 chr2L 14000001 14900000
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RAL-705_1 chr3L 1 3200000

RAL-705_1 chr3R 19300001 23600000

RAL-707_1 chr3L 1 1800000

RAL-707_1 chr3R 10700001 11800000

RAL-714_1 chr2L 12500001 17500000

RAL-714_1 chr2L 7600001 9800000

RAL-732_1 chr3L 17400001 24543557

RAL-732_1 chr3R 1 27905053

RAL-774_1 chr2L 4000001 5900000

RAL-774_1 chr2L 14400001 23011544

RAL-774_1 chr2R 1 12600000

RAL-774_1 chr3L 14600001 21400000

RAL-774_1 chr3R 12600001 15500000

Table S2. 
Regions filtered from the genomes RAL-303_1, RAL-304_1 and RAL-306_1 because of 

apparent IBD with one another.

 filtered genome chromosome arm begin end IBD with genome 

RAL-303_1 chr2R 17500000 18550000 RAL-306_1                      
RAL-303_1 chrX 0 22422827 RAL-304_1 & RAL-306_1
RAL-304_1 chr2L 0 6400000 RAL-303_1                     
RAL-304_1 chr2L 0 16000000 RAL-306_1                      
RAL-304_1 chr3L 0 24543557 RAL-303_1 & RAL-306_1
RAL-304_1 chr3R 0 27905053 RAL-303_1 & RAL-306_1
RAL-304_1 chrX 0 22422827 RAL-303_1 & RAL-306_1
RAL-306_1 chr3L 0 end RAL-303_1 & RAL-304_1
RAL-306_1 chr3R 0 end RAL-303_1 & RAL-304_1
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Table S3.  
RAL sampling depth at Q30 plus the total numbers of assembled bp.

X 2L 2R 3L 3R total

mean 32.42 32.14 33.14 31.69 31.53 32.11

median 34 33 34 33 32 33

bp 333,706,603 478,702,933 362,718,910 440,887,238 482,662,618 2,098,678,302

Table S4.

MW sampling depth at Q30 plus the total numbers of assembled bp.

X 2L 2R 3L 3R total

mean 6.54 5.71 5.71 4.65 4.70 5.37

median 7 6 6 5 5 6

bp 61,826,328 85,405,440 61,141,436 64,766,238 70,178,732 343,318,174

Table S5.  

SIM sampling depth at Q30 plus the total numbers of assembled bp.

X 2L 2R 3L 3R total

mean 3.61 4.09 4.18 4.12 4.20 4.06

median 4 5 5 5 5 5

bp 47,048,192 65,940,790 59,978,450 68,152,379 84,707,080 325,826,891
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Table S6: 
Potential sampling depth after filtering of residually heterozygous regions and those involved 

in obvious identity by descent.

RAL MW SI
Mmean max

X 34.92 35 7 6
2L 33.90 35 6 6
2R 34.97 36 6 6
3L 33.29 35 5 6
3R 32.95 34 5 6

Total 33.95 35 5.76 6

Table S7: 
RAL allelic depth at Q40 plus the total numbers of assembled bp.

X 2L 2R 3L 3R total

mean 27.73 29.38 30.21 31.69 28.86 29.02

median 30 31 32 33 30 31

bp 285,009,253 437,320,403 330,471,088 401,221,253 440,908,643 1,894,930,640

Table S8:  
MW sampling depth at Q40 plus the total numbers of assembled bp.

X 2L 2R 3L 3R total

mean 5.84 5.22 5.21 4.14 4.20 4.84

median 6 6 6 5 5 5

bp 54,819,051 77,720,775 55,441,956 57,121,007 62,369,042 307,471,831
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Table S9.  
SIM sampling depth at Q40 plus the total numbers of assembled bp.

X 2L 2R 3L 3R total

mean 3.42 3.92 4.01 3.94 4.20 3.88

median 4 4 4 4 4 4

bp 44,488,065 62,987,720 57,347,630 65,118,060 81,020,800 310,962,275

Table S10.  
Average sampling depth of coding regions on the X and on the atusomes.

MW RAL

X autosomes X autosomes

Q30  6.66 5.19 31.61 32.05

Q40  5.81 4.55 24.95 28.15

Table S 11.  
The correlation of divergence or expected heterozygosity in 1000 bp windows across each of 

the five major chromosome arms for the indicated pair of samples.

Divergence Expected Heterozygosity

RAL-MW RAL-SIM MW-SIM RAL-MW RAL-SIM MW-SIM

X 0.98677 0.56509 0.56513 0.55434 0.29756 0.46922

2L 0.98273  0.61971 0.61706 0.73564 0.39305 0.45000

2R 0.98369 0.64671 0.64276 0.74692 0.36125 0.38505

3L 0.97959 0.63912 0.63543 0.75501 0.33818 0.32805

3R 0.98272 0.63757 0.63603 0.70080 0.32807 0.33591

Table S12.  
Genetic-map-based estimates of the rate of recombination per bp, in “lettered” cytogenetic 
intervals of the five major chromosome arms.  The assigned map position in cM is given in 
column two of each of the five sets (one for each of the chromosome arms). 
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Table S13
Distribution of missing data and statistics of partitions used 

in the Ldhat-based estimation of recombination. 

Chromosome # Blocks # non-missing haplotypes 
Min            Max           Ave

Average   bps 
between 

consecutive 
SNPs

2L 20 32 35 33.6 130
2R 14 32 36 34.2 145
3L 18 31 35 33.2 146
3R 21 32 34 33.3 151
X 2 34 35 34.5 406

Table S14
The centromere proximal and telomere-proximal regions of the 5 major chromosome arms 

filtered or “trimmed” because of the preponderance of repetitive sequences and strong 
systematic effects associated with centromeres and telomeres (see text).

2L:
RAL: 0 to 844225  and 19946732 to the end.
MW: 0 to 698949  and  19954780 to the end.
SIM:  0 to 650976  and  20052632 to the end.

2R:
RAL:  0 to 6063980  and  20322335 to the end.
MW:  0 to 6090470  and  20020890 to the end.
SIM:  0 to 2935239  and  20321706 to the end.

3L:
RAL:  0 to 447386  and  18392988 to the end.
MW:  0 to 356604  and  18408033 to the end.

(14656580 to the end, except for two 4096 
SNP windows in which χ[log(pHKAl)] > 0 )

SIM:  0 to 897221  and  21109190 to the end.

3R:
RAL:  0 to 7940899  and  27237549 to the end.
MW:  0 to 8349278  and  27248244 to the end.
SIM:  0 to 2765860  and  26741546 to the end.

X:
RAL:  0 to 1036552  and 20902578 to the end.
MW:  0 to 2460008  and  20665672 to the end.
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SIM:  0 to 2200059  and  19271518 to the end.
2L:

RAL: 0 to 844225  and 19946732 to the end.
MW: 0 to 698949  and  19954780 to the end.
SIM:  0 to 650976  and  20052632 to the end.

2R:
RAL:  0 to 6063980  and  20322335 to the end.
MW:  0 to 6090470  and  20020890 to the end.
SIM:  0 to 2935239  and  20321706 to the end.

3L:
RAL:  0 to 447386  and  18392988 to the end.
MW:  0 to 356604  and  18408033 to the end.

(14656580 to the end, except for two 4096 
SNP windows in which χ[log(pHKAl)] > 0 )

SIM:  0 to 897221  and  21109190 to the end.

3R:
RAL:  0 to 7940899  and  27237549 to the end.
MW:  0 to 8349278  and  27248244 to the end.
SIM:  0 to 2765860  and  26741546 to the end.

X:
RAL:  0 to 1036552  and 20902578 to the end.
MW:  0 to 2460008  and  20665672 to the end.
SIM:  0 to 2200059  and  19271518 to the end.
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Table S15
The correlations between the logarithm of the estimated rates of recombination ( log (r̂15) , log (ρ̂15) , 

log (ρ̂) ) with πw , HKAl, TsD, or HBKl for each chromosome arm in the RAL, MW and SIM samples (see text).
statistic chromosome arms

sample U|T 1 2 chr2L chr2R chr3L chr3R autosomes chrX all

RAL-MW U HBKl -0.0162 -0.0639 -0.0678 -0.0289 -0.0489 -0.0060 -0.0026
RAL-MW T HBKl -0.0254 -0.1119 -0.0568 -0.0727 -0.0759 -0.0098 -0.0054
MW U HKAl 0.5624 0.6320 0.6875 0.5230 0.6049 0.3315 0.5603
MW T HKAl 0.2143 0.2549 0.2135 0.1602 0.2006 0.0483 0.1655
RAL U HKAl 0.5838 0.6781 0.7198 0.5827 0.6436 0.2181 0.5786
RAL T HKAl 0.2692 0.3363 0.2145 0.2548 0.2584 0.0486 0.2131
SIM U HKAl 0.6153 0.2782 0.3820 0.4413 0.4264 0.3910 0.4173
SIM T HKAl 0.1304 0.1539 0.1671 0.1382 0.1406 0.0892 0.1319
MW U πw 0.4451 0.4568 0.5257 0.4407 0.4838 0.3217 0.4542
MW T πw 0.2858 0.2417 0.2737 0.1861 0.2632 0.1425 0.2337
RAL U πw 0.4541 0.4964 0.5342 0.4870 0.5064 0.2187 0.4169
RAL T πw 0.3175 0.3199 0.2939 0.2819 0.3181 0.1345 0.2186
SIM U πw 0.2351 0.1493 0.1803 0.1460 0.1834 0.2422 0.1762
SIM T πw 0.1056 0.0845 0.0757 0.0888 0.0994 0.0884 0.0733
MW U TsD 0.0473 0.1275 0.0850 0.0739 0.0829 0.0678 0.0742
MW T TsD 0.0340 0.0892 0.0446 0.0641 0.0481 0.0168 0.0325
RAL U TsD 0.1328 0.2471 0.3724 0.2410 0.2598 0.0480 0.1898
RAL T TsD 0.0185 0.0848 0.0724 0.1272 0.0802 0.0959 0.0625

RAL-MW U HBKl -0.0082 0.0543 0.0050 0.0467 0.0167 0.0226 0.1099
RAL-MW T HBKl 0.0517 0.0087 0.0142 0.0286 -0.0047 0.0179 0.1746
MW U HKAl 0.5648 0.5596 0.7337 0.6196 0.6052 0.3547 0.5775
MW T HKAl 0.2184 0.1338 0.3154 0.0813 0.1521 0.0341 0.1237
RAL U HKAl 0.5328 0.5196 0.7458 0.6612 0.6060 0.1945 0.5687
RAL T HKAl 0.2012 0.1476 0.1530 0.1618 0.1400 -0.0007 0.1204
SIM U HKAl 0.5775 0.3819 0.3073 0.4900 0.4032 0.4508 0.4027
SIM T HKAl 0.0100 0.0033 0.0564 0.0853 0.0307 -0.0136 0.0309
MW U πw 0.4302 0.3654 0.5581 0.4783 0.4812 0.2948 0.4562
MW T πw 0.2308 0.0992 0.3200 0.0984 0.2166 0.0381 0.1752
RAL U πw 0.3974 0.3488 0.5236 0.4746 0.4574 0.1525 0.3343
RAL T πw 0.2023 0.1226 0.2282 0.1618 0.2125 0.0140 0.0122
SIM U πw 0.1467 0.1081 0.1033 0.1149 0.1261 0.2568 0.1009
SIM T πw 0.0034 -0.0549 -0.0508 0.0432 0.0141 0.0247 -0.0428
MW U TsD 0.1040 0.1179 -0.0436 0.0543 0.0482 0.0578 0.0346
MW T TsD 0.0502 0.0514 0.0021 0.0636 0.0227 0.0219 -0.0117
RAL U TsD 0.1324 0.1396 0.3084 0.1989 0.1997 -0.0021 0.1185
RAL T TsD 0.0382 0.0324 0.1177 0.0282 0.0182 0.0024 -0.0595

RAL-MW U HBKl -0.0228 0.0399 -0.0002 0.0676 0.0206 0.1435 0.0975
RAL-MW T HBKl 0.0420 0.0049 0.0142 0.0631 0.0321 0.0121 0.1173
MW U HKAl 0.4989 0.6084 0.6005 0.5607 0.5677 0.4026 0.5556
MW T HKAl 0.1661 0.0548 0.2912 0.0695 0.1789 -0.0049 0.1549
RAL U HKAl 0.4605 0.5863 0.5460 0.5392 0.5315 0.2333 0.5132
RAL T HKAl 0.1592 0.0592 0.1492 0.1084 0.1192 -0.0485 0.1052
SIM U HKAl 0.5756 0.2264 0.2624 0.3203 0.3603 0.5216 0.3747
SIM T HKAl 0.0047 0.0030 0.0635 0.0737 0.0450 0.0695 0.0472
MW U πw 0.3486 0.3402 0.4515 0.4531 0.3898 0.2688 0.3791
MW T πw 0.1584 0.0098 0.2183 0.0501 0.1194 0.0148 0.1072
RAL U πw 0.3295 0.3430 0.3895 0.4210 0.3610 0.1175 0.2795
RAL T πw 0.1427 0.0093 0.1370 0.0643 0.0927 -0.0214 -0.0037
SIM U πw -0.0988 -0.0953 -0.0654 0.0063 -0.0432 -0.0046 -0.0485
SIM T πw -0.0077 -0.0536 -0.1165 0.0243 -0.0438 0.0248 -0.0711
MW U TsD 0.0224 0.0794 -0.0283 0.0465 0.0282 0.0476 0.0210
MW T TsD 0.0518 0.0392 0.0064 0.0456 0.0419 0.0090 0.0213
RAL U TsD 0.1276 0.1586 0.2417 0.1996 0.1844 -0.0717 0.1083
RAL T TsD -0.0411 -0.0110 0.0924 0.0074 0.0252 -0.0471 -0.0266
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Table S16.  
Amino acid replacement FST GO enrichment analysis – biological categories.

GO category

proportion 
significant 
genes p-values GOslim description GO description

GO:0042060 0.833 0.0001 NA
The series of events that restore integrity to a damaged tissue, 
following an injury.

GO:0006807 0.667 0.0002
nitrogen compound 
metabolic process

The chemical reactions and pathways involving various organic 
and inorganic nitrogenous compounds; includes nitrogen fixation, 
nitrification, denitrification, assimilatory/dissimilatory nitrate 
reduction and the interconversion of nitrogenous organic matter 
and ammonium.

GO:0006887 0.667 0.0002 exocytosis

A process of secretion by a cell that results in the release of 
intracellular molecules (e.g. hormones, matrix proteins) contained 
within a membrane-bounded vesicle by fusion of the vesicle with 
the plasma membrane of a cell. This is the process whereby most 
molecules are secreted from eukaryotic cells.

GO:0008152 0.239 0.0003 metabolic process

The chemical reactions and pathways, including anabolism and 
catabolism, by which living organisms transform chemical 
substances. Metabolic processes typically transform small 
molecules, but also include macromolecular processes such as 
DNA repair and replication, and protein synthesis and 
degradation.

GO:0050909 0.364 0.0003 NA

The series of events required for an organism to receive a gustatory 
stimulus, convert it to a molecular signal, and recognize and 
characterize the signal. Gustation involves the direct detection of 
chemical composition, usually through contact with 
chemoreceptor cells. This is a neurological process.

GO:0046529 0.556 0.0005 NA
The joining of the parts of the wing imaginal discs, giving rise to 
the adult thorax.
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GO:0007561 0.571 0.0006 imaginal disc eversion

The eversion (turning inside out) of imaginal discs from their 
peripodial sacs, resulting in movement of the epithelium to the 
outside of the larval epidermis.

GO:0007296 0.600 0.0017 vitellogenesis
The production of yolk. Yolk is a mixture of materials used for 
embryonic nutrition.

GO:0006310 0.500 0.0025 DNA recombination

Any process by which a new genotype is formed by reassortment 
of genes resulting in gene combinations different from those that 
were present in the parents. In eukaryotes genetic recombination 
can occur by chromosome assortment, intrachromosomal 
recombination, or nonreciprocal interchromosomal 
recombination. Intrachromosomal recombination occurs by 
crossing over. In bacteria it may occur by genetic transformation, 
conjugation, transduction, or F-duction.

GO:0007362 0.417 0.004
terminal region 
determination

Specification of the terminal regions (the two non-segmented ends) 
of the embryo by the gap genes; exemplified in insects by the 
actions of huckebein and tailless gene products.

GO:0009620 0.500 0.0042 NA

A change in state or activity of a cell or an organism (in terms of 
movement, secretion, enzyme production, gene expression, etc.) 
as a result of a stimulus from a fungus.

GO:0008298 0.375 0.0046
intracellular mRNA 
localization

Any process by which mRNA is transported to, or maintained in, a 
specific location within the cell.

GO:0046907 0.500 0.0048 NA The directed movement of substances within a cell.

GO:0007030 0.385 0.0057 Golgi organization

A process that is carried out at the cellular level which results in 
the assembly, arrangement of constituent parts, or disassembly of 
the Golgi apparatus.

GO:0007426 0.385 0.0067
tracheal outgrowth, open 
tracheal system

The projection of branches of an open tracheal system towards 
their target tissues. An example of this is found in Drosophila 
melanogaster.

GO:0045610 0.429 0.0088 NA
Any process that modulates the frequency, rate or extent of 
hemocyte differentiation.
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GO:0007157 0.429 0.0111
heterophilic cell 
adhesion

The attachment of an adhesion molecule in one cell to a 
nonidentical adhesion molecule in an adjacent cell.

GO:0008285 0.364 0.0126
negative regulation of 
cell proliferation

Any process that stops, prevents or reduces the rate or extent of 
cell proliferation.

GO:0007131 0.364 0.0138
reciprocal meiotic 
recombination

The cell cycle process whereby double strand breaks are formed 
and repaired through a double Holliday junction intermediate. This 
results in the equal exchange of genetic material between non-
sister chromatids in a pair of homologous chromosomes. These 
reciprocal recombinant products ensure the proper segregation of 
homologous chromosomes during meiosis I and create genetic 
diversity.

GO:0007265 0.364 0.0144
Ras protein signal 
transduction

A series of molecular signals within the cell that are mediated by a 
member of the Ras superfamily of proteins switching to a GTP-
bound active state.

GO:0046843 0.316 0.0148 NA

Establishment of the dorsal filaments, elaborate specializations of 
the chorion that protrude from the anterior end of the egg and 
facilitate embryonic respiration.

GO:0000165 0.375 0.0172 MAPKKK cascade

A cascade of at least three protein kinase activities culminating in 
the phosphorylation and activation of a MAP kinase. MAPKKK 
cascades lie downstream of numerous signaling pathways.

GO:0006259 0.211 0.019 DNA metabolic process

The chemical reactions and pathways involving DNA, 
deoxyribonucleic acid, one of the two main types of nucleic acid, 
consisting of a long, unbranched macromolecule formed from one, 
or more commonly, two, strands of linked deoxyribonucleotides.

GO:0006726 0.375 0.0203
eye pigment biosynthetic 
process

The chemical reactions and pathways resulting in the formation of 
eye pigments, any general or particular coloring matter in living 
organisms, found or utilized in the eye.

GO:0006727 0.333 0.021
ommochrome 
biosynthetic process

The chemical reactions and pathways resulting in the formation of 
ommochromes, any of a large group of natural polycyclic pigments 
commonly found in the Arthropoda, particularly in the ommatidia 
of the compound eye.
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GO:0033227 0.313 0.021 NA

The directed movement of dsRNA, double-stranded ribonucleic 
acid, into, out of, within or between cells by means of some 
external agent such as a transporter or pore.

GO:0007298 0.256 0.0214
border follicle cell 
migration

The directed movement of the border cells through the nurse cells 
to reach the oocyte. An example of this is found in Drosophila 
melanogaster.

GO:0009617 0.375 0.0223 NA

A change in state or activity of a cell or an organism (in terms of 
movement, secretion, enzyme production, gene expression, etc.) 
as a result of a stimulus from a bacterium.

GO:0006856 0.400 0.0229
eye pigment precursor 
transport

The directed movement of eye pigment precursors, the inactive 
forms of visual pigments, into, out of, within or between cells by 
means of some external agent such as a transporter or pore.

GO:0007605 0.400 0.0229
sensory perception of 
sound

The series of events required for an organism to receive an auditory 
stimulus, convert it to a molecular signal, and recognize and 
characterize the signal. Sonic stimuli are detected in the form of 
vibrations and are processed to form a sound.

GO:0006869 0.400 0.0234 lipid transport

The directed movement of lipids into, out of, within or between 
cells by means of some external agent such as a transporter or 
pore. Lipids are compounds soluble in an organic solvent but not, 
or sparingly, in an aqueous solvent.

GO:0006378 0.333 0.0242 mRNA polyadenylation
The enzymatic addition of a sequence of 40-200 adenylyl residues 
at the 3' end of a eukaryotic mRNA primary transcript.

GO:0006352 0.400 0.0244 transcription initiation

Any process involved in the assembly of the RNA polymerase 
complex at the promoter region of a DNA template, resulting in 
the subsequent synthesis of RNA from that promoter.

GO:0006904 0.400 0.0245
vesicle docking during 
exocytosis

The initial attachment of a vesicle membrane to a target 
membrane, mediated by proteins protruding from the membrane of 
the vesicle and the target membrane, during exocytosis.
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GO:0007307 0.333 0.0245
eggshell chorion gene 
amplification

Amplification by up to 60-fold of the loci containing the chorion 
gene clusters. Amplification is necessary for the rapid synthesis of 
chorion proteins by the follicle cells, and occurs by repeated firing 
of one or more origins located within each gene cluster.

GO:0006967 0.400 0.0247

positive regulation of 
antifungal peptide 
biosynthetic process

Any process that activates or increases the frequency, rate, or 
extent of antifungal peptide biosynthesis.

GO:0006777 0.400 0.0248

Mo-molybdopterin 
cofactor biosynthetic 
process

The chemical reactions and pathways resulting in the formation of 
the Mo-molybdopterin cofactor, essential for the catalytic activity 
of some enzymes. The cofactor consists of a mononuclear 
molybdenum (Mo) ion coordinated by one or two molybdopterin 
ligands.

GO:0042386 0.400 0.0255 NA

The process whereby a relatively unspecialized cell acquires the 
characteristics of a mature hemocyte. Hemocytes are blood cells 
associated with a hemocoel (the cavity containing most of the 
major organs of the arthropod body) which are involved in defense 
and clotting of hemolymph, but not involved in transport of 
oxygen.

GO:0016202 0.400 0.0256 NA
Any process that modulates the frequency, rate or extent of striated 
muscle development.

GO:0019732 0.400 0.0256 NA

An immune response against a fungus mediated through a body 
fluid. An example of this process is the antifungal humoral 
response in Drosophila melanogaster.

GO:0008333 0.400 0.0257
endosome to lysosome 
transport

The directed movement of substances from endosomes to 
lysosomes.

GO:0042810 0.400 0.0259 NA

The chemical reactions and pathways involving pheromones, a 
substance that is secreted and released by an organism and 
detected by a second organism of the same or a closely related 
species, in which it causes a specific reaction, such as a definite 
behavioral reaction or a developmental process.
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GO:0007613 0.400 0.026 memory

The activities involved in the mental information processing system 
that receives (registers), modifies, stores, and retrieves 
informational stimuli. The main stages involved in the formation 
and retrieval of memory are encoding (processing of received 
information by acquisition), storage (building a permanent record 
of received information as a result of consolidation) and retrieval 
(calling back the stored information and use it in a suitable way to 
execute a given task).

GO:0030111 0.400 0.0268 NA
Any process that modulates the frequency, rate or extent of the 
activity of the Wnt receptor mediated signal transduction pathway.

GO:0050830 0.308 0.0274 NA
Reactions triggered in response to the presence of a Gram-positive 
bacterium that act to protect the cell or organism.

GO:0008293 0.294 0.0285 torso signaling pathway

The series of molecular signals generated as a consequence of the 
torso transmembrane receptor tyrosine kinase binding to its 
physiological ligand.

GO:0016477 0.308 0.0286 NA

The orderly movement of cells from one site to another, often 
during the development of a multicellular organism or 
multicellular structure.

GO:0008586 0.273 0.0294
imaginal disc-derived 
wing vein morphogenesis

The process by which anatomical structures of the veins on an 
imaginal disc-derived wing are generated and organized. 
Morphogenesis pertains to the creation of form.

GO:0048675 0.333 0.0294 NA Long distance growth of a single process.

GO:0035017 0.333 0.0299 NA
The regionalization process that gives rise to the patterns of cell 
differentiation in the cuticle.

GO:0050832 0.308 0.0303 NA
Reactions triggered in response to the presence of a fungus that act 
to protect the cell or organism.

GO:0006417 0.333 0.0319 regulation of translation

Any process that modulates the frequency, rate or extent of the 
chemical reactions and pathways resulting in the formation of 
proteins by the translation of mRNA.

GO:0042048 0.273 0.0323 NA The actions or reactions of an organism in response to an odor.
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GO:0051017 0.333 0.0327 NA

The assembly of actin filament bundles; actin filaments are on the 
same axis but may be oriented with the same or opposite polarities 
and may be packed with different levels of tightness.

GO:0030154 0.333 0.0329 cell differentiation

The process whereby relatively unspecialized cells, e.g. embryonic 
or regenerative cells, acquire specialized structural and/or 
functional features that characterize the cells, tissues, or organs of 
the mature organism or some other relatively stable phase of the 
organism's life history. Differentiation includes the processes 
involved in commitment of a cell to a specific fate.

GO:0046667 0.333 0.0391 NA

Programmed cell death that occurs in the retina to remove excess 
cells between ommatidia, thus resulting in a hexagonal lattice, 
precise with respect to cell number and position surrounding each 
ommatidium.

GO:0045087 0.261 0.0402 NA

Innate immune responses are defense responses mediated by 
germline encoded components that directly recognize components 
of potential pathogens.

GO:0009408 0.237 0.0414 NA

A change in state or activity of a cell or an organism (in terms of 
movement, secretion, enzyme production, gene expression, etc.) 
as a result of a heat stimulus, a temperature stimulus above the 
optimal temperature for that organism.

GO:0007076 0.286 0.0417
mitotic chromosome 
condensation

The cell cycle process whereby chromatin structure is compacted 
prior to and during mitosis in eukaryotic cells.

GO:0007628 0.333 0.0419 adult walking behavior

The actions or reactions of an adult relating to the progression of 
that organism along the ground by the process of lifting and setting 
down each leg.

GO:0016081 0.286 0.0424 NA

The initial attachment of a synaptic vesicle membrane to the 
presynaptic membrane, mediated by proteins protruding from the 
membrane of the synaptic vesicle and the target membrane.
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GO:0035172 0.333 0.0427 NA

The multiplication or reproduction of hemocytes, resulting in the 
expansion of the cell population. Hemocytes are blood cells 
associated with a hemocoel (the cavity containing most of the 
major organs of the arthropod body) which are involved in defense 
and clotting of hemolymph, but not involved in transport of 
oxygen.

GO:0006281 0.250 0.043 DNA repair

The process of restoring DNA after damage. Genomes are subject 
to damage by chemical and physical agents in the environment 
(e.g. UV and ionizing radiations, chemical mutagens, fungal and 
bacterial toxins, etc.) and by free radicals or alkylating agents 
endogenously generated in metabolism. DNA is also damaged 
because of errors during its replication. A variety of different DNA 
repair pathways have been reported that include direct reversal, 
base excision repair, nucleotide excision repair, photoreactivation, 
bypass, double-strand break repair pathway, and mismatch repair 
pathway.

GO:0000070 0.286 0.0431
mitotic sister chromatid 
segregation

The cell cycle process whereby replicated homologous 
chromosomes are organized and then physically separated and 
apportioned to two sets during the mitotic cell cycle. Each 
replicated chromosome, composed of two sister chromatids, aligns 
at the cell equator, paired with its homologous partner. One 
homolog of each morphologic type goes into each of the resulting 
chromosome sets.

GO:0007020 0.333 0.0434 microtubule nucleation

The 'de novo' formation of a microtubule, in which tubulin 
heterodimers form metastable oligomeric aggregates, some of 
which go on to support formation of a complete microtubule. 
Microtubule nucleation usually occurs from a specific site within a 
cell.

GO:0016334 0.333 0.0434 NA
Any cellular process that results in the specification, formation or 
maintenance of a polarized follicular epithelial sheet.
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GO:0035160 0.333 0.0435 NA

Ensuring that tracheal tubes in an open tracheal system maintain 
their epithelial structure during the cell shape changes and 
movements that occur during the branching process.

GO:0019731 0.286 0.0438 NA

An immune response against bacteria mediated through a body 
fluid. Examples of this process are the antibacterial humoral 
responses in Mus musculus and Drosophila melanogaster.

GO:0006302 0.333 0.0443
double-strand break 
repair

The repair of double-strand breaks in DNA via homologous and 
nonhomologous mechanisms to reform a continuous DNA helix.

GO:0007617 0.333 0.0449 mating behavior

The behavioral interactions between organisms for the purpose of 
mating, or sexual reproduction resulting in the formation of 
zygotes.

GO:0006825 0.333 0.045 copper ion transport

The directed movement of copper (Cu) ions into, out of, within or 
between cells by means of some external agent such as a 
transporter or pore.

GO:0016339 0.300 0.0456 NA
The attachment of one cell to another cell via adhesion molecules 
that require the presence of calcium for the interaction.

GO:0007160 0.333 0.046 cell-matrix adhesion
The binding of a cell to the extracellular matrix via adhesion 
molecules.

GO:0015914 0.333 0.0466 NA

The directed movement of phospholipids into, out of, within or 
between cells by means of some external agent such as a 
transporter or pore. Phospholipids are any lipids containing 
phosphoric acid as a mono- or diester.

GO:0035277 0.300 0.0467 NA

The process by which the anatomical structures of a spiracle are 
generated and organized. Spiracles are the openings in the insect 
open tracheal system; externally they connect to the epidermis and 
internally they connect to the tracheal trunk.
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GO:0008535 0.333 0.0468
respiratory chain 
complex IV assembly

The aggregation, arrangement and bonding together of a set of 
components to form respiratory chain complex IV (also known as 
cytochrome c oxidase), the terminal member of the respiratory 
chain of the mitochondrion and some aerobic bacteria. 
Cytochrome c oxidases are multi-subunit enzymes containing from 
13 subunits in the mammalian mitochondrial form to 3-4 subunits 
in the bacterial forms.

GO:0035220 0.300 0.0478 NA

Progression of the wing disc over time, from its initial formation 
through to its metamorphosis to form adult structures including the 
wing hinge, wing blade and pleura.

GO:0007528 0.300 0.0479
neuromuscular junction 
development

The process whose specific outcome is the progression of the 
neuromuscular junction over time, from its formation to the mature 
structure.

GO:0007494 0.263 0.0497 midgut development

The process whose specific outcome is the progression of the 
midgut over time, from its formation to the mature structure. The 
midgut is the middle part of the alimentary canal from the 
stomach, or entrance of the bile duct, to, or including, the large 
intestine.
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Table S17
Amino acid replacement FST GO enrichment analysis – cellular categories.

GO

proportion 
significant 
genes p-values

GOslim 
description GO description

GO:0000796 0.571 0.001
condensin 
complex A multisubunit protein complex that plays a central role in chromosome condensation.

GO:0008076 0.400 0.0088

voltage-
gated 
potassium 
channel 
complex

A protein complex that forms a transmembrane channel through which potassium ions 
may cross a cell membrane in response to changes in membrane potential.

GO:0016222 0.400 0.0258 NA

A protein complex that catalyzes the formation of procollagen trans-4-hydroxy-L-
proline and succinate from procollagen L-proline and 2-oxoglutarate, requiring Fe2+ 
and ascorbate. Contains two alpha subunits that contribute to most parts of the 
catalytic sites, and two beta subunits that are identical to protein-disulfide isomerase.

GO:0005682 0.400 0.0266 U5 snRNP A ribonucleoprotein complex that contains small nuclear RNA U5.

GO:0016327 0.400 0.0266 NA The apical end of the lateral plasma membrane of epithelial cells.

GO:0005694 0.308 0.0305 chromosome
A structure composed of a very long molecule of DNA and associated proteins (e.g. 
histones) that carries hereditary information.

GO:0005654 0.308 0.0332 nucleoplasm That part of the nuclear content other than the chromosomes or the nucleolus.

GO:0005643 0.261 0.039 nuclear pore
Any of the numerous similar discrete openings in the nuclear envelope of a eukaryotic 
cell, where the inner and outer nuclear membranes are joined.

GO:0019898 0.300 0.0451 NA
Loosely bound to one surface of a membrane, but not integrated into the hydrophobic 
region.
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Table S18
Amino acid replacement FST GO enrichment analysis – molecular categories.

GO

proportion 
significant 
genes p-values GOslim description GO description

GO:0004656 0.556 0.0005procollagen-proline 4-dioxygenase activity
Catalysis of the reaction: procollagen L-proline + 2-oxoglutarate + 
O2 = procollagen trans-4-hydroxy-L-proline + succinate + CO2.

GO:0031418 0.455 0.002NA

Interacting selectively and non-covalently with L-ascorbic acid, (2R)-
2-[(1S)-1,2-dihydroxyethyl]-4-hydroxy-5-oxo-2,5-dihydrofuran-3-
olate; L-ascorbic acid is vitamin C and has co-factor and anti-oxidant 
activities in many species.

GO:0005506 0.290 0.010iron ion binding Interacting selectively and non-covalently with iron (Fe) ions.

GO:0008527 0.333 0.010taste receptor activity
Combining with soluble compounds to initiate a change in cell 
activity. These receptors are responsible for the sense of taste.

GO:0008026 0.400 0.010ATP-dependent helicase activity
Catalysis of the reaction: ATP + H2O = ADP + phosphate to drive the 
unwinding of a DNA or RNA helix.

GO:0005544 0.429 0.011calcium-dependent phospholipid binding

Interacting selectively and non-covalently with phospholipids, a class 
of lipids containing phosphoric acid as a mono- or diester, in the 
presence of calcium.

GO:0050839 0.429 0.011NA
Interacting selectively and non-covalently with a cell adhesion 
molecule.

GO:0016702 0.429 0.012NA

Catalysis of an oxidation-reduction (redox) reaction in which 
hydrogen or electrons are transferred from one donor, and two 
oxygen atoms is incorporated into a donor.

GO:0003724 0.375 0.019RNA helicase activity
Catalysis of the reaction: NTP + H2O = NDP + phosphate to drive 
the unwinding of a RNA helix.

GO:0003824 0.224 0.019catalytic activity

Catalysis of a biochemical reaction at physiological temperatures. In 
biologically catalyzed reactions, the reactants are known as 
substrates, and the catalysts are naturally occurring macromolecular 
substances known as enzymes. Enzymes possess specific binding 
sites for substrates, and are usually composed wholly or largely of 
protein, but RNA that has catalytic activity (ribozyme) is often also 
regarded as enzymatic.

GO:0008528 0.400 0.022peptide receptor activity, G-protein coupled

Combining with an extracellular or intracellular peptide to initiate a 
G-protein mediated change in cell activity. A G-protein is a signal 
transduction molecule that alternates between an inactive GDP-
bound and an active GTP-bound state.

GO:0004012 0.400 0.025phospholipid-translocating ATPase activity

Catalysis of the movement of phospholipids from one membrane face 
to the other (phospolipid 'flippase' activity), driven by the hydrolysis 
of ATP.
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GO:0046030 0.400 0.025NA
Catalysis of the removal of one of the three phosphate groups of an 
inositol trisphosphate.

GO:0004000 0.400 0.025adenosine deaminase activity Catalysis of the reaction: adenosine + H2O = inosine + NH3.

GO:0004165 0.400 0.025dodecenoyl-CoA delta-isomerase activity
Catalysis of the reaction: 3-cis-dodecenoyl-CoA = 2-trans-
dodecenoyl-CoA.

GO:0004370 0.400 0.025glycerol kinase activity
Catalysis of the reaction: ATP + glycerol = ADP + glycerol 3-
phosphate.

GO:0016757 0.400 0.025NA
Catalysis of the transfer of a glycosyl group from one compound 
(donor) to another (acceptor).

GO:0004652 0.400 0.026polynucleotide adenylyltransferase activity

Catalysis of the template-independent extension of the 3'- end of an 
RNA or DNA strand by addition of one adenosine molecule at a 
time. Cannot initiate a chain 'de novo'. The primer, depending on the 
source of the enzyme, may be an RNA or DNA fragment, or oligo(A) 
bearing a 3'-OH terminal group.

GO:0008188 0.267 0.027neuropeptide receptor activity Combining with a neuropeptide to initiate a change in cell activity.

GO:0003705 0.400 0.027
RNA polymerase II transcription factor activity, 
enhancer binding

Functions to initiate or regulate RNA polymerase II transcription by 
binding an enhancer region of DNA.

GO:0004386 0.258 0.027helicase activity
Catalysis of the reaction: NTP + H2O = NDP + phosphate to drive 
the unwinding of a DNA or RNA helix.

GO:0004872 0.286 0.028receptor activity
Combining with an extracellular or intracellular messenger to initiate 
a change in cell activity.

GO:0046983 0.273 0.033NA

The formation of a protein dimer, a macromolecular structure 
consists of two noncovalently associated identical or nonidentical 
subunits.

GO:0004004 0.273 0.036ATP-dependent RNA helicase activity
Catalysis of the reaction: ATP + H2O = ADP + phosphate, driving the 
unwinding of an RNA helix.

GO:0005234 0.278 0.039extracellular-glutamate-gated ion channel activity

Catalysis of the transmembrane transfer of an ion by a channel that 
opens when extracellular glutamate has been bound by the channel 
complex or one of its constituent parts.

GO:0004970 0.286 0.042ionotropic glutamate receptor activity
Combining with glutamate to initiate a change in cell activity through 
the regulation of ion channels.

GO:0005154 0.333 0.043epidermal growth factor receptor binding
Interacting selectively and non-covalently with the epidermal growth 
factor receptor.

GO:0004016 0.333 0.044adenylate cyclase activity Catalysis of the reaction: ATP = 3',5'-cyclic AMP + diphosphate.

GO:0005249 0.300 0.045voltage-gated potassium channel activity
Catalysis of the transmembrane transfer of a potassium ion by a 
voltage-gated channel.

GO:0051015 0.333 0.045NA

Interacting selectively and non-covalently with an actin filament, also 
known as F-actin, a helical filamentous polymer of globular G-actin 
subunits.

GO:0046982 0.263 0.047NA
Interacting selectively and non-covalently with a nonidentical protein 
to form a heterodimer.
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Table S19.  
 MW HKA valleys (2.5% lowest quantile, merged if within 10 kbp), and position relative to 
nearest gene.  Regions analyzed:  2L:659000-15653000, 2R:6508000-19932000, 3L:411000-
14556000, 3R:12601000-27224000, X:3701000-19185000 .

Table S20.
Gene ontology analysis of MW HKA low outliers 

Table S21. 
 MW HKA peaks (2.5% highest quantile, merged if within 10 kbp), and position relative to 
nearest gene.  Regions analyzed:  2L:659000-15653000, 2R:6508000-19932000, 3L:411000-
14556000, 3R:12601000-27224000, X:3701000-19185000.

Table S22.  
Diversity ratio valleys (see text) shared between MW     D. melanogaster   and the   D. simulans   data   
of Begun et al. (2007).  Regions analyzed:  2L:3047000-15560000, 2R:6508000-19002000, 
3L:3339000-14556000, 3R:12909000-26707000, X:3701000-18963000

Table S23.  
Gene ontology analysis of MW HKA high outliers.

Table S24.  
Diversity ratio valleys (2.5% lowest quantile, merged if within 10 kbp), and position relative to 
nearest gene.  Regions analyzed:  2L:705000-15560000, 2R:6508000-19680000, 3L:411000-
14556000, 3R:12909000-27218000, X:3701000-19185000.

Table S25.
Gene ontology analysis of heterozygosity ratio outliers.

Table S26.
Diversity valleys (see text) shared between MW   D. melanogaster   and the   D. simulans   data of   
Begun et al. (2007).  Regions analyzed:  2L:3047000-15560000, 2R:6508000-19002000, 
3L:3339000-14556000, 3R:12909000-26707000, X:3701000-18963000.
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