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ABSTRACT In this article, we develop an admixture F model (AFM) for the estimation of population-level coancestry coefficients from
neutral molecular markers. In contrast to the previously published F model, the AFM enables disentangling small population size and
lack of migration as causes of genetic differentiation behind a given level of FST. We develop a Bayesian estimation scheme for fitting
the AFM to multiallelic data acquired from a number of local populations. We demonstrate the performance of the AFM, using
simulated data sets and real data on ninespine sticklebacks (Pungitius pungitius) and common shrews (Sorex araneus). The results show
that the parameterization of the AFM conveys more information about the evolutionary history than a simple summary parameter such
as FST. The methods are implemented in the R package RAFM.

IN the fields of animal and plant breeding, coancestry co-
efficients are often used as measures of relatedness be-

tween individuals (Bink et al. 2008). For example, in a
noninbred population the coancestry between full-sibs or
between a parent and an offspring is 1

4, and the coancestry
between half-sibs is 1

8 (Lynch and Walsh 1998). Coancestry
is the same as probability of identity by descent (IBD) at the
limit of a low mutation rate and given a noninbred ancestral
population. Two genes are said to be identical by descent if
and only if they have not mutated since the most recent
common ancestor.

Individual-level coancestry coefficients (or probabilities
of IBD) are useful in gene mapping, because they tell how
much the genomes of two individuals are expected to re-
semble each other; i.e., they summarize the expected level of
genetic similarity. In analogy, population-level coancestry
coefficients can be used as measures of relatedness between
local populations, and they can be combined with pheno-
typic data to detect signals of selection in quantitative traits,
as opposed to those caused by random drift (Merilä and
Crnokrak 2001; Mckay and Latta 2002; Ovaskainen et al.
2011).

Coancestry coefficients can be calculated directly, if pe-
digree information is available, but their estimation for na-
tural populations is often challenging. One approach for
doing so is to use the link between coancestry coefficients
and coalescence times (Rousset 2004). Coalescence time
distributions can be solved, at least numerically, for a popu-
lation that is in a stationary state, assuming that the demo-
graphic parameters are known (Bahlo and Griffiths 2001).
However, in the context of evolutionary ecology of natural
populations, this is rarely the case, as there is often limited
direct information on demographic history, and it can be
unrealistic to assume any kind of stationarity. Instead, a com-
mon approach is to infer the demographic history using
neutral molecular markers genotyped from the present gen-
eration. One statistical framework for estimating coancestry
coefficients in this way is given by the F model (Falush et al.
2003; Gaggiotti and Foll 2010). However, this approach
suffers from the structural limitation that the subpopulations
are assumed to have radiated independently from the an-
cestral population, so that there has been no recent gene
flow. Consequently, the F model cannot account for limited
gene flow and small population size as alternative sources
of genetic differentiation (Gaggiotti and Foll 2010).

In animal and plant breeding, a number of alternative
methods have been developed for estimating coancestry
coefficients from molecular marker data for pairs of indivi-
duals. Bink et al. (2008) survey seven suchmethods, concluding
that the surveyed estimators have poor statistical properties,
except in the special case that the allele frequencies are known
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for a hypothetical reference population. Furthermore, as
Fernandez and Toro (2006) point out, many of these estima-
tors have undesired mathematical properties; e.g., they may
yield logically incompatible estimates for different pairs of
individuals. Software by Maenhout et al. (2009) removes
some of these flaws by post hocmodification of the parameter
estimates.

In this article, we focus on the case where neutral ge-
notypic data are available for a set of subpopulations, and
the problem is to infer the matrix of coancestry coefficients
among these local populations. We model the demographic
histories of the subpopulations by an admixture of evolu-
tionary independent lineages, thus extending the F model in
a way that relaxes the structural assumption noted above.
We use an admixture of independent lineages as a phenom-
enological model for the evolutionary history of a metapo-
pulation where local populations experience a limited level
of gene flow. Apart from Gaggiotti and Foll (2010), our
method is also a generalization of that of Fu et al. (2005),
because we consider multiallelic loci and a more general
population structure than the case of clustered subpopula-
tions. With these extensions, our model contains both gene
flow and pure random drift as factors influencing the level of
differentiation. Contrary to the “pairwise methods” used in
animal and plant breeding, both the original F model and
our model permit writing the likelihood of individual-level
data directly as a function of population-level coancestry
coefficients. In the following, we first introduce the model-
ing approach and then its Bayesian parameterization that
we have implemented in the R-package RAFM, and finally
we illustrate the modeling approach with the help of simu-
lated and real data.

The Modeling Approach

Coefficients of coancestry

Our main interest is in the estimation of population-level co-
efficients of coancestry, denoted by u  PAB for a pair of popu-
lations (A, B). We define u  PAB as the average coancestry
between the subpopulations,

u  PAB ¼ 1
nAnB

X
i2A;i2B

uii9 ; (1)

where uii9 is the coancestry coefficient of individuals i and i9,
and nA is the number of individuals in population A. We note
that the definition of Equation 1 allows for the possibility
that the level of coancestry is not identical for all pairs of
individuals uii9 with i 2 A and i9 2 B. A priori, in lack of this
information, uii9 is assumed to depend only on the popula-
tions A and B, and thus it can be used interchangeably with
u PAB for calculating the covariance of allelic states as detailed
in Supporting Information, File S1.

We follow Rousset (2004) and call two gene copies IBD if
they originate from the same ancestral copy and are identi-

cal by state; i.e., they have not mutated since their diver-
gence. The coancestry coefficients and the probabilities of IBD
for neutral loci are often used interchangeably, but they have
a slight difference (we denote the latter by ucii9 and uPcAB for the
individual and subpopulation levels, respectively). The prob-
ability of IBD can be written by using the coalescence time
distribution for two gene copies in populations A and B as
(Rousset 2004), e.g., for a model with discrete generations:

uPcAB ¼
XN
t¼1

C AB;tð12mÞ2t: (2)

In this equation, CAB,t is the probability that the two gene
copies coalesce exactly t generations before present, and m is
the per-locus per-generation probability of mutation. Bahlo
and Griffiths (2001) derive formulas that allow the numerical
computation of uPcAB, assuming that the migration rates between
the subpopulations and their relative sizes are known. These
formulas enable estimating uPcAB from demographic parameters,
but this approach typically assumes that population dynamics
have remained stationary over a long period of time (Bahlo
and Griffiths 2001;Wilkinson-Herbots 2003;Wilkinson-Herbots
and Ettridge 2004; Bhattacharya et al. 2007).

Sometimes the biological context is such that there has
been a major perturbation, such as the last ice age, after
which the subpopulations have diverged from a common
ancestral pool. In this case, instead of assuming stationarity,
it is more natural to consider a finite population history of
T generations. In this case,

uPcAB

XT
t¼1

C AB;tð12mÞ2t �
XT
t¼1

C AB;t ¼ E
�
uPAB
�
; (3)

where the expectation is taken over the distribution of
pedigrees generated by the demographic model. The ap-
proximation is justified if the mutation rate is low compared
to the number of generations.

The relationship between coancestry and FST

FST is one of the most widely used statistics in population
genetics, and it is routinely used as a measure of genetic
differentiation (Rousset 2002, 2004; Whitlock 2011).
Depending on the definition of u, FST can be defined through
coancestry, probability of IBD, or probability of identity by
state as

FST ¼ uW 2 uB

12 uB
; (4)

where

uW ¼ 1
nP

XnP
A¼1

uPAA; uB ¼ 1
n2P 2nP

X
B6¼A

uPAB; (5)

and nP is the number of populations. In this article, we de-
fine FST through population-level coancestry. In Equation 5,
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uW is the average coancestry within subpopulations, and uB

is the average coancestry between subpopulations. In line
with the coalescent-based definition of FST (Rousset 2004),
we do not weight the averages, e.g., by the sizes of the local
populations. We are chiefly interested in estimating the
coancestry coefficients and investigating the properties of
the admixture F model (AFM), but we also report FST (de-
fined through the coancestry-based variant of Equations 4
and 5) estimates because of the centrality of FST in the
literature.

The AFM

In this section, we extend the F model (Falush et al. 2003;
Gaggiotti and Foll 2010) to an AFM that allows for gene
flow among the local populations. As is the case with the
original F model, we assume that the local populations are
derived from a common ancestral population and consider
the limit of a small mutation rate, i.e., the situation that
relates to Equation 3.

Denoting the frequency of allele u at locus j in the ances-
tral generation by qju, the expectation and variance of the
allele frequency in population A can be written as

E
h
pAju

i
¼ qju;

Var
h
pAju

i
¼
�
qju2 q2ju

�
f; (6)

where f is a factor that depends on the demographic model
(Lynch and Walsh 1998). For an isolated population of
a constant effective size,

f ¼ 12
�
12

1
2N e

�T
(7)

(Lynch and Walsh 1998). A convenient distributional form
that satisfies the above is

pAj~Dirichlet
�
aqj
�
; (8)

where

a ¼
 
12
�
12

1
2Ne

�T!21

2 1 (9)

in absence of mutation. By Equation 9, a small value of a
corresponds to a small effective population size or a large
number of generations T, both of which imply a high amount
of random genetic drift. The Dirichlet distribution is just a con-
venient approximation for the distribution of allele frequen-
cies under pure random drift, as their true distribution is
difficult to implement in a statistical model (see File S2). Also
the truncated normal distribution is often used to approxi-
mate this distribution (Nicholson et al. 2002; Balding 2003;
Coop et al. 2010). However, the truncated normal distribu-
tion is more difficult to adapt to the multiallelic case than

the Dirichlet distribution as the frequency distribution is con-
strained by the condition

Pnj
u¼1pju ¼ 1. For a discussion on

the relative accuracy of the Dirichlet and truncated-normal
approximations, see File S2 and Figure S1.

To extend the model for nP subpopulations that may have
experienced gene flow since their divergence from a com-
mon ancestral population, we assume an admixture of ne
evolutionary independent lineages (Figure 1). The allele
frequencies in each lineage are distributed as in Equation
8; i.e., we assume for locus j and lineage k,

zkj ~ Dirichlet
�
akqj

�
; (10)

where ak measures the amount of drift experienced by this
lineage. The allele frequencies in locus j in local population A
are defined as a mixture the lineage-specific frequencies, namely

pAj ¼
Xne

k¼1

kAkzkj: (11)

Figure 1 Schematic presentation of the admixture F model (AFM), in
which subpopulations are constructed as admixtures of independent lin-
eages. The histograms represent allele frequencies in a particular locus in
the ancestral generation, in two independent lineages, and in two pres-
ent subpopulations. In this example, lineage 1 has been subject to little
drift (parameter value a1 = 100). In contrast, only two alleles remain at
high frequency in lineage 2 as a result of much drift (a2 = 0.5). Population
1 is identical to lineage 1 (k11 = 1, k12 = 0). Population 2 is mainly derived
from lineage 2, but has received some gene flow from lineage 1 (k21 =
0.1, k22 = 0.9). These parameter values give population-level coancestry
coefficients uP11 ¼ 0:010, uP12 ¼ 0:002, and uP22 ¼ 0:427, yielding FST =
0.22.
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We constrain the lineage loadings kAk to sum up to unity
over the lineages,

PnL
k¼1kAk ¼ 1, implying that vector pAj is

a proper frequency distribution. Setting the lineage-loading
matrix to the identity matrix yields the special case of fully
independent demes (the F model of Falush et al. 2003).
Technically, our construction is analogous to factor analysis
(Gorsuch 1983), with lineages as factors and lineage load-
ings kAk as factor loadings.

A convenient property of the AFM is that the subpopu-
lation-level coancestry coefficients depend on the model pa-
rameters in a very simple way (Table 1). As shown in File S1,

uPAB ¼
Xne

k¼1

kAkkBk
ak þ 1

: (12)

Thus, after fitting the AFM to data it is straightforward to
obtain an estimate of the matrix of population-to-population
coancestry coefficients. By construction, this matrix will be
always positive definite, avoiding the logical problems from
which some of the earlier methods suffered (Fernandez and
Toro 2006).

Assuming no genetic structure within subpopulations,
i.e., a random distribution of alleles among and within indi-
viduals, the genotype of each individual in subpopulation A
is a multinomial random variable, xij � Multinomial(2, pAj).
Notably, inbreeding due to a small population size is repre-
sented by a high intrapopulation coancestry uPAA, whereas an
increased level of inbreeding due to assortative mating
could be added to the model by assuming a dependency
between the allelic states of the two gene copies within an
individual, but we do not consider that in this article.

Parameter estimation with Bayesian inference

To parameterize the AFM with Bayesian inference, prior
distributions need to be defined for the primary parameters
q, a, and k. We assume the distributional forms

qj~Dirichlet
�
bq
j

�
;

log ak~N
�
ma;s

2
a
	
;

kA~Dirichlet
�
bx
A
	
;

Table 1 List of main parameters and symbols

Dimensions

No. distinct alleles in locus j nj
No. loci nL
No. lineages ne
No. subpopulations nP

Coalescent theory
Probability of IBD for two gene copies in populations A and B uPcAB
Probability that two gene copies from populations A and B have

coalesced exactly t generations before present
CAB,t

Time since population divergence T
Per-generation per-locus rate of mutation m

Per-capita probability of migration m
Coancestry coefficients

Coancestry among subpopulations nP · nP matrix uP with elements uPAB
Mean within-population coancestry uW ¼ 1

nP

X
A2P

uPAA

Mean between-population coancestry uB ¼ 1

n2P 2nP

X
B 6¼AA;B2P

uPAB

Allele frequencies
Allele frequencies in the ancestral generation qj = (qju); u = 1, . . . , nj

q = (qj); j = 1, . . . , nL
Allele frequencies in lineages zkj = (zkju); u = 1, . . . , nj

zk = (zkj); j = 1, . . . , nL
z = (zk); k = 1, . . . , nL

Allele frequencies in subpopulations pAj = (pAju); u = 1, . . . , nj
pA = (pAj); j = 1, . . . , nL
p = (pA); A = 1, . . . , nP

Parameters measuring evolutionary history
Lineage loadings nP ·  nL matrix k with element kAk
Genetic drift a = (ak); k = 1, . . . , nL

Identity by state
Indicator variable for the allele copy k in locus j of individual i being of the allelic type u xijku
Data, i.e., observed allele counts on the sample As of individuals originating from subpopulation A xAju ¼ P

i2As

P
k¼1;2

xijku

xAj = (xAju); u = 1, . . . , nj
xA = (xAj); j = 1, . . . , nL
x = (xA); A = 1, . . . , nP
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mainly for the sake of mathematical convenience. Indexes j,
k, and A refer to loci, lineages, and subpopulations, respec-
tively. In the case studies below, we assume the values
bq
j ¼ 1nj , ma = 2, s2

a ¼ 2: We set the number of lineages
equal to the number of subpopulations and assume that
lineage A makes the dominant contribution to subpopula-
tion A, i.e., that the matrix k is diagonally dominant. To do
so, we let

bk
AA ¼ 0:8nP; and bk

Ak ¼
0:2nP
ne 2 1

for k 6¼ A; (13)

and truncate the prior by the requirement that kkAA . kkAk for
all k 6¼ A. This specification links each population with a par-
ticular lineage by assuming that lineage A makes a dominat-
ing contribution to population A. It also ensures that label
switching is not possible, thus improving the mixing of the
Markov chain Monte Carlo (MCMC) algorithm (Gelman and
Carlin 2004).

The number of alleles (nj) in locus j in the ancestral
generation is generally unknown, as some alleles may have
disappeared after the lineages have diverged or are not pres-
ent in the sampled individuals. Due to the aggregation prop-
erty of the Dirichlet distribution, all of the unobserved
alleles can be binned into a single unobserved class. Thus,
we define nj as the number of distinct alleles observed in
locus j plus one.

The directed acyclic graph that illustrates the link from
the primary parameters (k, a, q) through the derived
parameters (z, p) to the data x is shown in Figure 2. Given
the data x, the posterior density can be decomposed as

pðk;a;q  jxÞ}pðx  jz; kÞpðz  ja;qÞpðkÞpðaÞpðqÞ; (14)

with the distributional form of each factor being specified
above. As noted above, the coancestry coefficients are not
directly involved in the estimation procedure, but their
posterior distribution is determined by that of (k, a) (Equa-
tion 12). We use the adaptive random-walk Metropolis–
Hastings algorithm of Ovaskainen et al. (2008) to sample
the posterior density p(k, a, q | x). More details of the
algorithm can be found in File S3, and it is implemented
in the R package RAFM.

Numerical Examples

We tested the performance of the method described above
with two kinds of simulated data: data generated by the
AFM itself and data generated through individual-based
pedigrees that we in turn generated by a demographic
model with continuous migration among subpopulations.
The first type of data was used to investigate the perfor-
mance of the estimation scheme in the ideal case that the
data follow the structural assumptions of the model. The
second type of data was used to examine whether a mixture
of independent lineages can yield a good approximation of
a more realistic demography in the sense of providing an

accurate estimate of the matrix uP and whether the param-
eters a and k correlate with the demographic parameters in
an intuitive way.

Case studies with data generated by the AFM

First, we considered nP ¼ 2 populations A and B and as-
sumed the parameter values k = (0.9, 0.1; 0.1, 0.9) and a

= (2.7, 2.7), which leads to uP ¼ ð0:22;  0:05;  0:05;  0:22Þ
and consequently FST = 0.18. As a default case, we assumed
that nA = nB = 100 individuals from each population were
genotyped for nL ¼ 16 loci, each having nj = 4 allelic var-
iants that were equally common in the ancestral generation.
To test the dependency of parameter estimates on sample
size, we varied each of these parameters in turn, considering
nA = nB = 10, 100, 1000; nL ¼ 8;  16;  32; and nj = 2, 4, 8.
Figure 3 shows how the accuracy of the estimated FST value
increases with sample size. As expected from earlier re-
search (Gaggiotti and Foll 2010; Wang and Hey 2010), in-
creasing the number of loci improves the accuracy much
more rapidly than increasing the number of individuals.
Analogously, increasing the number of alleles per each locus,
i.e., increasing the level of polymorphism, brings more res-
olution to the data, and thus it also rapidly improves param-
eter estimates. Contrary to the case studies of Jost (2008),
but consistent with the fact that FST is defined through coan-
cestry, the estimates of FST do not decrease when the poly-
morphism of marker loci increases (Figure 3A).

To test whether local drift and lack of gene flow could be
separated as alternative causes of genetic differentiation, we
repeated the above (with the default sample size) with the
off-diagonal value of k set to 0.05, 0.15, 0.25 and the value
of a adjusted so that FST = 0.18 in all cases (Figure 4). Note
that gene flow sets an upper limit to population differentia-
tion: given a value of gene flow (i.e., off-diagonal of k),
there is an upper limit to FST, namely the one produced by
a = (0, 0). While the separation of gene flow and migration
is not possible in the standard F model (Gaggiotti and Foll
2010), Figure 4A shows that the parameters k and a are

Figure 2 A directed acyclic graph (DAG) describing the dependencies
among model parameters and data. Solid arrows imply probabilistic links
and dashed arrows deterministic relationships. The process that is as-
sumed to have generated the genotype data (x) involves the ancestral
allele frequencies (q), the amount of genetic drift experienced by the
lineages (a), the allele frequencies in the lineages (z), and the lineage
loadings, i.e., the contributions of lineages to the local populations (k).
Derived parameters include allele frequencies in the subpopulations (p)
and the matrix of population-level coancestry coefficients (uP) from which
FST can be computed.
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identifiable in the AFM, if sufficient data are available. As
a consequence, it is possible to estimate a full matrix uP

(Figure 4B), not only the summary parameter FST.

Case studies with an individual-based model

We constructed pedigrees for nP ¼ 2 subpopulations with
nonoverlapping, constant-size generations consisting of
equal numbers of males and females. For each individual
in the ancestral population, we randomized the two allele
copies for each locus assuming four allelic variants with
equal frequency qju = 0.25. The two parents of each indi-
vidual in the subsequent generations were randomized (in-
dependently of each other) with probability 1 2 m among
the individuals of the same subpopulation and with proba-
bility m among the individuals of the other subpopulation
(thus implying a per-capita migration rate m). We modeled
diploidic inheritance for 32 unlinked loci. To vary the level
of gene flow and genetic drift, we considered three scenar-
ios, in each of which the two subpopulations had diverged
50 generations ago. In the baseline scenario 1, we assumed
200 individuals per population and m = 0.001. In scenario
2, we increased the amount of drift (and thus also FST) by
assuming 50 individuals per subpopulation. Finally, scenario
3 differed from the baseline scenario 1 by having a higher
amount of gene flow, m = 0.02. As the purpose of this
simulation study was to examine whether the AFM is able
to approximate individual-based pedigrees rather than to
test its statistical power (which we demonstrate in Figures
3 and 4), we assumed that large data sets were available,
i.e., 100 individuals per subpopulation genotyped for 32 loci
(even for the smaller subpopulations), each having four al-
lelic variants in the ancestral generation. We created four
replicate data sets for each of the scenarios 1–3.

Figure 5 shows that the AFM can mimic individual-based
pedigrees in the sense that the parameters that measure
gene flow (k) and genetic drift (a) vary in line with the
individual-level parameters of the three demographic sce-
narios. Increasing local population size decreases a, and in-
creasing gene flow increases the off-diagonal elements of k.
Figure 5B shows that our approach performs well also for
estimating FST from the individual-based data, although
there is a slight bias upward for scenario 2 with a high
amount of drift. Here the true values of the coancestry coef-
ficients were computed from the simulated pedigree, using

first the standard recursive relationships (File S1) and then
averaging the individual-level coancestries over the natural
subpopulations (not the genotyped individuals), according
to Equation 1. For comparison, the Weir–Cockerham estima-
tor (Weir and Cockerham 1984), implemented in FSTAT
(Goudet 1995), gives very similar results (Figure 5B). Thus,
the novelty of our approach is not in estimation of FST, but in
separating gene flow and genetic drift as causal factors be-
hind the observed level of differentiation. This separation is
needed to estimate the full coancestry matrix uP, which in
turn is needed, e.g., for detecting signals of natural selection
in quantitative-genetic studies (Ovaskainen et al. 2011).

Case studies with real data

Here we illustrate our model’s output with two natural data
sets. Both of these data sets are included in the R package
RAFM (Karhunen 2012). The first data set consists of 183
ninespine sticklebacks genotyped for 12 microsatellite
markers (a subset of data used by Shikano et al. 2010),
and it comprises four populations: Baltic Sea (60�139N, 25�
119E), White Sea (66�189N, 33�259E), pond Bynästjärnen
in Sweden (64�279N, 19�269E), and pond Pyöreälampi in
Finland (66�159N, 29�269E). The pond populations are likely
to have experienced a very high amount of drift, and all
populations are likely to have remained reproductively iso-
lated from each other since the last ice age (Shikano et al.
2010). Thus, the demographic assumptions of Equation 3
and the AFM are at least approximately in line with the
biological context.

For the ninespine sticklebacks, the median (95% credi-
bility interval) of FST given by the AFM was FST = 0.34
(0.31–0.37). The Weir–Cockerham estimator yielded
a higher estimate, the point estimate (95% confidence in-
terval) being FST = 0.50 (0.44–0.55). The median estimates
of the within-population coancestries uPAA were 0.02, 0.10,
0.57, and 0.68 for the White Sea, Baltic Sea, Swedish pond,
and Finnish pond populations, respectively. These numbers
may be compared to population-specific FST values, i.e., ui of
Weir and Hill (2002), calculated from pairwise FST values
given by FSTAT (Goudet 1995): 0.13, 0.09, 0.77, and 0.98
in the same order. Thus, as expected intuitively, the pond
populations have experienced much more drift than the sea
populations. In our analysis, the White Sea population is
more diverse than the Baltic Sea population, which may

Figure 3 Accuracy of parameter
estimates increases with allelic
polymorphism and sample size.
The solid circles with the error
bars show the estimate (posterior
median and 95% central credibil-
ity interval) of FST obtained by fit-
ting the AFM to simulated data
generated by the AFM. The de-
fault values of four alleles, 16

loci, and 100 individuals are assumed except for the parameter that is varied in each panel: level of polymorphism (A), number of loci (B), and number
of individuals sampled from each subpopulation (C). The true value of FST = 0.18 is indicated by the dashed line, and the cases with sample size 0 show
the prior distribution. For parameter values used in generating the data, see Case studies with data generated by the AFM in the main text.
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reflect a higher effective population size in the White Sea
that is in direct contact with the Arctic Ocean. In line with
the expectation of no recent gene flow due to geographic
barriers, the level of between-population relatedness was very
low in our analysis (median estimates of all off-diagonal
terms of the matrix uP were in the range 102521023, attrib-
utable to numerical noise from the MCMC).

The second data set originates from a much smaller
spatial setting, containing samples of the common shrew
(Sorex araneus) on islands on the lake Sysmä (62�409N, 31�
209E) and the surrounding mainland in Finland (Hanski and
Kuitunen 1986). Here we utilize data from the mainland,
two large islands (L1 and L3, areas 3.8 and 4.4 ha), and two
small islands (S5 and S10, areas 0.7 and 0.4 ha). The islands
form two pairs, each consisting of a large and a small island,
so that the distance between L1 and S5, as well as the
distance between L3 and S10, is ,500 meters, but the dis-
tance between any other pair of islands is at least 1300
meters. The diameter of the lake is �3 km, and thus the size
of the study system is comparable to the potential migration
distances of shrews (Hanski and Kuitunen 1986).

The small spatial scale is reflected by the low overall
degree of population differentiation, the AFM yielding the
estimate FST = 0.08 (0.06–0.09) and the Weir–Cockerham
estimator giving FST = 0.05 (0.04–0.07). As expected from
variation in population size, the within-subpopulation relat-
edness ðuPAAÞ is lower for the mainland (median estimate
0.01) than for the islands (0.12, 0.10, 0.09, and 0.08 for
L1, L3, S5, and S10, respectively). These findings are in line
with the population-specific FST estimates (0.01, 0.12, 0.09,
0.09, and 0.06 in the same order). The only off-diagonal
terms that are $0.01 in the median estimate are between
the mainland and the island L1 (0.01) and between the

islands L3 and S10 (0.01) that are located close to each
other, but it is hard to draw conclusions on a more general
pattern based on this observation. This is in line with the
discriminant function analysis based on metrical traits by
Hanski and Kuitunen (1986), which also revealed little in-
dication of isolation by distance.

Discussion

The AFM can be used to infer population-level coancestry
coefficients uPAB from genotypic data. Mathematically, the
AFM is a generalization of the model of Fu et al. (2005)
for multiallelic data and a more general population struc-
ture. As discussed above, the estimates of uPAB also relate to
coalescent theory and thus to the definition of FST by Rous-
set (2004). Using the AFM for estimating FST is justified
subject to two conditions: First, we have assumed that the
subpopulations have diverged from a common ancestral
population at some time in the past. Second, we have as-
sumed that the mutation rate is low compared to the time
elapsed since divergence or at least compared to the influ-
ence of potential gene flow after time since divergence. If
these two conditions are met, uPAB is close to its coalescent-
based analogy (uPcAB), and thus it can be used for calculating
the coalescent-based FST (Slatkin 1991, 1995; Rousset 2004).
The AFM models the allele frequencies by an admixture of
evolutionary independent lineages, but this assumption is less
restrictive. As the simulations show, it can also be used to
mimic the effects of continuous gene flow (Figure 5).

The parameters of the AFM convey information about the
demographic history of the local populations, as we have

Figure 5 The AFM fitted to data generated by individual-based simula-
tions of two identical subpopulations. The green color refers to baseline
scenario 1 in which data were simulated assuming little gene flow and
little random drift, blue refers to scenario 2 with a higher amount of drift,
and red refers to scenario 3 with a higher amount of gene flow. (A) The
75% credible sets of the estimated parameters are plotted in (k12, a1)
space. The colored lines show the isoclines of the minimal and maximal
true FST values among the four replicate data sets generated for each
scenario. (B) The FST values estimated by our method (black circles and
error bars show the posterior median and 95% central credibility interval)
are compared to the true values (colored circles) and to the Weir–Cock-
erham estimates (gray circles and error bars show the ML estimate and its
95% confidence interval) given by FSTAT (Goudet 1995). For parameter
values used to generate the data, see Case studies with an individual-
based model in the main text.

Figure 4 Separation of genetic drift and gene flow as causes of genetic
differentiation. In the simulated case study consisting of two identical
populations, FST and the subpopulation-level coancestry coefficients de-
pend on the parameters a1 = a2 (measuring genetic drift) and k12 = k21
(measuring gene flow). The black lines show isoclines of FST in (k12, a1)
space (A) and in (u12,u11) space (B). The brown line shows the isocline of
FST = 0.18 corresponding to the true value in all three simulated scenarios,
and the solid circles show the true parameter values for each of the
scenarios. The lines show the parameter estimates of the fitted models,
measured by 75% polytope quantiles of the posterior distributions. The
thick gray lines show the 75% polytope quantiles for the prior distribu-
tion.
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demonstrated with the simulated data and the two natural
data sets. Using the AFM, it is possible to analyze the level of
connectivity between the subpopulations (as characterized
by k) and the relative effective population sizes of the un-
derlying evolutionary lineages. However, it is not possible to
disentangle the absolute effective population sizes and the
number of generations after divergence (as they are not
identifiable on basis of a alone), nor it is possible to deduce
per-capita rates of migration.

Apart from demography, the AFM also makes a number of
assumptions regarding the type of genetic data. As discussed
above, the mutation rate is assumed to be low, suggesting
that using microsatellite markers should be avoided. As
usual in population-genetic studies, we have also assumed
that the markers used are selectively neutral. Thus, markers
subject to diversifying (stabilizing) selection are likely to
cause an upward (downward) bias in the estimate of FST, as
is the case of FST estimates obtained by other methods
(Excoffier et al. 2009). Third, we have ignored genotyping
error, which is known to increase the sampling variation of
FST estimates (Bonin et al. 2004; Herrmann et al. 2010). The
implementation of these features to the present framework
would be an important extension that we hope to be
addressed by future work. Finally, we have used the Dirich-
let distribution to model random genetic drift within each of
the independent lineages. This approximation should be
taken with some criticism (Nicholson et al. 2002; Balding
2003). Some authors have used truncated normal distribu-
tion in place of Dirichlet for estimating FST (Nicholson et al.
2002; Weir and Hill 2002; Coop et al. 2010). However, both
of these statistical models are approximations of the true
model, and both of them have their limitations, which we
discuss in File S2.

For the molecular ecologists and population geneticists,
FST is probably a more familiar variable than the matrix uP.
While most authors consider FST as a parameter, some con-
sider it as an estimator or a point estimate of this parameter.
For different types of data and different mutation models,
a full “alphabet soup of related indices have been devel-
oped” (Whitlock 2011, p. 1083), which may cause part of
the confusion. There has also been recent discussion con-
cerning the aptitude of FST for measuring genetic differenti-
ation (Jost 2008; Whitlock 2011). Some authors have
reported that locus-specific values correlate with the poly-
morphism of the marker loci (Hedrick 2005; Carreras-
Carbonell et al. 2006; Jost 2008). By the canonical definition
(Equation 4), FST is fully determined by the coalescent, so
that it is logically independent of ancestral polymorphism.
On the other hand, a high rate of mutation of course shows
both in FST and in the present level of polymorphism. At the
limit of a low mutation rate, FST reduces into a function of
expected coalescence times (Slatkin 1991, 1995; Rousset
2002, 2004; Whitlock 2011) that are independent of poly-
morphism. In line with this, our coancestry-based FST is
a function of coancestry coefficients and the pedigree that
do not depend on the ancestral polymorphism.

Jost (2008) pointed out that FST can have low values
even if the subpopulations do not share any alleles. In terms
of coancestry coefficients, this implies uPAB ¼ 0 for two dif-
ferent populations. As illustrated by the y-axis of Figure 4,
the value of FST can range anywhere between zero and one
also in this case. However, unlike Jost (2008), we do not
consider this as a problematic feature of FST. From the view-
point of Equation 4, FST is just a summary statistic of the
subpopulation-to-subpopulation coancestry matrix uP. A
more detailed understanding of population structure can
clearly be obtained by considering the entire matrix uP,
rather than a single scalar. Like Whitlock (2011), we still
consider FST to be a very useful quantity in population ge-
netics, e.g., for the reason that it is the relevant statistic for
FST2QST comparisons that attempt to find signals of stabi-
lizing and disruptive selection in quantitative traits (Merilä
and Crnokrak 2001; Mckay and Latta 2002), although we
note that also this analysis can be done more effectively
using the full matrix of population-level coancestries uPAB
(Ovaskainen et al. 2011).
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Figure	  S1	  	  	  This	  figure	  represents	  an	  empirical	  sample	  from	  the	  true	  distribution	  of	  allele	  frequency	  (black	  discrete	  

distribution)	  in	  four	  scenarios,	  and	  two	  approximations	  to	  it:	  Multinomial-‐Dirichlet	  and	  truncated	  normal.	  The	  parameter	  

values	  are:	  Scenario	  1:	  𝑇 = 10	  generations,	  𝑛! = 100	  individuals,	  initial	  frequency	  𝑞!! = 0.5;	  Scenario	  2:	  𝑇 = 100,	  

𝑛! = 100,	  𝑞!! = 0.5;	  Scenario	  3:	  𝑇 = 10,	  𝑛! = 100,	  𝑞!! = 0.95;	  Scenario	  4:	  𝑇 = 100,	  𝑛! = 100,	  𝑞!! = 0.95.	  
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Calculating	  coancestry	  coefficients	  

	  

Calculating	  coancestry	  coefficients	  from	  the	  admixture	  F-‐model	  (AFM).	  The	  frequency	  of	  allele	  𝑢	  in	  

subpopulation	  𝐴	  is	  simply	  the	  average	  of	  the	  indicator	  variables	  𝑥!"#$,	  

𝑝!"# =
!
!!!

(𝑥!"!! + 𝑥!"!!)
!!

!!!
.        (Eq.  S1)	  

The	  frequency	  𝑝!"#	  is	  a	  random	  variable,	  with	  expectation	  (over	  the	  flow	  of	  neutral	  alleles	  through	  a	  pedigree	  structure	  

that	  we	  consider	  fixed)	  𝑞!".	  The	  covariance	  among	  subpopulations	  𝐴	  and	  𝐵	  is	  

Cov 𝑝!"#, 𝑝!"# = E 𝑝!"# − 𝑝!" 𝑝!"# − 𝑝!" = E 𝑝!"#𝑝!"# − 𝑞!"! = 𝑞!" − 𝑞!"! 𝜃!"𝒫 ,      (Eq.  S2)	  

where	  the	  last	  equality	  follows	  (at	  the	  limit	  of	  low	  mutation	  rate)	  by	  noting	  that	  identity	  by	  state	  follows	  either	  from	  

identity	  by	  descent,	  or	  by	  the	  two	  distinct	  alleles	  in	  the	  ancestral	  population	  being	  identical	  by	  state,	  

E 𝑥!′!"𝑥!"# = 𝑞!"! + 𝜃!! ′(𝑞!" − 𝑞!"
! )      (Eq. S3)	  

and	  substituting	  the	  definitions	  of	  𝑝!"#	  (Eq.	  S1)	  and	  𝜃!"𝒫 	  (Eq.	  1	  in	  the	  main	  text)	  into	  Equation	  S1.	  

In	  the	  AFM,	  it	  holds	  that	  

Cov 𝑝!"#, 𝑝!"# = Cov 𝜅!"𝑧!"#
!!

!!!
,    𝜅!"𝑧!"#

!!

!!!
.      (Eq. S4)	  

Because	  the	  lineages	  are	  independent,	  Cov(𝑧!"#, 𝑧!′!")=0	  for	  all	  𝑘 ≠ 𝑘′.	  Thus,	  Equation	  S4	  reduces	  to	  

Cov 𝑝!"#, 𝑝!"# = 𝜅!"𝜅!"Var	  𝑧!"#
!!

!!!
	  = 𝜅!"𝜅!"

𝑞!" − 𝑞!"!

𝑎! + 1

!!

!!!
.      (Eq. S5)	  

Combining	  this	  with	  Eq.	  S2	  yields	  

𝑞!" − 𝑞!"! 𝜃!"𝒫 = 𝜅!"𝜅!"
𝑞!" − 𝑞!"!

𝑎! + 1

!!

!!!
,      (Eq. S6)	  

and	  hence	  

𝜃!"𝒫 =
𝜅!"𝜅!"
𝑎! + 1

!!

!!!
.        (Eq. 12,main  text)	  
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Calculating	  coancestry	  coefficients	  from	  a	  pedigree.	  If	  the	  complete	  pedigree	  is	  known,	  it	  is	  easy	  to	  

calculate	  coancestry	  coefficients	  for	  each	  pair	  of	  individuals  using	  the	  recursive	  formula	  (Lynch	  and	  Walsh	  1998),	  

𝜃!! ′ =
𝜃!" ! ′ + 𝜃!" ! ′

2
=
𝜃! ! ! ! ′ + 𝜃! ! ! ! ′ + 𝜃! ! ! ! ′ + 𝜃! ! ! ! ′

4
  for    𝑖 ≠ 𝑖 ′,	  

𝜃!! =
1 + 𝜃! ! !(!)

2
.        (Eq. S7)	  

Above,	  𝑠(𝑖)	  and	  𝑑(𝑖)	  are	  the	  sire	  and	  dam	  of	  individual	  𝑖,	  respectively.	  We	  used	  this	  formula	  for	  calculating	  the	  true	  value	  

of	  𝛉𝒫	  in	  our	  simulated	  data	  sets.	  

References	  

Lynch,	  M.,	  and	  B.	  Walsh,	  1998	  Genetics	  and	  analysis	  of	  quantitative	  traits.	  Sinauer	  Associates	  Incorporated,	  New	  York.	  

	   	  



M.	  Karhunen	  and	  O.	  Ovaskainen	   	  6	  SI	  

File	  S2	  

Models	  for	  allele	  frequencies	  

	  

The	  vector	  of	  allele	  counts	  at	  locus	  𝒋	  in	  an	  isolated	  population	  𝑨	  for	  generation	  𝒕 + 𝟏	  follows	  the	  multinomial	  distribution	  

𝑛!" 𝑡 + 1 |𝑛!" 𝑡 ~Mult 2𝑛!, 𝑝!"(𝑡)         (Eq. S8)	  

where	  𝒑!"(𝑡)	  =
𝒏!" !
!!!

	  is	  the	  allele	  frequency	  for	  the	  generation	  𝑡.	  While	  𝒏!" 	  follows	  a	  multinomial	  random	  walk,	  𝒑!" 	  follows	  

a	  corresponding	  process	  on	  an	  𝑛! − 1	  dimensional	  simplex.	  This	  discrete	  process	  is	  often	  approximated	  by	  a	  continuous-‐

valued	  random	  process,	  the	  so-‐called	  Wright-‐Fisher	  diffusion	  (see	  e.g.	  Nicholson	  et	  al.	  2002).	  Kimura	  (1955)	  first	  derived	  

the	  exact	  solution	  for	  the	  distribution	  of	  allele	  frequencies	  of	  a	  biallelic	  locus	  under	  Wright-‐Fisher	  diffusion.	  This	  solution	  is	  

not	  Gaussian,	  because	  the	  diffusion	  is	  non-‐isotropic.	  Solutions	  have	  also	  been	  obtained	  for	  multiallelic	  loci	  (Tavaré	  1984;	  

Xie	  2011).	  However,	  implementing	  these	  solutions	  in	  the	  AFM	  framework	  would	  pose	  considerable	  computational	  

challenges	  because	  of	  the	  need	  to	  iterate	  infinite,	  high-‐dimensional	  sums.	  In	  case	  of	  biallelic	  loci,	  the	  solution	  of	  Wright-‐

Fisher	  diffusion	  is	  often	  approximated	  by	  a	  truncated	  normal	  distribution	  (e.g.	  Balding	  2003;	  Coop	  et	  al.	  2010;	  Nicholson	  et	  

al.	  2002).	  However,	  this	  approximation	  cannot	  be	  applied	  on	  multiallelic	  loci	  as	  such,	  because	  the	  distribution	  of	  𝒑!" 	  needs	  

to	  be	  restricted	  on	  the	  simplex	  ∆!!!!.	  The	  alternative	  that	  we	  apply	  here	  is	  to	  use	  the	  Dirichlet	  distribution	  as	  a	  

phenomenological,	  i.e.	  non-‐mechanistic,	  model	  for	  allele	  frequencies.	  

Application	  of	  the	  Dirichlet	  distribution	  as	  a	  model	  of	  pure	  drift	  may	  be	  considered	  questionable	  for	  two	  reasons.	  Firstly,	  

the	  Dirichlet	  distribution	  is	  known	  to	  arise	  as	  an	  equilibrium	  distribution	  from	  the	  balance	  of	  random	  drift	  and	  mutation	  or	  

migration	  (e.g.	  Nicholson	  et	  al.	  2002;	  Rannala	  1996),	  but	  not	  as	  a	  result	  of	  pure	  random	  drift	  in	  an	  isolated	  population.	  

Secondly,	  the	  Dirichlet	  distribution	  is	  a	  continuous	  distribution	  such	  that	  each	  component	  is	  restricted	  on	  the	  open	  interval	  

]0,1[,	  which	  gives	  a	  zero	  probability	  for	  the	  fixation	  of	  any	  one	  allele.	  However,	  with	  a	  small	  value	  of	  the	  parameter	  𝑎!,	  the	  

Dirichlet	  distribution	  can	  have	  much	  of	  its	  probability	  mass	  very	  close	  to	  the	  boundaries.	  Thus,	  when	  supplemented	  with	  a	  

sampling	  model	  for	  a	  finite	  population,	  

𝒏!"~Mult 2𝒏!,𝒑!"! ,	  

𝒑!"! ~Dirichlet 𝑎!𝒒! ,	  

the	  Dirichlet	  model	  is	  able	  to	  predict	  a	  high	  probability	  of	  fixation.	  In	  the	  AFM,	  we	  use	  Dirichlet-‐distributed	  allele	  

frequencies	  𝑧!" 	  to	  model	  the	  evolutionary	  history	  of	  the	  independent	  lineages,	  and	  the	  multinomial	  step	  naturally	  follows	  
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from	  the	  fact	  that	  the	  sample	  of	  genotypes	  is	  finite,	  even	  if	  the	  whole	  subpopulation	  is	  sampled.	  Below,	  we	  investigate	  this	  

model	  by	  a	  comparison	  with	  the	  truncated	  normal	  distribution	  in	  a	  biallelic	  case	  where	  both	  distributions	  are	  easily	  

tractable.	  

We	  consider	  a	  closed	  population	  of	  𝑁	  individuals	  that	  mates	  randomly	  for	  𝑇	  generations,	  and	  assume	  that	  the	  initial	  

frequency	  of	  allele	  1	  has	  been	  𝑞!!.	  In	  this	  Supplement,	  we	  focus	  on	  four	  representative	  cases:	  symmetric	  allele	  frequencies	  

with	  moderate	  drift	  (Scenario	  1,	  Fig.	  S1),	  symmetric	  allele	  frequencies	  with	  a	  high	  amount	  of	  drift	  (Scenario	  2,	  Fig.	  S1),	  

uneven	  allele	  frequencies	  with	  moderate	  drift	  (Scenario	  3,	  Fig.	  S1)	  and	  uneven	  allele	  frequencies	  with	  a	  high	  amount	  of	  

drift	  (Scenario	  4,	  Fig.	  S1).	  To	  sample	  from	  this	  model,	  we	  first	  generated	  a	  sample	  of	  size	  10!	  from	  the	  last	  generation	  by	  

using	  the	  true	  model	  (repeated	  application	  of	  Eq.	  S8).	  Then,	  we	  derived	  a	  corresponding	  sample	  from	  the	  Dirichlet	  

approximation	  by	  randomizing	  𝒑!"! 	  for	  10!	  times	  and	  sampling	  the	  allele	  counts	  for	  each	  realization	  from	  Mult 2𝑛!,𝒑!"! .	  

Finally,	  we	  considered	  the	  model	  of	  allele	  frequencies	  under	  the	  truncated	  normal	  approximation.	  As	  suggested	  by	  

Nicholson	  et	  al.	  (2002),	  we	  specified	  the	  allele	  frequency	  as	  

𝑝!"!~N 𝑞!!, 𝑐𝑞!!(1 − 𝑞!!) ≔ Φ	  

so	  that	  the	  extinction	  probability	  of	  allele	  1	  was	  calculated	  as	  Φ(0)	  and	  the	  fixation	  probability	  as	  1 − Φ(1).	  We	  calculated	  

the	  pointwise	  probabilities	  of	  the	  discrete	  classes	  as	  Φ!(𝑝!"!)/2𝑛!,	  i.e.	  by	  dividing	  the	  Gaussian	  density	  function	  by	  the	  

number	  of	  discrete	  values	  in	  ]0,1].	  While	  theoretical	  values	  exist	  for	  the	  drift	  parameters	  𝑐	  and	  𝑎!	  given	  the	  demographic	  

model,	  we	  optimized	  the	  values	  of	  these	  parameters	  in	  each	  scenario	  by	  minimizing	  the	  square	  distance	  (denoted	  𝐷!)	  with	  

the	  true	  (empirical)	  distribution.	  

The	  results	  show	  that	  both	  the	  Dirichlet	  and	  truncated	  normal	  are	  imperfect	  approximations.	  In	  scenario	  1,	  where	  drift	  is	  

moderate	  and	  fixations	  do	  not	  occur,	  both	  approximations	  are	  qualitatively	  good,	  while	  the	  truncated	  normal	  distribution	  

has	  a	  better	  goodness	  of	  fit	  (Multinomial-‐Dirichlet	  𝐷! = 9.2×10!!;	  truncated	  normal	  𝐷! = 5.9×10!!).	  In	  scenario	  2,	  the	  

truncated	  normal	  approximation	  has	  a	  better	  goodness	  of	  fit	  (𝐷! = 5.9×10!!),	  than	  the	  Dirichlet	  approximation	  (𝐷! =

1.5×10!!)	  which	  has	  an	  inconveniently	  convex	  shape	  in	  this	  case.	  In	  scenario	  3,	  the	  truncated	  normal	  approximation	  has	  a	  

better	  goodness	  of	  fit	  (𝐷! = 1.1×10!!),	  but	  it	  is	  qualitatively	  different	  from	  the	  data	  by	  having	  a	  clear	  mode	  in	  the	  interior	  

of	  [0,1]	  which	  the	  Dirichlet	  approximation	  (𝐷! = 2.5×10!!)	  does	  not	  have.	  In	  scenario	  4,	  the	  Dirichlet	  approximation	  is	  

better	  (𝐷! = 3.8×10!!	  as	  opposed	  to	  truncated	  normal	  𝐷! = 6.1×10!!).	  In	  general,	  both	  distributions	  have	  problems	  in	  

coping	  with	  the	  data	  when	  the	  amount	  of	  drift	  is	  high,	  which	  shows	  in	  the	  increase	  of	  the	  square	  distances.	  Finally,	  we	  note	  

that	  the	  expectation	  of	  the	  truncated	  normal	  distribution	  is	  not	  strictly	  𝑞!!	  which	  would	  be	  expected	  under	  pure	  random	  

drift.	  On	  the	  other	  hand,	  this	  is	  likely	  to	  be	  unimportant	  when	  the	  amount	  of	  drift	  is	  low.	  
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File	  S3	  

The	  MCMC	  sampling	  scheme	  

We	  used	  a	  random-‐walk	  Metropolis-‐Hastings	  algorithm	  to	  sample	  the	  joint	  posterior	  density	  of	  𝒒,	  𝒂	  and	  𝜿.	  Below,	  we	  

describe	  how	  each	  parameter	  was	  sampled	  while	  keeping	  the	  other	  parameters	  fixed.	  

• Sampling	  the	  drift	  parameters	  𝒂.	  We	  used	  N(𝑎! , 𝛿!!
! )	  distributions	  separately	  for	  each	  𝑘	  to	  draw	  proposals	  for	  

log 𝑎!.	  The	  variance	  parameters	  𝛿!!
! 	  were	  adjusted	  during	  the	  burn-‐in	  as	  in	  Ovaskainen	  et	  al.	  (2008)	  to	  give	  an	  

accept	  ratio	  of	  0.44.	  

• Sampling	  lineage	  loadings	  𝜿.	  We	  used	  TDD(𝛿𝜿!𝜿!),	  i.e.	  truncated	  Dirichlet,	  distributions	  (Fang	  et	  al.	  2000)	  

separately	  for	  each	  𝐴	  and	  𝑗	  to	  draw	  proposals	  for	  𝜿!.	  The	  𝛿𝜿! ’s	  are	  proposal	  parameters	  that	  were	  adjusted	  

during	  the	  burn-‐in	  as	  in	  Ovaskainen	  et	  al.	  (2008)	  to	  give	  an	  accept	  ratio	  of	  0.44.	  

• Sampling	  ancestral	  allele	  frequencies	  𝒒	  and	  lineage-‐specific	  allele	  frequencies	  𝒛.	  We	  used	  TDD(𝛿!!𝒒!)	  and	  

TDD(𝛿!!𝒛!")	  distributions	  separately	  for	  each	  𝑗	  and	  𝑘	  to	  draw	  proposals	  for	  the	  allele	  frequencies.	  The	  𝛿!! ’s	  are	  

proposal	  parameters	  that	  are	  adjusted	  during	  the	  burn-‐in	  as	  in	  Ovaskainen	  et	  al.	  (2008)	  to	  give	  an	  accept	  ratio	  of	  

0.44.	  

We	  thus	  used	  the	  truncated	  Dirichlet	  distribution	  of	  Fang	  et	  al.	  (2000)	  to	  perform	  the	  Metropolis-‐Hastings	  random	  walk	  for	  

the	  Dirichlet-‐distributed	  variables	  𝜿,	  𝒒	  and	  𝒛	  with	  a	  pre-‐set	  truncation	  threshold	  𝜏 = 10!!.	  This	  greatly	  improves	  the	  

mixing	  properties	  of	  the	  Markov	  chain,	  because	  it	  helps	  to	  avoid	  numerical	  problems	  on	  the	  boundary	  of	  the	  parameter	  

space	  (i.e.	  on	  the	  edges	  of	  the	  simplices	  Δ!!!!	  and	  Δ!𝒫!!).	  According	  to	  our	  observation,	  the	  method	  that	  Fang	  et	  al.	  

(2000)	  present	  for	  sampling	  from	  TDD	  may	  produce	  biased	  samples	  for	  high	  truncation	  thresholds	  such	  as	  𝜏 = 10!!.	  

However,	  to	  our	  experience,	  this	  does	  not	  compromise	  the	  statistical	  power	  of	  our	  algorithm	  with	  𝜏 = 10!!.	  	  	  	  

We	  have	  implemented	  the	  algorithm	  described	  above	  in	  the	  R-‐package	  RAFM	  (Karhunen	  2012).	  
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