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ABSTRACT Unaccounted population stratification can lead to spurious associations in genome-wide association studies (GWAS) and in
this context several methods have been proposed to deal with this problem. An alternative line of research uses whole-genome
random regression (WGRR) models that fit all markers simultaneously. Important objectives in WGRR studies are to estimate the
proportion of variance accounted for by the markers, the effect of individual markers, prediction of genetic values for complex traits,
and prediction of genetic risk of diseases. Proposals to account for stratification in this context are unsatisfactory. Here we address this
problem and describe a reparameterization of a WGRR model, based on an eigenvalue decomposition, for simultaneous inference of
parameters and unobserved population structure. This allows estimation of genomic parameters with and without inclusion of marker-
derived eigenvectors that account for stratification. The method is illustrated with grain yield in wheat typed for 1279 genetic markers,
and with height, HDL cholesterol and systolic blood pressure from the British 1958 cohort study typed for 1 million SNP genotypes.
Both sets of data show signs of population structure but with different consequences on inferences. The method is compared to an
advocated approach consisting of including eigenvectors as fixed-effect covariates in a WGRR model. We show that this approach,
used in the context of WGRR models, is ill posed and illustrate the advantages of the proposed model. In summary, our method permits
a unified approach to the study of population structure and inference of parameters, is computationally efficient, and is easy to
implement.

GENOME-WIDE association studies (GWAS) have suc-
cessfully identified a large number of single nucleotide

polymorphisms (SNPs) related to complex disease traits
(Donnelly 2008). In addition to potentially increasing the
understanding of the physiology of the trait, information
from multiple SNPs used together with environmental risk
factors holds the promise of more accurately predicting the
risk of disease.

It has long been established that a potential problem
in population-based association studies is the presence of
undetected substructure that can result in false-positive or
negative associations and in distorted inferences in general
(Lander and Schork 1994; Marchini et al. 2004). A substan-
tial amount of literature has been devoted to methods to

account for unobserved population substructure in the con-
text of GWAS, including genomic control (Devlin and
Roeder 1999), mixed models (Yu et al. 2006; Kang et al.
2008, 2010; Zhang et al. 2010), and principal components
(Patterson et al. 2006; Price et al. 2006); a review can be
found in Price et al. (2010).

Typically, the focus of GWAS is to detect significant SNP
effects using extremely low P-values derived from single-
marker regressions. Testing SNPs for association one at a time
can be a sensible option when traits show simple Mendelian
inheritance with one or few loci involved. However, there is
increasing evidence that a number of important traits and
diseases are affected by a very large number of genes
(McClellan and King 2010), as well as environmental factors.
In this situation, a better false-positive and false-negative per-
formance is achieved by analyzing all SNPs jointly (Hoggart
et al. 2008) using whole-genome random regression (WGRR)
models, as in de los Campos et al. (2010a) and Yang et al.
(2010). For a recent review of different linear models in the
context of WGGR see de los Campos et al. (2012).
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These methods, largely developed in the field of animal
breeding (e.g., Meuwissen et al. 2001), were proposed as
a way of confronting the so-called missing heritability prob-
lem and have been used for estimation of the proportion of
variance accounted for by regression on common SNPs (ge-
nomic heritability), for prediction of genetic values of com-
plex traits, and for prediction of genetic risk to diseases. The
problem of stratification also emerges in WGRR; however,
existing proposals to account for stratification in the context
of WGRR models (Yang et al. 2010, 2011; Stahl et al. 2012)
are unsatisfactory. Here we address this problem and de-
scribe a reparameterization of a Bayesian WGRR model that
can fit a vast number of genetic markers jointly and that in
a unified manner can estimate parameters and quantify and
account for unobserved population structure. With the pro-
posed parameterization, when individuals cluster due to
population stratification, the total genomic variance can be
partitioned into two independent within- and between-
cluster components. Two decompositions are possible: one
that depends on the distribution of the marker genotypes
only and one that is trait dependent. This enables investiga-
tion into the circumstances for which existing unobserved
structure can affect parameter estimates, such as genomic
heritability, marker effects, and genomic values. The prop-
erties of the model are illustrated using grain yield in wheat
from a population that is known to show considerable sub-
structure, and HDL cholesterol, systolic blood pressure and
height from the British 1958-cohort study, data which were
reported not to show signs of structure (Wellcome Trust
Case Control Consortium 2007). The latter includes regis-
trations on approximately 3000 nominally unrelated individ-
uals genotyped for 1 million SNPs. The traits were chosen as
classic examples of continuous phenotypes.

A joint analysis involves including hundreds of thousands or
millions of SNPs, typically in thousands or tens of thousands of
individuals. While this task is computationally feasible, there is
still a need for parameterizations and algorithms that facilitate
implementation and lead to satisfactory numerical behavior. We
show that the proposed reparameterized Bayesian WGRR
model fulfills these needs.

This article is organized as follows. A Whole-Genome Ran-
dom Regression Model defines the WGRR model in its stan-
dard parameterization and An Equivalent Probability Model
describes the proposed parameterization. The topic of pop-
ulation structure and the subdivision of the genomic vari-
ance into components between and within populations is
presented in Decomposition of the Genomic Variance. The
decomposition leads to a natural definition of between
and within populations estimators of genomic heritability,
SNP effects and genomic values. A brief description of the
data, the traits, and results are in Analysis of the Wheat and
British 1958-Cohort Data and the article concludes with
a discussion. Some technical details are deferred to the Ap-
pendix. These include a method to retrieve posterior means
of SNP effects from posterior means of genomic values and
the Markov chain Monte Carlo (McMC) algorithm.

A Whole-Genome Random Regression Model

Consider the model for the record of individual i, yi, with
observed marker genotype j labeled Wij

yi ¼ mi þ
Xm
j¼1

Wijbj þ ei; i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ;m;

(1)

where mi is the mean, bj is the effect of marker genotype j,
and there are m markers. The variable mi is the intercept (a
scalar) in the case of wheat or the ith element in Zs, where Z
is an observed incidence matrix of ones and zeroes, and s is
a column vector with effects of sex, smoking status, and
social class, in the case of the human data. In matrix nota-
tion the model is written as

y ¼ mþWbþ e; (2)

where y is a column vector of records of length n, m is
a vector of length n with elements mi,, and W is an n · m
matrix with elements Wij. The m · 1 column vector of un-
observed SNP effects is assumed to have the normal
distribution

b�N
�
0; Is2

b
�
; (3)

and residuals (uncorrelated with b) are assumed to have the
normal distribution

e�N
�
0; Is2

e
�
: (4)

Above, s2
b reflects prior uncertainty in the distribution of

each element of b. In other words, s2
b is the a priori variance

of the effect of one SNP, the same for all m SNPs. The
parameter s2

e is the residual variance.
Marker labels are centered and scaled random variables

defined as

Wij ¼
Xij2 E

�
Xij

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var

�
Xij

�q ; (5)

where the random variable Xij can take values 0, 1, or 2
according to the number of the arbitrarily chosen allele of
SNP j in individual i. Therefore E(Wij) = 0 and Var(Wij) = 1.
Let g denote the n · 1 vector of genomic values, defined as

g ¼ Wb: (6)

The genomic values are proxies for the true (unobserved)
genetic values of the causal genotypes. The conditional
variance of g given W is

VarðgjWÞ¼WW9s2
b

¼ 1
m
WW9s2

g :
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The term ð1=mÞWW9 is the average (over SNPs) realized
additive genetic relationship among the n individuals and
s2
g ¼ ms2

b is the unconditional (with respect to W) variance
of an element in g (Hayes et al. 2009). This is evident from
the fact that

VarðgiÞ ¼ E½VarðgijWiÞ� þ Var½EðgijWiÞ�
¼ E½VarðgijWiÞ�

because E(gi|Wi) = 0. Labeling W 9i as the ith row of matrix
W, the ith diagonal term of WW9 is W 9i  Wi ¼

Pm
j¼1W

2
ij . Then

VarðgiÞ ¼ E
hPm

j¼1W
2
ij

i
s2
b

¼ ms2
b

¼ s2
g

(7)

because EðW2
ij Þ ¼ 1. A genomic heritability or proportion of

variance accounted for by the SNPs can be defined as

h2g ¼ s2
g

s2
g þ s2

e
: (8)

The reparameterized WGRR model is based on assigning
improper uniform prior distributions to the elements of m
and scaled inverse chi-squared distributions to s2

b and to s2
e .

From standard normal theory, given s2
g and s2

e , the pos-
terior distribution of g and m is normal, with mean equal to
the best linear unbiased predictor (BLUP) of g and best
linear unbiased estimator (BLUE) of m (Lindley and Smith
1972; Henderson 1984).

An Equivalent Probability Model

Consider the factorization (eigenvalue or spectral decompo-
sition) of the symmetric, nonnegative definite matrix WW9
of order (n · n), n being the number of genotyped
individuals,

WW9 ¼ UDU9
¼ Pn

i¼1liUiU 9i ;
(9)

where U = [U1, U2, . . ., Un], of order n · n is the matrix of
eigenvectors of WW9, Uj is the jth column (dimension n · 1),
and D is a diagonal matrix with elements equal to the eigen-
values l1, l2, . . ., ln associated with the n eigenvectors.
Properties of the eigenvalues are li $ 0, i = 1, 2, . . ., n
(because WW9 is nonnegative definite; due to the centering,
rank is equal to n 2 1, and one of the eigenvalues is equal to
zero). The eigenvectors satisfy U9U = UU9 = I.

Model (2) can be written as

y ¼ mþ Uaþ e
¼ mþPn

i¼1Uiai þ e; (10)

where a � Nð0;Ds2
bÞ is an n · 1 column vector with scalar

elements ai. Then,

EðUajUÞ ¼ 0;
VarðUajUÞ ¼ UDU9s2

b
¼ WW9s2

b :

Since Ua and Wb are both Gaussian, with the same mean
and variance, (2) and (10) represent two parameterizations
of the same probability model, with g = Wb = Ua. Premul-
tiplying by U9,

U9g ¼ U9Ua
¼ a:

(11)

The transformation U9g is known as the principal component
transformation in the literature (Mardia et al. 1979; Anderson
1984; Jolliffe 2002) and the ith principal component of g is
the ith element of the vector a, namely

ai ¼ U 9ig;

where Ui is the ith column of U whose elements are the
principal component loadings.

The conditional expectation of a datum is

EðyijWÞ ¼ mi þ gi
¼ mi þ

Pn
j¼1Uijaj;

where Uij is the element in the ith row and jth column of
matrix U. Note that the vector of SNP effects, b, is of order
m · 1, whereas a is of order n · 1. The order of Wb and of
Ua is n · 1. For the ith individual (i = 1, 2 . . ., n),

VarðgijWiÞ ¼ s2
b
Pm

j¼1W
2
ij

¼ s2
b
Pn

j¼1ljU
2
ij :

(12)

This equivalent form of the WGRR model has two attractive
properties; one is computational and the other is conceptual.
Computationally, as pointed out by de los Campos et al.
(2010b), due to the orthogonality of the eigenvectors the
fully conditional posterior distribution of vector a is multi-
variate normal with diagonal covariance matrix. In an
McMC environment this means that the elements of vector
a can be updated jointly. This improves mixing behavior and
convergence of the chain, relative to the standard single-site
updating Gibbs sampler. Details are shown in the Appendix.
Conceptually, the alternative parameterization leads to a nat-
ural decomposition of the genomic variance into orthogonal
components. This property can be used to investigate the
existence of unobserved substructure in the data and to
study how it affects inferences.

Decomposition of the Genomic Variance

The orthogonal decomposition of the genomic variance that
is possible using parameterization (10) can be used to
investigate the existence of unobserved substructure in the
data from two sources: one that is only a function of the
marker genotypes and the other that is trait dependent.
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Trait-independent decomposition

Consider the conditional variance of the ith element of the
vector g given in (12). The average genomic variance over
the n individuals in the sample is

1
n

Xn

i¼1
VarðgijWiÞ ¼

s2
b
n

Xn

i¼1

Xn

j¼1
ljU2

ij

¼ s2
b
n

Xn

j¼1
lj
Xn

i¼1
U2
ij

¼ s2
b
n

Xn

j¼1
lj

(13)

because
Pn

i¼1U
2
ij ¼ 1. (Strictly, averaging over eigenvectors

involves division by (n 2 1), because one l is equal to zero,
and its corresponding a is zero a posteriori, with probability
1. This is ignored here and in the rest of the article.) This
average variance admits the following partition. First write
(10) as

y ¼ mþ
Xd

i¼1
Uiai þ

Xn

i¼dþ1
Uiai þ e; 1# d, n: (14)

With this formulation, given U and using
Pn

j¼1U
2
ij ¼ 1, (13)

can be decomposed as

1
n

Xn

i¼1
VarðgijWiÞ ¼

s2
b
n

Xd

j¼1
lj þ

s2
b
n

Xn

j¼dþ1
lj; (15)

where the first term in the right-hand side represents the
genomic variance explained by the first d eigenvectors (i.e.,
those associated to the first d largest eigenvalues) and the
second the part explained by the remaining n 2 d eigenvec-
tors. The proportion of the genomic variance explained by
the first d eigenvectors (d = 1, 2, . . ., n) is

Pd
j¼1   ljPn
j¼1   lj

; l1. l2 .⋯. ln; (16)

which is a function of the structure of the marker genotypes
only.

Trait-dependent decomposition

The regression of genomic values on eigenvectors is given by
the a’s. The variance decomposition (15) involves an inte-
gration over the distribution of the a’s and is therefore
a function of markers only. However, an eigenvector may
explain a large proportion of the genomic variance (16)
but may not covariate with the genomic values because its
a is close to zero. To obtain further insight into the relative
contribution of each of the eigenvectors to interindividual
differences in realized genomic values for a particular trait,
we propose the following trait-specific variance decomposi-
tion. Along the same lines as in Sorensen et al. (2001),
consider first the parameter defined as the variance of

a genomic value randomly sampled from the population of
n genomic values that constitute vector g. This random vari-
able gi can take n possible valuesWb= Ua = {gi}, each with
probability 1/n. By definition the variance of gi (ith element
of the n · 1 vector g) is

s2
G ¼ E

�
g2i
�
2 ½EðgiÞ�2

¼ 1
n

Xn
i¼1

g2i 2
�
�g
�2
;

(17)

where �g ¼ 1
n

Xn

i¼1
gi is the expected value of gi. Although

both (17) and (7) express variability of genomic effects,
there is an important conceptual difference between the
two quantities. The variance (7) is a parameter of the dis-
tribution of g and represents variation in conceptual repli-
cations of a particular element of vector g (given W and s2

b).
In other words, the index i is fixed. On the other hand, the
stochastic element associated with (17) is the index i, and
the inference is conditional on the particular realization of
the n elements of g. We use the symbol s2

G to distinguish
(17) from the parameter of the distribution of g, s2

g in (7).
Replacing g = Ua in expression (17),

s2
G ¼ 1

n
g9g2

�
1
n
19g

�2

¼ 1
n
a9U9Ua2

�
1
n
19Ua

�2

¼ 1
n

Xn
j¼1

a2
j ;

(18)

because when matrixW is centered, the second term in the right
hand side of (18) vanishes. The a’s are unobserved and inferred
from their posterior distribution. This leads to a trait-dependent
partition of the realized genomic variance along the same lines
as in (16). The proportion explained by the first d eigenvectors is

Pd
j¼1 a

2
jPn

j¼1 a
2
j
; d ¼ 1; 2; . . . ; n: (19)

Inferences accounting for population structure

When individuals cluster due to population substructure it may
be of interest to define a within-component genomic heritability

h2gW ¼
1
n

Xn

j¼dþ1
a2
j

1
n

Xn

j¼1
a2
j þ s2

e

; d ¼ 0; 1; . . . ; n: (20)

The parameter h2gW can be interpreted as the proportion of
genomic variance in the sample of n individuals, after ac-
counting for variation explained by the largest d eigenvec-
tors. This is relevant when the latter represents artifact
variation. A classical case is the substructure that arises as
a consequence of population admixture.
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In a similar way, inferences of SNP effects accounting for
variation explained by the largest d eigenvectors can be
obtained using (29) and (30) in the Appendix. This results
in a Monte Carlo estimate of the posterior means given by

Êðbj yÞ ¼ W9
Xn

j¼dþ1
l21
j U jÊ

�
aj
�� y�: (21)

The posterior means of genomic values accounting for
variation explained by the largest d eigenvectors are directly
retrieved from (14). The Monte Carlo estimate is

Êðgj yÞ ¼
Xn

j¼dþ1
U jÊ

�
aj
�� y�: (22)

The question that remains is the choice of the number of
eigenvectors d whose variation one wishes to account for.

Measuring the importance of an eigenvector

The standard literature on principal components analysis
suggests various ways to select the number of eigenvectors,
but all are to some extent arbitrary (Mardia et al. 1979;
Jolliffe 2002). The most common are: (i) plot lj vs. j to
see where “large” eigenvalues cease and “small” start; (ii)
include enough components to explain a given percentage of
the total variance. Again, exact choice of “given percentage”
must be decided by the investigator; (iii) exclude those prin-
cipal components whose eigenvalues are less than the aver-
age (less than 1 when W has been centered and scaled). The
typical objective in the standard literature is to seek parsi-
mony and this is achieved by removing the eigenvectors
associated with the smallest eigenvalues. In contrast, geneti-
cists often wish to keep these and remove the eigenvectors
that may describe stratification. These are typically those
with the largest eigenvalues. A formal approach is presented
in Patterson et al. (2006) and is based on the sampling
distribution of the largest eigenvalue from which a P-value
can be computed.

On the other hand, in the context of inference of genomic
parameters, the directly relevant parameters are not the
eigenvalues but the regression coefficients a. Therefore a ra-
tionale for choosing an eigenvector j could be based on the
posterior probability that its contribution to the genomic
variance ðgiven by   ½1=n�a2

j Þ is larger than a threshold, cho-
sen by the user. The choice of this threshold is a matter of
judgement, context specific, driven by knowledge of what is
causing population substructure and the relevance of cor-
recting for it.

As an example, suppose one wishes to base the assess-
ment on the posterior probability that the jth eigenvector
has a contribution to genomic variance greater than the
average eigenvector. Formally,

Hj1 :
a2
j

n
.

s2
G
n

H j2 :
a2
j

n
#

s2
G
n
; j ¼ 1; 2; . . . ; n:

(23)

In an McMC environment, the posterior probabilities
of these hypotheses are estimated as follows. For the kth
draw, noting that the denominator (n) in each of the hy-
pothesis cancels out, set djk = 1 if a2

jðkÞ .s2
GðkÞ and djk =

0 otherwise. Here, aj(k) and s2
GðkÞ are the kth draws of

the jth regression coefficient and of the trait-dependent
genomic variance, respectively, from their marginal pos-
terior distributions. Averaging the d9jks over the McMC
samples leads to Monte Carlo estimates of Pr(Hj1|y) and
Pr(Hj2|y) = 1 2 Pr(Hj1|y). When the output from imple-
menting (10) is stored, only one McMC run is needed to
perform these computations.

Analysis of the Wheat and British 1958-Cohort Data

The decomposition of the genomic variance with the proposed
parameterization of the WGRR model is illustrated using data
from two contrasting populations. The wheat population,
consisting of 599 highly inbred lines, is characterized by
a strong degree of relationship among individuals and marked
population substructure. The human population includes
nominally unrelated individuals of homogeneous background
(supporting information for both data sets is in Acknowledg-
ments and in File S1 and File S2).

The wheat data comprise grain yield from 599 pure
lines typed for 1279 genetic markers, from Centro Inter-
nacional de Mejoramiento de Maiz y Trigo’s (CIMMYT)
Global Wheat Breeding program. The data set is publicly
available within the BLR package of R (de los Campos and
Perez 2010). Further details are given in Crossa et al.
(2010). A display of the wheat data (standardized to null
mean and unit variance) did not reveal signs of asymmetry
(not shown).

The British 1958-cohort data consist of longitudinal
records from individuals born during a single week in
1958 in England, Scotland, and Wales. A detailed descrip-
tion and sources of access to the data can be found in Power
and Elliott (2006). The present study uses a subset of the
original data consisting of records from approximately 3000
individuals that have been genotyped for 1 million SNPs
using the 1M Affymetrix chip. After standard editing, the
final number of markers amounted to 696,823. From the
3000 individuals, records on height, systolic blood pressure,
and HDL cholesterol were also extracted, together with
a number of environmental covariates. The latter were cho-
sen on the basis of their effect on the dependent variables
determined from preliminary analyses.

The raw means and standard deviations (in brackets) for
height, systolic blood pressure, and HDL cholesterol in
males are 176.2 (6.7), 134.7 (16.5), 1.43 (0.32) and in
females 162.5 (6.2), 121.1 (17.1), 1.69 (0.41). A graphical
display of residuals for the three human traits from
a standard least-squares analysis of a linear model that
includes the effects of sex, social status, and a covariate for
smoking status did not show signs of asymmetry or
important departures from normality (not shown).
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Figure 1 shows the lag2x, x = 1, 2, . . .120, average
squared correlation between SNP genotypes. When the lag is
equal to 1 (adjacent loci), r2 = 0.4, it falls to 0.012 at lag280,
to 0.0076 at lag2100, and to �0.0051 at lag2120. The aver-
age distance between genotypes 80, 100, and 120 SNPs apart
is 336, 420, and 504 kb. At these distances, the value of r2 in
humans tends to be very close to zero (Hartl and Clark 2007).
Unfortunately for the wheat data set a similar figure cannot be
generated because the markers are not mapped.

Results

Inferences about variance parameters and SNP effects

The posterior mean of the genomic heritability (8) for grain
yield in wheat (posterior standard deviation in brackets) is
0.49 (0.05). In the human data the figures for height, systolic
blood pressure, and HDL cholesterol are 0.40 (0.11), 0.15
(0.09), and 0.21 (0.10), respectively. For height, our estimate
is of the same order of magnitude as that reported by Yang
et al. (2010), who also used nominally unrelated individuals.
These estimates differ from the estimate of 0.83 reported by
Makowski et al. (2011) obtained from a sample of related
individuals.

Posterior means of SNP effects, computed using Equation
30 in the Appendix, are shown in Figure 2 for the three
human traits. The figure also shows the SNP effects obtained
by fitting the model to the data in which phenotypes, to-
gether with the parameters representing effects of sex,
smoking status, and social class, were randomly assigned
to genotypes. The row vectors with the marker genotypes
for each record were reshuffled, whereas phenotypes and
the associated effects of sex, smoking status, and social class
were kept together. In this way, the model still accounts for
the effects of sex, smoking status, and social class. This
reshuffling leads to a null distribution of SNP effects. Despite
the fact that the present model does not allow for differen-
tial shrinkage of SNP effects, the values of posterior means
are clearly larger for height in the original (not reshuffled)

data, signaling clearly an association between markers and
phenotypes. For HDL cholesterol and systolic blood pres-
sure, the signals from the marker effects are weaker but
clearly discernible. The figures suggest that different genetic
architectures may be responsible for the three traits. Height
shows many small marker effects scattered across the whole
genome, in agreement with results from Yang et al. (2010).
On the other hand, systolic blood pressure and particularly
LDL cholesterol show marker effects of very different mag-
nitude in particular regions of the genome.

Population substructure and decomposition
of the genomic variance

Marker-dependent decomposition: The first leftmost plot in
Figure 3 displays loadings of the first two eigenvectors for
the wheat data. The two rightmost plots display loadings of
the first two eigenvectors and those corresponding to the
third vs. the second for the human data. The leftmost figure
gives a clear indication of the presence of substructure in the
wheat data. For the human data, the first of the two plots
shows that the first eigenvector represents a feature com-
mon to the majority of the individuals, whereas the third
and particularly the second, cluster individuals in three
groups. From the fifth or sixth eigenvector onward, similar
plots do not reveal any form of structure (not shown). The
analysis indicates the existence of substructure in both sets
of data. The results for the human data are in contrast with
a previous analysis that reported absence of detectable sub-
structure using a nonparametric approach (Wellcome Trust
Case Control Consortium 2007).

The effect of population clustering on inferences about
genomic variance can be studied using expressions such as
(16) and (19). The trait-independent decomposition based
on (16) is displayed in Figure 4, for d = 1, 2, . . ., n for both
data sets. The left plot is based on the wheat data set and
shows that the first 100 eigenvalues explain �80% of the
genomic variance. For the human data, the relationship be-
tween the proportion of variance explained with increasing
number of eigenvectors is linear (close to the 45� line) and
reveals that the proportion of the variance explained is sim-
ilar for all the n eigenvectors. This indicates that in contrast
with the wheat data the eigenvalues are all small and of
similar magnitude. Figures 3 and 4 represent features that
are functions of only the marker information and not of the
traits.

Trait-dependent decomposition: The trait-dependent de-
composition of genomic variance is based on expression
(19) and (20). Posterior means of (20) plotted against
increasing number of eigenvectors, d = 0, 1, . . ., 20, for the
three human traits are shown in Figure 5 (in red). The figure
illustrates that the 20 eigenvectors with the largest eigen-
values account for ,2% of the genomic heritability for
height [that is, (0.396 2 0.388)/0.396] and �1.4% for
the other two traits. On the other hand, Figure 6 shows
a different pattern in the case of wheat. The within-group

Figure 1 Human data. Lag-x, x = 1, 2, . . . 120, linkage disequilibrium
(average squared correlation between SNP genotypes). For adjacent loci,
x = 1, and x = 120 indicates that loci are 120 genotypes apart.
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genomic heritability (20) falls sharply from 0.49 when d =
0 to a little over 0.25 when variation due to the 20 eigen-
vectors with the largest eigenvalues is accounted for. In this
case the first 20 eigenvectors account for �49% of the ge-
nomic heritability. The different results in wheat and in
humans are due to the different sizes of the regression coef-
ficients a of genomic values on eigenvectors. This affects the
variance partition given in (19), since, as shown in (18), the
contribution to the genomic variance from eigenvector j is
a2
j =n. In the case of wheat the posterior means of the a’s

associated with the largest eigenvalues are markedly larger
than in the three traits in the human data sets.

Insight into the magnitude of the a’s can be revealed by
inspecting their conditional posterior distribution given in
(31) in the appendix. For the ith regression coefficient,

âi ¼
lis

2
b

lis
2
b þ s2

e

�
U 9i y2U 9im

	

¼
�
U 9i y2U 9im

	
2

12 h2g
li
m
h2g þ

�
12 h2g

	
�
U 9i y2U9im

	
; (24)

where U 9i is the 1 · n row vector whose elements are the
loadings of the ith eigenvector Ui. This shows that the mag-
nitude of the a’s is determined by two factors,

âLS ¼
�
U9i Ui

	21�
U9i y2U 9im

	
¼

�
U 9i y2U 9im

	
;

the (unpenalized) regression of phenotype on the ith eigen-
vector and the extent of shrinkage, which is controlled by
the size of lih2g=m. When lih2g=m is large shrinkage is weak
and âi approaches ðU 9iy2U 9imÞ, the ordinary least-squares
regression of phenotype on the ith eigenvector. On the other
hand, âi approaches zero for small values of lih2g=m. The
variance of the conditional posterior distribution (31) is

s2
�
12 h2g

	

1þ
�
12 h2g

	.
ðli=mÞh2g

: (25)

The variance is governed by lih2g=m. It becomes negligible
when lih2g=m tends to a very small quantity and approaches
s2
e ¼ s2ð12 h2gÞ when lih2g=m is large. It is precisely this

Figure 2 Posterior means of marker effects (y-axis) obtained using expression (30) vs. marker loci, labeled from 1 to total number (x-axis) for the three
traits. Black regions correspond to effects estimated with the original data, and shaded regions correspond to effects estimated from data in which the
rows of matrix W were reshuffled and therefore randomized with respect to the phenotypes and their conditional means mi.

Figure 3 Left: The first vs. the second largest axes of variation in wheat. Middle: The first vs. the second largest axes of variation for the human marker
data. Right: The third vs. the second largest axes of variation for the human marker data.
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term that differs between the wheat and the human data.
For example, in the case of SYS and for the largest l, the
regression term in (24) is 0.54 and the square root of (25) is
10.5. For the wheat data set and for the largest l these
values are 0.015 and 0.73, respectively. The largest values
of li/m for the human and wheat data are 4.8 and 67.8,
respectively. These expressions indicate that if an eigenvec-
tor is associated with an eigenvalue close to zero, its regres-
sion coefficient a approaches zero with probability one,
regardless of the amount of data. In this case there is no
Bayesian learning.

The effect of population substructure on inferences about
SNP effects is illustrated in Figure 7 for the three human
traits. Posterior means of SNP effects corrected for popula-
tion substructure [y-axis, given by (21) with d = 20] are
plotted against those uncorrected for population substruc-
ture [x-axis, given by (30)]. There is an overall strong asso-
ciation, but for height and to a lesser extent for systolic
blood pressure, intermediate SNP effects are relatively more

affected by the effect of population substructure than ex-
treme ones.

Including the dominating eigenvectors as fixed effects in
the WGRR model to account for substructure: As an
illustration, Figure 5 also shows the results obtained by
fitting a model similar to (2), with the addition of d = 0, 1,
2, . . ., 20, dominating eigenvectors with the a’s treated as
fixed effects (blue). This model, recently reported in the lit-
erature (Yang et al. 2010, 2011) is not well posed, because
the same eigenvectors whose coefficients are treated as fixed
enter implicitly in the random part of the model. When the
degree of shrinkage in (24) is large, if the variance compo-
nent s2

b is known the addition of a “fixed” a has the effect of
reducing the error sum of squares [relative to the value
obtained with model (10)] and as a result, the estimate of
genomic heritability is inflated. When the variance compo-
nents are unknown the consequences are more difficult to
predict. Figure 5 displays the erratic behavior of inferences

Figure 4 Proportion of variance
explained by the eigenvectors
given in (16) in the y-axis for in-
creasing number of eigenvectors
d. Left: Wheat data. Right: Hu-
man data.

Figure 5 Human data. Red: Posterior means of within population genomic heritability in the y-axis [expression 20)] computed using the WGRR model
(14) after accounting for the proportion of variance due to the number of eigenvectors (d) with the largest eigenvalues, in the x-axis. Blue: Genomic
heritability (8) computed using model (2) with the addition of the d eigenvectors with the largest eigenvalues treated as fixed effects. The horizontal
dotted lines emphasize the range of values of the posterior means of h2gw between d = 0 and d = 20, obtained with the WGRR model.
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based on this model for the human data. For the wheat data
(Figure 6, blue), the consequences of adding the superfluous
“fixed” a’s on the genomic heritability are very different. Due
to the very small size of the shrinkage parameter in (24),
estimates of the a’s are very similar, but not identical, to
least-squares estimates. Adding the a’s associated with the
largest eigenvalues and treating them as fixed effects causes
a very small change in the error sum of squares and a small
proportion of the genomic variation is removed. As a result,
inferences of genomic heritability (8) with the ill-posed
model are similar to those from model (10).

Measuring the contribution of an eigenvector to genomic
variance: Figure 8 displays the posterior probabilities
Pr(Hj1|y), j = 1, 2, . . ., n, defined in (23), for height
and HDL cholesterol in humans, and for yield in wheat.

The wheat data set is characterized by large differences
in the sizes of the eigenvalues associated with the eigen-
vectors (see Figure 4, left). The largest lead to less in-
formative prior distributions of the a’s; this allows for
Bayesian learning and results in fluctuating contribu-
tions to genomic variability and in extreme posterior
probabilities (23). As the eigenvalues tend to zero, the
prior distribution of a becomes more informative, limit-
ing the possibilities for Bayesian learning; the contribu-
tion to genomic variability is reduced and the posterior
probabilities become small. In humans, the range of val-
ues of the eigenvalues is markedly narrower than in
wheat (Figure 4, right). Therefore the variance of the
posterior distribution of the a’s is smaller and declines
at a small rate. This induces a more uniform and nar-
rower fluctuation of the posterior probabilities Pr(Hj1|y)
and a milder rate of their overall decay. The degree of co-
variation between the eigenvectors and phenotype is larger
in the case of height, than in HDL (which shows a similar
pattern as systolic blood pressure, not shown).

Discussion

In structured populations genomic variability can be parti-
tioned into components within, and between clusters. The
focus of inference is typically the within-cluster component,
which is interpreted as the genomic variability available
after accounting for population stratification, often consid-
ered as contributing artifact variation. For example, one of
the methods used in GWAS to correct for differences
between groups (EIGENSTRAT, Price et al. 2006) consists
of expanding the regression model that defines the relation-
ship between markers and phenotypes with the addition of
marker-derived eigenvectors whose coefficients are treated
as fixed effects and describe differences between groups.

The need to account for population structure also emerges
in the context of estimation of genomic heritability and
prediction problems in WGRR, where phenotypes are re-
gressed simultaneously on hundreds of thousands of genetic
markers. Drawing on ideas largely developed in the field of

Figure 6 Wheat data. Red: Posterior mean of within population genomic
heritability in the y-axis [expression 20)] computed using the WGRR model
(14) after accounting for the proportion of variance due to the d eigen-
vectors with the largest eigenvalues, vs. d, in the x-axis. Blue: Genomic
heritability (8) computed using model (2) with the addition of the d eigen-
vectors with the largest eigenvalues treated as fixed effects. The horizon-
tal dotted lines emphasize the range of values of the posterior means of
h2gw between d = 0 and d = 20, obtained with the WGRR model.

Figure 7 Human data. Posterior means of SNP effects corrected for population substructure (y-axis, given by 21, with d = 20), vs. posterior means of
SNP effects uncorrected for population substructure (x-axis, given by 30), for the three traits.
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single-marker regressions, Yang et al. (2010) propose to
account for population structure by adding to the WGRR
model the dominating eigenvectors with coefficients treated
as fixed effects. The model could be of the form

y ¼ mþPd
i¼1Uiai þWbþ e

¼ mþPd
i¼1Uiai þ gþ e;

(26)

where d is the number of the eigenvectors with the largest
eigenvalues, often 10 or 20, and the a’s in

Pd
i¼1Uiai are

estimated by least squares (i.e., estimated without shrink-
age). However, this approach, recently applied in the litera-
ture (Stahl et al. 2012), is not advisable, because model (26)
suffers from “double counting” since the same eigenvectors
whose coefficients are included as fixed effects enter, implic-
itly, as random effects in the random part of the model. The
consequences on inferences of fitting this model are highly
dependent on the distribution of marker genotypes in the
data, as was illustrated in Figures 5 and 6. This ill-posed
model can be avoided because as was shown in A Whole-
Genome Random Regression Model and An Equivalent Proba-
bility Model, model (2) can be expressed as model (10). In
this way the marker-derived eigenvectors enter naturally in
a WGRR model that can be used to infer variance compo-
nents and genomic heritability, estimation of marker effects,
and prediction of genetic risk accounting jointly for popula-
tion structure in a single analysis. The model and the eigen-
value parameterization can be easily extended for analyzing
binary outcomes, such as disease status (healthy, diseased),
using for example, threshold models. Bayesian McMC imple-
mentations of threshold models have been described in
Albert and Chib (1993) and in Sorensen et al. (1995).

The duality between the WGRR model and the principal
components regressions can also be exploited to develop
efficient algorithms and the method proposed here is also
computationally attractive. The Gibbs sampling algorithm
described in the Appendix showed excellent mixing behav-
ior and for the human data set it took 30 min to generate
60,000 draws from the posterior distribution in an Intel

Xeon E5450 3.0 GHz Linux cluster, including the calculation
of posterior means of the 696,823 SNP effects. The cost of
the eigenvalue decomposition of WW9, equivalent to the
calculation of its inverse, amounted to ,1 min of CPU,
and the computation of WW9 took a little under 5 hr. This
part of the computation can be more demanding as the
number of genotyped individuals and covariates becomes
larger. An attractive feature of the algorithm is that with
little computing effort, one can retrieve posterior means of
marker effects from posterior means of genomic values (see
Appendix).

The model we have proposed is a simple alternative to
carrying out preliminary investigations into the genetics of
complex traits. However, the Gaussian assumptions adopted
induce a homogeneous degree of shrinkage across all
markers. This may not be appropriate for the analysis of
traits affected by genes with sizable effects, traits affected by
rare variants (Mathieson and McVean 2012), and data from
populations with short span linkage disequilibrium. In such
cases, models using priors that induce marker-specific
shrinkage such as the Bayesian Lasso (e.g., Park and Casella
2008; de los Campos et al. 2009) or various forms of finite
mixture models (e.g., George and Mcculloch 1993; Meuwissen
et al. 2001; Habier et al. 2011) may be more appropriate.
However, in these models, the use of orthogonal represen-
tations such as those based on the eigenvalue decomposition
presented here cannot be easily implemented because the
implied covariance structure of genomic values, which in the
model presented here is G = WW9, depends on model
unknowns that are updated at every iteration of the sampler.
Therefore, an important and challenging task is to develop
statistical procedures that can combine both features in
a unified manner.
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Appendix

Retrieving SNP effects from genomic values:

Parameterization (10) yields inferences at the level of
genomic values g = Ua and one may wish to draw inferen-
ces at the level of SNP effects b. This can be readily obtained
from the McMC output as follows.

Write the degenerate distribution
2
4 b
g
y

3
5 � N

2
4
0
@ 0

0
1m

1
A;  

0
@ I W9 W9

W WW9 WW9
W WW9 WW9þ Ik

1
As2

b

3
5;
(27)

where k ¼ s2
e=s

2
b . The conditional distribution [b|g] is nor-

mal with conditional mean E(b|g) = W9 (WW9)21g and
conditional variance VarðbjgÞ ¼ s2

b ½I2W9ðWW9Þ2 1W�. Fac-
torizing WW9 = UDU9 and using

ðUÞ21¼ U9;
U9U ¼ UU9 ¼ I;

then

ðWW9Þ21¼ UD21U9 (28)

and the vector E(b|g) takes the form

EðbjgÞ ¼ W9UD21U9g
¼ W9UD21U9Ua
¼ W9UD21a
¼ W9

Pn
i¼1l

21
i Uiai ¼ EðbjaÞ;

(29)

where Ui is the ith column of matrix U and the scalar ai is the
ith element of a. In general

EðbjyÞ ¼ Eajy½Eðbja; yÞ�:

But from the variance structure of (27) it can be shown that
E(b|a, y) = E(b|a). Therefore

EðbjyÞ ¼ Eajy½EðbjaÞ�;

where E(b|a) is given in (29). In an McMC environment, g
or a are draws from [g|y] or from [a|y], respectively. A
Monte Carlo estimate of E(b|y) can be obtained by first
averaging vector a over realizations of [a|y]. That is,

ÊðajyÞ ¼ 1
K

XK
i¼1

a½i�;

where a[i] is the ith draw of vector a from [a|y], i = 1,
2, . . ., K. Then

ÊðbjyÞ ¼ W9UD21ÊðajyÞ: (30)

Computational properties of the transformed model:

Models (2) and (10) are completely standard and can be
implemented using a Gibbs sampler (e.g., Sorensen and
Gianola 2002). Computationally, (10) is simpler to work
with and as shown here, vector a can be updated jointly,
resulting in better mixing and convergence behavior. If
yjm;a � Nðmþ Ua; Is2

e Þ, and a � Nð0;Ds2
bÞ, then

ajm;s2
b ;s

2
e ; y � N

�
â;C21s2

e
�
; (31)

where C = U9U + D21k, k ¼ s2
e=s

2
b , and

â ¼ C2 1ðU9y2U9mÞ. Since U9U = I, C is a diagonal matrix
with the ith element

Ci ¼ 1þ k
li
;

where li is the ith eigenvalue. Expression (31) is the
fully conditional posterior distribution of a. Each variance
component is updated from a scaled inverse chi-square
distribution.
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Description	
  of	
  the	
  Wheat	
  and	
  British	
  1958-­‐Cohort	
  Data	
  

	
  
Phenotype	
  and	
  genotype	
  data	
  from	
  the	
  British	
  1958	
  Birth	
  Cohort	
  are	
  freely	
  available	
  to	
  research	
  scientists	
  worldwide	
  on	
  
application	
  to	
  the	
  Access	
  Committee	
  for	
  CLS	
  cohorts.	
  Information	
  on	
  the	
  application	
  procedure	
  can	
  be	
  found	
  on	
  the	
  website:	
  	
  
http://www2.le.ac.uk/projects/birthcohort.	
  

The	
  original	
  human	
  data	
  consisted	
  of	
  2,997	
  individuals	
  mapped	
  for	
  934,967	
  SNPs	
  (Affymetrix	
  snp	
  chip).	
  The	
  data	
  were	
  edited	
  in	
  
a	
  first	
  step	
  to	
  exclude	
  snps	
  with	
  a	
  minor	
  allele	
  frequency	
  below	
  5%,	
  with	
  a	
  missing	
  rate	
  above	
  10%	
  (or,	
  call	
  rate	
  below	
  90%),	
  and	
  
to	
  exclude	
  individuals	
  with	
  a	
  missing	
  rate	
  above	
  10%.	
  This	
  was	
  done	
  using	
  PLINK	
  (free,	
  open	
  source	
  toolset	
  at	
  
http://pngu.mgh.harvard.edu/~purcell/plink/)	
  with	
  the	
  options	
  	
  "maf	
  0.05",	
  	
  "geno	
  0.1",	
  and	
  	
  "mind	
  0.1".	
  This	
  reduced	
  the	
  snp	
  
data	
  to	
  698,291	
  snps	
  on	
  2,995	
  individuals;	
  236,055	
  SNPs	
  dropped	
  out	
  because	
  of	
  too	
  low	
  MAF,	
  658	
  SNPs	
  dropped	
  out	
  because	
  
of	
  too	
  high	
  missing	
  rate,	
  and	
  2	
  individuals	
  dropped	
  out	
  because	
  of	
  too	
  high	
  missing	
  rate.	
  

A	
  subsequent	
  edit	
  was	
  done	
  to	
  retain	
  only	
  known	
  autosomal	
  SNPs,	
  i.e.	
  snps	
  with	
  chromosome	
  numbers	
  1	
  to	
  22.	
  This	
  was	
  done	
  
by	
  extracting	
  the	
  list	
  of	
  autosomal	
  SNPs	
  from	
  the	
  map	
  file,	
  and	
  use	
  PLINK	
  with	
  the	
  "extract"	
  option	
  to	
  retain	
  only	
  the	
  autosomal	
  
snps.	
  This	
  reduced	
  the	
  number	
  of	
  snps	
  to	
  672,340.	
  

The	
  Genomic	
  Relationship	
  Matrix	
  (GRM)	
  was	
  computed	
  using	
  GCTA	
  (	
  free,	
  open	
  source	
  toolset,	
  at	
  
http://gump.qimr.edu.au/gcta/)	
  based	
  on	
  the	
  remaining	
  2,995	
  individuals	
  and	
  672,340	
  autosomal	
  snps.	
  From	
  the	
  GCTA	
  output,	
  
close	
  relatives	
  were	
  identified	
  by	
  searching	
  in	
  the	
  GRM	
  for	
  off-­‐diagonals	
  >	
  0.2.	
  This	
  should	
  identify	
  half	
  and	
  full	
  sibs	
  that	
  could	
  
have	
  shared	
  environment.	
  In	
  total	
  7	
  pairs	
  of	
  related	
  individuals	
  were	
  found	
  and	
  the	
  complete	
  pairs,	
  i.e.	
  14	
  individuals,	
  were	
  
dropped	
  from	
  the	
  data.	
  This	
  leaves	
  2,981	
  individuals	
  with	
  genotype	
  data.	
  

The	
  phenotype	
  data	
  were	
  only	
  edited	
  to	
  flag	
  missing	
  values.	
  Considered	
  missing	
  were:	
  negative	
  values,	
  zero	
  values,	
  999	
  values	
  
and	
  NA	
  values.	
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File	
  S2	
  

R	
  Code	
  

R	
  code	
  use	
  to	
  fit	
  models	
  for	
  the	
  wheat	
  dataset	
  for	
  the	
  analysis	
  presented	
  in	
  this	
  article.	
  	
  This	
  compressed	
  file	
  is	
  
available	
  for	
  download	
  at	
  http://www.genetics.org/content/early/2012/07/16/genetics.112.141143/suppl/DC1.	
  
	
  
	
  

	
  


