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ABSTRACT Genomic selection refers to the use of genotypic information for predicting breeding values of selection candidates. A
prediction formula is calibrated with the genotypes and phenotypes of reference individuals constituting the calibration set. The size
and the composition of this set are essential parameters affecting the prediction reliabilities. The objective of this study was to maximize
reliabilities by optimizing the calibration set. Different criteria based on the diversity or on the prediction error variance (PEV) derived
from the realized additive relationship matrix–best linear unbiased predictions model (RA–BLUP) were used to select the reference
individuals. For the latter, we considered the mean of the PEV of the contrasts between each selection candidate and the mean of the
population (PEVmean) and the mean of the expected reliabilities of the same contrasts (CDmean). These criteria were tested with
phenotypic data collected on two diversity panels of maize (Zea mays L.) genotyped with a 50k SNPs array. In the two panels, samples
chosen based on CDmean gave higher reliabilities than random samples for various calibration set sizes. CDmean also appeared
superior to PEVmean, which can be explained by the fact that it takes into account the reduction of variance due to the relatedness
between individuals. Selected samples were close to optimality for a wide range of trait heritabilities, which suggests that the strategy
presented here can efficiently sample subsets in panels of inbred lines. A script to optimize reference samples based on CDmean is
available on request.

AMONG the different methods that use molecular mar-
kers for selection, genomic selection (GS) has received

considerable attention in the last decade. The objective of
this approach is to predict the breeding values of candidates
based on their molecular marker genotypes. A prediction
formula is developed using the genotypes and phenotypes
of reference individuals forming a calibration set (Meuwissen
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et al. 2001). The GS formula potentially includes all the
marker effects, without preselection based on a significance
threshold. If the marker density is sufficient, this permits the
model to capture an important part of the genetic variance
(Yang et al. 2010). Compared to traditional marker-assisted
selection (MAS), the efficiency of which is limited by
the power of marker-trait association tests, GS is expected
to be more efficient, especially for highly polygenic traits
(Bernardo and Yu 2007). GS was first used in animal breed-
ing, particularly dairy cattle, and its use clearly improved
the selection efficiency (Hayes et al. 2009a). It is now also
widely studied by plant breeders, and interesting results
were obtained (Jannink et al. 2010; Crossa et al. 2010;
Albrecht et al. 2011).

Powerful statistical tools and relevant data sets (geno-
types and phenotypes to train the prediction model) are key
factors for the predictive efficiency. There are two ways to
use the genotypic data in genomic selection. The first way is
to estimate the marker effects in the calibration set and then
to predict the breeding values of the selection candidates by
multiplying their genotypes by the marker effects. This
approach is used, for example, in the mixed model called
random regression–best linear unbiased predictions (RR–
BLUP; Whittaker et al. 2000; Meuwissen et al. 2001). The
second approach is to use the marker genotypes to estimate
a relationship matrix between phenotyped individuals of the
reference population and nonphenotyped individuals, can-
didates to selection. This relationship matrix can then be
used to estimate a variance/covariance matrix between the
genetic values in a mixed model called RA–BLUP (RA for
realized additive relationship matrix; Zhong et al. 2009), or
G–BLUP. It has been proven that RR and RA–BLUP are sta-
tistically equivalent under conditions presented by Habier
et al. (2007), Goddard (2009), and Hayes et al. (2009b).

The implementation of genomic selection is facilitated by
recent advances in genotyping. We now have access to geno-
typing arrays, which provide genotypes of very good quality
at low cost. The costs of sequencing are also decreasing and
it is, or will soon become, possible to genotype the genetic
material by sequencing (Huang et al. 2009; Metzker 2009;
Elshire et al. 2011). In plant breeding, large collections of in-
dividuals are usually available to the breeder, corresponding
to germplasm released by public institutes, private germplasm
released at the end of their protection by patent (PVP), and
individuals that have been used as parents of the current
breeding program. All this material can be easily genotyped
and potentially used to create the calibration set. Conversely,
although there have been very important advances in the
automatization of phenotyping, it is still very expensive to
obtain relevant phenotypes with a high heritability for a large
set of individuals. In addition, multi-environment trials are
needed to test individuals under different conditions and es-
timate the genotype x environment interactions (GEI). As
a result, it is now clearly admitted that the collection of phe-
notypic data relevant in terms of traits and environmental
conditions with respect to the breeding objectives is the most

limiting factor for running genomic selection and that it is
also a key factor that needs to be optimized, with the con-
straint of a limited budget. Beyond plant breeding, this issue
extends to a large extent to animal selection for traits that are
either destructive or costly to measure, such as traits related
to disease resistance or fertility (Boichard and Brochard
2012).

The question is then how to choose the reference indi-
viduals (calibration set) to phenotype, to maximize the re-
liability of the prediction of nonphenotyped individuals that
are candidates to selection. Indeed, it has been shown that
the accuracy of genomic predictions (that is the correlation
between predicted and true breeding values) is highly in-
fluenced by the population used to calibrate the model
(Albrecht et al. 2011; Pszczola et al. 2012). In a situation in
which a large collection of individuals is available, one ob-
jective is to define which ones must be included in the cali-
bration set to discriminate as accurately as possible which
individuals from the selection population are the best ones
(Figure 1). A first way to perform sampling could be to
choose the individuals that capture most of the diversity
present in the population. Another criterion could be to se-
lect the calibration set that minimizes the prediction error
variance (PEV) of the genetic values. This criterion is valid at
the individual level but does not take into account the ge-
netic variance of the contrasts between individuals and may
result in the sampling of close relatives. One classical way of
evaluating the efficiency of a given selection method is to
compute its accuracy, defined as the correlation between
predicted and true values, which is an important factor of
the expected genetic gain. This criterion is directly available
in simulation studies in which true genetic values are known
or can be indirectly measured by using cross-validation ap-
proaches in experimental data.

A few studies have used the expected accuracy, estimated
as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 PEV=s2

g

q
(where s2

g is the additive genetic vari-
ance, and PEV represents the part of s2

g that is not accounted
for by the predictions) to compare experimental designs and
statistical models for dairy cattle (VanRaden 2008; Hayes
et al. 2009c; Pszczola et al. 2012). In these articles, individ-
uals were assumed to be unrelated. As a consequence this
criterion has the same disadvantage as PEV: it doesn’t con-
sider the decrease of genetic variance when close relatives
are sampled.

To account for this possible decrease in genetic variance,
it is possible to directly maximize the expected reliabilities of
the contrasts between each selection candidate and the
population mean. It can be implemented with the general-
ized coefficient of determination (Laloë 1993), which ex-
presses the precision of any contrast between individuals.
This criterion is the squared correlation between the true
and the predicted contrast of genetic values. It is a function
of the PEV and of the genetic variance. The generalized co-
efficient of determination (CD) is used by animal geneticists
to optimize experimental designs. In particular it can be
used to track disconnectedness, i.e., individuals that cannot
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be compared because they (or their relatives) were not phe-
notyped at least once in the same environment. The gener-
alized CD was used, for example, to compare the efficiency
of testing designs in beef cattle (Laloë and Phocas 2003) and
sheep (Kuehn et al. 2007).

In plant breeding, the generalized CD was used by
Maenhout et al. (2010) to get the most accurate BLUPs from
phenotypic data available from a breeding company. The
phenotypic data of breeding companies are very unbalanced,
some phenotypes being disconnected from the others.
Maenhout et al. (2010) assumed that the genotyping bud-
get was limited, and they wanted to use the phenotypes
already available for predicting the value of untested hy-
brids. Their challenge was, then, how to choose the indivi-
duals to genotype in order to optimize the use of available
phenotypes. With this exception, to our knowledge, this cri-
terion was paid little attention in plant breeding so far and
it could be used for different applications such as the opti-
mization of the sampling of the calibration set in genomic
selection.

Since phenotyping is now the limiting factor in genome-
wide analysis, we consider the case in which all the in-
dividuals are genotyped but only a proportion is going to be
phenotyped (calibration set). In this article, we propose
a method based on the generalized CD to optimize the
sampling of the calibration set for predicting as accurately as
possible the nonphenotyped individuals (Figure 1). To val-
idate our optimization algorithm, we used phenotypic data
for flowering time, plant biomass, and dry matter content,
collected on two maize inbred panels for which genotypic
information is available and compared several strategies for
selecting the calibration set.

Materials and Methods

Genetic material

Our optimization procedure was evaluated on two maize
diversity panels developed for the European program “Corn-
Fed.” These are composed respectively of 300 Flint lines and
300 Dent lines. This material includes 242 lines from the
panel presented by Camus-Kulandaivelu et al. (2006) and
lines derived from recent breeding schemes: 58 Dent lines
from PVP (Mikel 2006; Nelson et al. 2008), 128 from the
University of Hohenheim (Riedelsheimer et al. 2012), 81
from the Misión Biológica de Galicia and the Estación Ex-
perimental de Aula Dei, Spain (CSIC), 35 from the Centro
Investigacións Agrarias de Mabegondo, Spain (CIAM), 23
from the Eidgenössische Technische Hochschule Zürich
(ETHZ), and 33 from the Institut National de la Recherche
Agronomique (INRA). This collection was created with the
objective of covering European and American diversity of
interest for temperate climatic conditions, as available
from public institutes. Choice was guided by pedigree to
avoid as far as possible overrepresentation of some parental
materials.

Field data

The Flint and Dent lines were respectively crossed to a Dent
and a Flint tester. The two panels were evaluated separately
for flowering time and biomass production in two adjacent
trials at five locations in 2010: Mons (France), Pontevedra
and Mabegondo (Spain), and Roggenstein and Einbeck
(Germany). The hybrids within each panel were divided
into two groups according to their expected precocity. These
two groups were evaluated as two blocks. A small number of
randomly chosen entries was replicated within blocks (18
entries) and across blocks (18 entries) to estimate experi-
mental error and an eventual block effect. Male flowering
time (Tass_GDD6), plant dry matter yield (DM_Yield), and
dry matter content (DMC) were registered for each plot.
DMC and DM_Yield were observed at only four of the five
locations for the Flint panel. Male flowering time was
registered when 50% of the plants were shedding pollen
and then converted into growing degree days (GDD) in base
6�, using the mean daily air temperature measured at each
location. These traits were used here as examples, to test the
optimized sampling algorithm. Plants with obviously ex-
treme phenotypes were excluded from the study (between
2.2 and 2.8% of the data were removed for each trait).

Least-squares means were calculated with the GLM
procedure (SAS Institute, 2008) by adjusting for block and
trial effects (the phenotypes are compiled in File S1 and File
S2). Trait heritability at the level of the experimental design
was estimated with a mixed model (Trial as fixed effect,
genotypes and genotypes · trial as random effects) after
removing the block effects. Heritability was calculated as

h2 ¼ s2
g

s2
g þ s2

g ·E=nTrialþ s2
E=nRep

;

where s2
g is the additive genetic variance, s2

E is the environ-
mental variance, s2

g·E is the interaction variance, nTrial is
the number of trials, and nRep is the mean number of rep-
licates over the whole experimental design.

Genotyping, diversity, and relationship matrix

The two diversity panels were genotyped with the 50k SNPs
array described by Ganal et al. (2011). This Illumina array
includes 49,585 SNPs. Individuals, which had marker miss-
ing rate and average heterozygosity .0.1 and 0.05, respec-
tively, were eliminated. Markers, which had missing rate
and average heterozygosity .0.2 and 0.15, respectively,
were eliminated. In total, 261 Flint lines and 261 Dent lines
passed the genotyping and phenotyping filter criteria. To
avoid the bias noted by Ganal et al. (2011) in the diversity
analysis, we used only the markers that were developed by
comparing the sequences of nested association mapping
founder lines (PANZEA SNPs; Gore et al. 2009) to estimate
Nei’s index of diversity (Nei 1978) and relationship coeffi-
cients (30,027 and 29,094 markers passed the filter criteria
for the Dent and the Flint lines, respectively, see File S1 and
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File S2). Nei’s index of diversity of each Panzea SNP was
calculated and averaged over the genome to estimate diver-
sity in the two panels.

One easy way to estimate the relationship between individ-
uals with molecular markers is to calculate for each pair of
individuals the proportion of shared alleles, also called identity-
by-state (IBS). With biallelic markers it can be calculated as

A IBS ¼ GG9þ G2G29

K
;

where G is the matrix of genotypes (with dimension number
of individuals · number of markers) coded as 0, 0.5, and 1
for the homozygote, the heterozygote, and the other homo-
zygote, respectively, K is the total number of markers, and
G2 ¼12G, where 1 is a matrix of ones.

In this formula, a same weight is given to all markers.
Another formula was proposed by Leutenegger et al. (2003),
Amin et al. (2007), and Astle and Balding (2009) in which
a particular weight, depending on the allele frequency, is
given to each marker,

A freqi; j ¼
1
K

XK

k¼1

�
Gi; k2 pk

��
Gj; k 2 pk

�
pkð12 pkÞ

;

where i and j indicate individuals, Gi,k is the genotype of
individual i at marker k, and pk is the frequency of the allele
coded 1 of marker k in the panel. This estimator attributes
a higher weight to similarity for rare alleles and to markers
with low diversity. The allele frequencies pk are estimated in
a reference population (here each panel). We consider here
the diversity panel as the base population; as a result the
mean of the values of genomic relationship matrix A_freq is
equal to zero. This formula can give negative estimates of
relationship coefficient. Negative coefficients have no sense
in terms of probability, but can be interpreted as negative
correlations. These two genomic relationship matrices are
positive semidefinite (Astle and Balding 2009) and invertible
when the number of markers is sufficient and identical indi-
viduals are removed. Genomic relationship matrices, as de-
scribed above, were estimated independently in both panels.

Statistical model

The genomic predictions were based on the RA–BLUP model,
which allows a more direct derivation of PEV and CD for the
breeding values (see below), using the following mixed model

y ¼ Xbþ Zuþ e;

where y is a vector of phenotypes, b is a vector of fixed
effects (in our case only the intercept), u is a vector of
random genetic values, and e is the vector of residuals. X
and Z are design matrices.

The variance of the random effects u is varðuÞ ¼ As2
g,

where A is the genomic relationship matrix and s2
g is the

additive genetic variance in the panel. The variance of the
residuals e is varðeÞ ¼ Is2

e, where I is the identity matrix.

The prediction of u is obtained by solving Henderson’s
(1984) equations�

X9X X9Z
Z9X Z9Zþ lA�1

��
b̂
û

�
¼

�
X9y
Z9y

�
;

where l ¼ s2
e=s

2
g is the ratio between the residual and the

additive variances in a simplified situation; in our case

l ¼ s2
E=nRepþ s2

g ·E=nTrial

s2
g

:

A is the genomic relationship matrix. Note that in this model
we consider that a trait is determined by a large number of
genes, each having small and independent effects. Genetic
effects are assumed to follow a Gaussian distribution accord-
ing to the central limit theorem (Fisher 1918).

Optimization criteria and CD

The final objective is to identify the individuals from the
population that are best suited to build the calibration panel.
One strategy for reaching this objective is to maximize the
precision of the prediction of the difference between the
value of each nonphenotyped individual and the mean of
the total population of candidate individuals, which includes
the phenotyped and the nonphenotyped individuals. This
difference can be viewed as a specific contrast between
genetic values of individuals.

A classical approach for this is to compute the expected
PEV of each individual, which can be obtained from

�
X9X X9Z
Z9X Z9Zþ lA�1

��1

¼
�
C11 C12
C21 C22

�
;

where PEVðûÞ ¼ Varðû� uÞ ¼ diagðC22Þ ·s2
e.

More generally, the PEV of any contrast c of the predicted
performances can be calculated as

diag

"
c9
�
Z9MZþ lA�1��1

c
c9c

#
·s2

e ;

where c is a contrast, i.e., 1
0
c ¼ 0. M is an orthogonal pro-

jector on the subspace spanned by the columns of X:
M ¼ I� XðX9XÞ�X9 and ðX9XÞ2 is a generalized inverse of
X9X (Laloë 1993).

A complementary approach to optimizing the choice of
individuals to be phenotyped is to estimate the expected
reliability of the prediction of contrasts. Laloë (1993)
expressed the precision of any contrast with the generalized
CD, defined as the squared correlation between the true and
the predicted contrast of genetic values. This CD is equiva-
lent to the expected reliability of the contrast

CDðcÞ ¼ diag

"
c9
�
A � l

�
Z9MZþ lA�1��1

�
c

c9Ac

#
:

718 R. Rincent et al.

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.112.141473/-/DC1/genetics.112.141473-3.zip


The CD takes values between 0 and 1, a CD close to
0 meaning that the prediction of the contrast is not reliable,
whereas CD close to 1 means that the prediction is highly
reliable. The CD is a balance between PEV and the genetic
variance (of the contrast), which takes into account re-
lationship (Laloë et al. 1996).

Note that compared to the approach of Hayes et al.
(2009c) who considered

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 PEV=s2

g

p
an estimation of accu-

racy, the term c9Ac in the CD takes into account covariances
between the candidate individuals. The use of generalized
CD instead of PEV as optimization criterion is expected to
prevent the selection of very closely related individuals.

The set of individuals to phenotype within each panel
(Dent or Flint) was optimized by minimizing the mean of the
PEVs of the contrast between each nonphenotyped individ-
ual and the mean of the panel: PEVmean ¼ mean[diag
(PEV(C))], where C is a matrix of contrasts: each column
is a contrast between an unphenotyped individual and the
mean of the population. Dimensions of C are total number of
individuals · number of nonphenotyped individuals.

We also optimized the sampling by maximizing the mean of
the CDs of the contrast between each nonphenotyped individual
and the mean of the panel: CDmean ¼ mean[diag(CD(C))].
In this case, the individuals that we decide not to phenotype
are those that are the most reliably predicted with those that
are phenotyped. In other words, we optimize the choice of
individuals to phenotype, so that their phenotypes are as
useful as possible to predict the unphenotyped individuals
(Figure 1). We expect this strategy to sample key individuals
that cover the panel variability as well as possible.

These approaches based on PEVmean or CDmean were
used with the two relationship matrices described above: the
IBS matrix A_IBS and the genomic relationship matrix A_freq.

These criteria, PEVmean and CDmean, were compared to
other criteria expected to improve the calibration set sam-
pling: we also considered as selection criteria the mean and
the maximum of the genomic relationship matrix A_freq

between the individuals in the calibration set (respectively
denoted by Amean and Amax). These two criteria Amean
and Amax were minimized to maximize the variability in the
calibration set.

Optimization algorithm

Several exchange algorithms and simulated annealing
(Kirkpatrick et al. 1983; Černý 1985) classically used to
optimize experimental designs (Atkinson et al. 2007) were
implemented in R 2.14.0 to optimize the different criteria. A
simple exchange algorithm, further referred to as Algo1, was
retained. At each step the random exchange of one individual
between the calibration set and the set of nonphenotyped
individuals is accepted if the criterion were improved and
was rejected otherwise. More complex algorithms did not
give significantly better results and needed more iterations
to converge. They were therefore not retained for further
investigations.

For each panel, we used Algo1 50 times to select a certain
number of individuals (10, 30, 50, 70, 100, 150, or 200) for
phenotyping, each time with a different random initial
sample. Preliminary tests showed that 50 repetitions were
sufficient to obtain stable results. We then used the true
phenotypes of these individuals (calibration set) to predict
the remaining individuals (validation set). We compared
results obtained for optimized calibration sets with those
obtained for randomly determined calibration sets (50
random sets for each calibration set size). This procedure
was applied to each trait in each panel.

Observed prediction reliability and robustness
of the optimization to variation of heritability

To compare the ability of the phenotyped individuals to
predict the unphenotyped individuals (the validation set of
individuals), we calculated the observed reliability of the
predictions. The genomic selection reliability is defined by the
square correlation between the genomic estimated breeding

Figure 1 Optimization of calibration set
to implement genomic selection in a di-
versity panel. This procedure was tested
on two independent maize diversity
panels.
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values (GEBV) and the true breeding values (TBV):
corr2ðGEBV;TBVÞ, which is the square of the genomic selec-
tion accuracy (Dekkers 2007). We do not have access to
the TBV of the candidate plants. Considering that
corrðGEBV;YÞ ¼ corrðGEBV;TBVÞ · corrðY;TBVÞ, where Y
stands for the observed phenotypic performance, we estimated
the genomic selection reliability as corr2ðGEBV;YÞ=h2, since
h2 ¼ corr2ðY;TBVÞ. For each panel and each calibration set
size we compared the observed prediction reliabilities using
the optimized or the random set.

In the CD calculation, the only parameter that is related to
the trait is the variance ratio l. This parameter is related to
the heritability of the trait: l ¼ ð12 h2Þ=h2 . We need to set
a specific value for l to use the sampling algorithm. But in
practice, the calibration set will probably be phenotyped for
traits of different heritabilities. It is thus important to know,
for a set optimized with a specific value of l, for which range
of heritabilities it is optimum. To answer this question, we
compared the CDmean of selection candidates obtained after
sampling the calibration set with different values of lambda.
If the CDmean obtained with different lambda values are
correlated, one can assume that close subsets of individuals
would be selected by the sampling approach.

For this, random sets of individuals were successively
selected, and each time the CDmean was calculated (with
the genomic relationship matrix) using three different
values for l: 4, 1, and 0.25 corresponding to heritabilities
of 0.2, 0.5, and 0.8. The correlations between the three
series of CDmean were then calculated.

Link between the PEV and the observed prediction error

For the Flint and the Dent panels independently, 50 sets of
150 individuals were sampled randomly or with the
optimization algorithm (CDmean). These calibration sets
were used to predict the genetic values of the unphenotyped
individuals from the same panel. We calculated the PEVs of
the contrasts between each predicted individual and the
mean of the population (using a l corresponding to the
estimated heritability) and compared it to the observed pre-
diction error (defined as the difference between the obser-
vation and the prediction). This comparison is interesting to
check if our statistical model gives good estimates of the PEV
and then indirectly if the estimated variance/covariance ma-
trix fits the true variance/covariance matrix.

Genetic properties of optimized calibration sets

To visualize the genetic properties of the calibration sets
optimized with CDmean, two kinds of tools were used:
a principal coordinates analysis (PCoA) on the distance
matrices (Gower 1966), and a network representation of the
genomic relationship matrix.

A PCoA was performed on the distance matrix of each
panel (we considered the distance between two individuals
by one minus their relationship coefficient A_freqij). The
individuals were then plotted using their coordinates on
the two axes of the PCoA explaining most of the total var-

iance. This representation gives an idea of the variability
present in each panel. Using these graphs, we visualized
the individuals selected by the sampling algorithm based
on CDmean. It gives a rough idea of the variability of the
panel captured by the calibration set.

To further understand how the individuals selected to be
part of the calibration set relate to the other individuals of the
population we used a visualization of the genomic relation-
ship matrix. We represented the individuals in a network, in
which two individuals are linked when their relationship
coefficient (A_freqij) is .0.2, unlinked otherwise (Rozenfeld
et al. 2008; Thomas et al. 2012). For this, the genomic re-
lationship matrix was transformed in a matrix of Boolean in-
dicating if the coefficients were .0.2 or not. The networks of
the two panels were drawn with a Fruchterman and Rein-
gold’s force-directed placement algorithm (Fruchterman and
Reingold 1991) with the package “network” in R.

Results

Trait variation

Tass_GDD6, DMC, and DM_Yield have an important vari-
ability in the two panels (Table 1). The average of these
traits are only slightly different between the two panels
because the Dent lines (usually late lines) were crossed to
a Flint tester (early lines) and the Flint lines to a Dent tester.
The genotype · environment interaction and the residual
variances were low compared to the genetic variances for
Tass_GDD6. The residual and interaction variances are rel-
atively more important for DMC but remain below genetic
variance. The residual variance was greater than the genetic
variance for DM_Yield and the interaction variance was
equal to the genetic variance in the Dent panel. The herita-
bility of these traits is between 0.65 (DM_Yield in the Dent
panel) and 0.95 (Tass_GDD6 in both panels).

Description of the diversity and of the genomic
relationship matrix

The index of diversity (Nei 1978) in the Dent and the Flint
panels was 0.34 and 0.32, respectively, leading to a mean
A_IBS of 0.66 and 0.68, respectively. Histograms of the ge-
nomic relationship coefficients A_freqij in the Flint and the
Dent panels show that most of the coefficients are ,0.1, but
some pairs of individuals are closely related in particular in
the Flint panel (Figure 2). For these individuals the identity-
by-state can be up to 0.99. The coefficient A_freqij of these
pairs of individuals can almost reach 2 if the two individuals
share many rare alleles. Three Dent and five Flint pairs were
almost identical despite all the care that was used to create
these diversity panels.

Observed prediction reliability and robustness
of the optimization to variation of heritability

The reliabilities were lower in the Flint than in the Dent
panel for the three traits and particularly for DM_Yield. For
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DM_Yield in the Flint panel the reliabilities are ,0.3 even
with a calibration set of size 200 (Figure 3). As expected
the observed reliability increased with the size of the cali-
bration set. For the random samples, an increase of the
calibration set size generates an increase of the reliability
following the law of diminishing returns (Figure 3). For the
set optimized with PEVmean and CDmean, this trend is less
clear. Within calibration set sizes, there were clear differ-
ences between the reliabilities obtained with the different
approaches. All the approaches except the minimization of

Amax gave better reliabilities than the reliabilities obtained
after random sampling. The approach based on PEVmean
was better than random sampling most of the time, but it
was equivalent or worse than random sampling in few
situations (particularly for DMC in the Flint panel). The
reliabilities obtained by minimizing Amax in the calibra-
tion set were always lower or equivalent to those obtained
by random sampling, whereas the minimization of Amean
always gave higher reliabilities than random sampling
(Figure 3).

Table 1 Statistics on Flowering time (Tass_GDD6, growing degree days), dry matter yield (DM_Yield, t · ha-1), and dry matter
content (DMC, %) in the two panels of hybrids

Dent Flint

Tass_GDD6 DM_Yield DMC Tass_GDD6 DM_Yield DMC

Mean 864.5 17.0 33.4 872.4 15.9 32.4
Genotypic variance 1354.5 *** 1.9 *** 13.0 *** 1692.1 *** 2.1 *** 8.6 ***
Trial · genotype variance 77.5 *** 1.9 *** 4.1 *** 95.8 *** 0.7 * 6.1 ***
Residual variance 292.2 *** 3.6 *** 6.5 *** 355.2 *** 3.9 *** 8.1 ***
Heritability 0.95 0.65 0.87 0.95 0.67 0.72

The variances were estimated in a mixed model with Genotype, Trial · genotype and Residual as random effects, *P, 0.05, ***P, 0.001. The observations were previously
corrected by block effects. The heritability corresponds to the broad-sense entry-mean heritability.

Figure 2 Histograms of the relationship coefficients be-
tween pairs of individuals. (A) Dent and (B) Flint. The re-
lationship coefficients were extracted from A_freq. The
two panels are considered as the reference populations;
as a consequence the mean of the relationship coefficients
is equal to zero in each panel.
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The approach based on CDmean always gave higher
reliabilities than random sampling. The use of A_IBS as var-
iance/covariance matrix gave lower reliabilities. Considering
the results obtained in the two panels with the different cal-
ibration set sizes, CDmean with A_freq was the best method.

The correlations between the CDmeans computed for the
three levels of heritability were .0.90 most of the time
(Table 2) and always .0.70. The CDmeans calculated with
the intermediate value of h2 (h2 = 0.5) had minimum cor-
relations of 0.86 and 0.91 with the CDmeans calculated with
the two extreme heritabilities (0.2 and 0.8), for the Flint and
Dent panels, respectively.

Link between the PEV and the observed prediction error

Another way of checking the reliability of our statistical
models was to compare the expected PEVs and the observed
prediction errors (Table 3 and Figure 4). Figure 4 illustrates
the results obtained after 1 of the 50 repetitions of the al-
gorithm on Tass_GDD6. This showed that the larger ob-
served prediction errors mostly corresponded to high PEV,
particularly for Flints.

The PEVs obtained with the approach based on CDmean
were lower than the PEVs obtained with a random calibra-
tion set. This expectation was validated by the observed
prediction errors, which were lower with CDmean than with
random sampling.

Genetic properties of optimized calibration sets

The two first PCoA axes represented, respectively, 16.4 and
15.8% of the total variability in the Dent and the Flint panels
(Figure 5). When the calibration set was small, the algo-
rithm tended to select individuals on the extremities of the
graph. When the calibration set was larger, the algorithm
selected representative individuals. For example, in A2
many individuals were selected from the lower left cluster,
where most individuals were placed. These patterns were
stable across runs.

Figure 6 presents pairs of individual with a genomic re-
lationship coefficient .0.2 (A_freqij) as linked by an edge.
This visual representation gives a global idea of the relation-
ships in the panels: individuals related to others are clus-
tered into groups, while more originals lines are isolated on
the graph. When few lines were phenotyped, the algorithm
selected individuals representing the biggest clusters. But
when the calibration set size was bigger, it was composed
of few individuals in the clusters and many isolated individ-
uals. At a given calibration set size, the algorithm selected
all the “isolated” lines and few lines in the kinship clusters.
When increasing even further the calibration set size, the
few individuals that were not in the calibration set were
located at the center of the kinship clusters.

Discussion

The objective of this study was to maximize the reliability of
genomic predictions by optimizing the composition of the

calibration set of individuals based on genotypic data only
(Figure 1). To do so, we used different criteria that were
expected to be related to the reliability of the genomic pre-
diction. These criteria can be used before collecting pheno-
typic data to optimize the calibration set. The algorithms
based on these criteria were tested on two independent
panels that included inbred lines of different origins and
on three traits with heritabilities ranging from 0.65 to
0.95. There were clear differences of observed reliabilities
between the two panels and between the three traits (Figure
3). The limited number of degrees of freedom available for
estimating error variance may affect the estimation of her-
itabilities, which may affect the scale of observed reliabilities
for a given panel–trait combination (through the division by
h2). The low reliabilities obtained for the Flint panel for
DM_Yield may be explained by a combination of (i) low
precision of data used for prediction (similar, however, to
that of Dent panel for the same trait), (ii) looser pedigree
structure than in the Dent panel, and (iii) larger nonadditive
effects possibly related to more important plant lodging,
which deserve further investigations.

Whatever the differences in reliability range among
panel–trait combinations, all the optimization criteria except
Amax (the maximum of the relationship coefficients be-
tween the reference individuals) increased the observed re-
liability compared to random sampling.

The only exception to this was PEVmean for intermediate
calibration set sizes for DMC in Flint panel. In particular, the
approaches based on CDmean and Amean always gave
higher reliabilities than random sampling whatever calibra-
tion set sizes. For Amean this is in accordance with Pszczola
et al. (2012), who showed that the relatedness between the
reference individuals and between the candidates and the
reference individuals has a strong effect on the accuracy. For
calibration sets of reduced size, Amean and CDmean yielded
similar reliabilities because they both sampled the less-re-
lated individuals. For larger calibration sets, the approach
based on CDmean gave better results, which can be
explained by the consideration of the whole network of kin-
ship, whereas Amean considers only the mean. CDmean
explicitly takes into account the information brought by
the experiment.

The optimization based on PEV was one of the most
efficient approaches. However, the approach uniquely based
on PEV (PEVmean) has two important drawbacks, which
can explain why it can sometimes be worse than random
sampling (Figure 3): (i) it doesn’t take into account the de-
crease of genetic variance due to kinship, (ii) and it is highly
dependent on the trait heritability. The first point can be
neglected if all the individuals are independent. In this case
the approaches based on PEVmean and on CDmean are
equivalent. But most of the time the individuals considered
by breeders are to some extent related, even in diversity
panels like those considered in the present study. Not con-
sidering these relationship coefficients can lead to biased
estimation of accuracy. This can partly explain why the
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Figure 3 Reliability of the predictions of Tass_GDD6 (A1 and B1), DMC (A2 and B2) and DM_Yield (A3 and B3) using different sampling algorithms on
the Dent panel (A1, A2, and A3), and the Flint panel (B1, B2 and B3). The calibration sets were randomly sampled or defined by maximizing CDmean
with a relationship matrix based on the IBS or weighted by the allelic frequencies; minimizing PEVmean with a relationship matrix weighted by the allelic
frequencies; minimizing the mean (Amean) or the maximum (Amax) of the relationship coefficient between the reference individuals. The individuals
that are not in the calibration set are in the validation set. As a consequence, for each calibration set size the reliability is calculated with a different
number of individuals. For each point, the vertical line indicates an interval of 2sR (sR being the standard deviation of observed reliabilities over the 50
runs). Optimization of PEVmean and CDmean was made with h2 corresponding to the heritability measured for each trait in each panel.
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formulas used in animal genetics, which consider the indi-
viduals as unrelated, overestimate accuracy compared to
what is found by using cross-validation (VanRaden 2008;
Hayes et al. 2009c; Pszczola et al. 2012). In the CD calcula-
tion, the covariance between the candidate individuals is
taken into account by c9Acsg

2, and as a result the reliability
is better estimated.

The second point, sensitivity to heritability, is very im-
portant because the calibration set is often phenotyped for
many traits of interest with different heritability levels. The
calibration set has thus to be optimal for a wide range of
heritability levels. Both PEV and CD depend on l, which is
directly related to the trait heritability. To test the effect
of l on the different methods, we used the algorithm on
Tass_GDD6 with a l of 1 corresponding to a heritability of
0.5. The reliabilities obtained with CDmean with the two l

values are very close, whereas PEVmean can be less accurate
than random sampling if the l value used for the optimiza-
tion is different from the true l (Supporting Information,
Figure S1). The robustness of CDmean to variation of heri-
tability is confirmed in Table 2, which shows that if an in-
termediate value of l is chosen, the calibration set is close to
optimality for a wide range of heritabilities. In fact this sec-
ond point is related to the first one: the reduction of vari-
ance due to relationship is not taken into account in the PEV
calculation, which makes it highly dependent on the trait
heritability. For example, if the set is optimized by minimiz-
ing the PEV with a very low heritability, the calibration set is
composed only of highly related individuals (results not
shown), whereas if the heritability is high, the calibration
set would explore the whole variability of the panel. In the
CD calculation the term c9Ac prevents selection of individuals
too closely related.

The absence of a clear plateau for CDmean method
according to calibration size in Figure 3 leads us to check

whether improvement in reliability observed with CDmean-
based optimization may be partly explained by the selection
of validation sets (the complement to calibration set in our
main approach) presenting a broad variation. To address
this issue, we performed a different cross-validation proce-
dure on Tass_GDD6. We considered here validation sets
determined a priori. In a first step 30 individuals were ran-
domly sampled to define the validation set. In a second step
calibration sets were sampled from the remaining individu-
als at random or using different approaches to optimize the
prediction reliability for the validation set. Although a dimin-
ishing return according to calibration population size in-
crease was observed, the ranking in methods (Figure S2)
was consistent with what was found before (Figure 3). This
shows that an increase in reliability for CDmean cannot be
attributed mostly to the extraction of an “easy to predict”
validation set. We also performed the optimization on the
adjusted means of DMC and DM_Yield of each single trial
and found consistent results: the different approaches were
ranked in the same order except for one trial for which the
reliabilities were very low whatever the calibration set size
and the method (results not shown).

Previous elements show that CDmean is preferable to
PEVmean and is a criterion of choice to predict reliability
and to optimize the calibration set. Under our conditions,
using the optimized sampling algorithm based on CDmean
and using A_freq as variance/covariance matrix, an opti-
mized set of approximately 100 lines can reach the same
reliability as random samples of approximately 200 lines.
Cost of heavy phenotypic evaluations could therefore be
substantially reduced by using an optimized calibration set.

This approach can also be used to estimate the precision
of a particular prediction after collecting phenotypic data
(Figure 4). This information is important because it would
help the breeders to select the best individuals considering

Table 2 Correlation between the CDmeans calculated with different values of l

Calibration set
Dent Flint

Size l=4 ; l=1 l=4 ; l=0.25 l=1 ; l=0.25 l=4 ; l=1 l=4 ; l=0.25 l=1 ; l=0.25

10 0.99 0.98 1.00 0.99 0.97 0.99
50 0.93 0.82 0.97 0.91 0.81 0.98
70 0.86 0.71 0.97 0.95 0.89 0.99

100 0.93 0.86 0.98 0.97 0.94 0.99
200 0.99 0.96 0.99 0.97 0.93 0.99

For each calibration set size, the CDmeans of 200 random samples were calculated with three different values of l. Each value of the table indicates the correlation between
CDmeans calculated with two values of l. The values in italics are the correlations ,0.9. The three values of l (4, 1, 0.25) are, respectively, equivalent to heritabilities of 0.2,
0.5, and 0.8.

Table 3 Means of the expected and observed error variances in the Dent and Flint panels for Tass_GDD6

Dent Flint

Mean PEVmean Observed prediction error variance Mean PEVmean Observed prediction error variance

Random set 865.6 654.7 1204.1 973.8
Optimized set 610.8 367.9 857.9 699.8

The calibration set was composed of 150 individuals randomly sampled, or sampled with the algorithm based on CDmean. The procedure was repeated 50 times.

724 R. Rincent et al.

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.112.141473/-/DC1/genetics.112.141473-1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.112.141473/-/DC1/genetics.112.141473-4.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.112.141473/-/DC1/genetics.112.141473-2.pdf


not only the best predicted values but also associated reli-
abilities. This information would also be useful to identify
situations in which a complementary sampling of the cali-
bration data set is needed to increase the reliability of the
predictions of original individuals that were poorly pre-
dicted with the initial calibration set.

When the calibration set is small, it appears that the
algorithm based on CDmean samples individuals that are
“extreme” on the PCoA representation (Figure 5). As a con-
sequence, the variability explained by the main axes is well
captured by the calibration set. When the calibration set is
larger, the selected individuals are spread across the whole
graph, and they are always separated by a minimum dis-
tance. When two individuals are highly related, the algo-
rithm never selects both of them as clearly illustrated by
network visualizations (Figure 6). The number of clusters
depends on the threshold used to determine if two individ-
uals appear related or not. We used a threshold on A_freqij
of 0.2 because the clusters of related lines were then clearly
visible. When the calibration set is small, the individuals
selected are in the biggest clusters. This choice permits reli-
able prediction of more individuals than if isolated lines

were selected. If the calibration set becomes larger, both
isolated and linked individuals are selected. It can be
explained by the fact that when the clusters are represented
by a sufficient number of phenotyped individuals, it brings
more information to phenotype an isolated individual than
an additional one in the clusters. At a certain calibration set
size, the only lines that are not in the calibration set are in
the center of the clusters. These lines are among the most
typical of each group; they are also the most easily predicted
when many genetically close lines are phenotyped.

In addition to these general trends, we showed that the
selection of the reference individuals by the approaches
based on CDmean or PEVmean depends on the method used
to estimate the variance/covariance matrix. This relation-
ship matrix should reflect the variance/covariance between
individuals at the QTL positions. It is thus possible that the
best formula with which to estimate A is not the same for
different traits, according to the weight that is given to the
markers. The use of A_freq instead of A_IBS slightly in-
creased the observed reliability of the predictions. It shows
that A_freq gave better estimates of the relationship coeffi-
cient between individuals than A_IBS, at least with our data.

Figure 4 PEV and observed prediction errors for Tass_GDD6 (calibration set size, 150 individuals). (A1 and A2) Dent panel (261 hybrids), calibration set
randomly sampled (A1) or optimized with CDmean (A2). (B1 and B2) Flint panel (261 hybrids), calibration set randomly sampled (B1) or optimized with
CDmean (B2). The blue lines indicate an interval of 4SD(Y) [SD(Y) being the standard deviation of the adjusted means]. The PEVs were calculated with
a l value corresponding to the estimated heritability of each panel.
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In the case of highly polygenic traits, we consider that the
QTL are spread on the whole genome, and so we use
markers covering the whole genome to estimate the vari-
ance/covariance matrix. We need a number of markers high
enough to have at least one marker in high linkage disequi-
librium (LD) with each QTL. Goddard et al. (2011) showed
that an incomplete coverage of the genome by markers can
be a cause of overestimation of the accuracy. CDmean and
PEVmean could be subject to this bias because we used
a variance/covariance matrix estimated with markers to cal-
culate these criteria. Goddard et al. (2011) proposed calcu-
lating a variance/covariance matrix based on the genomic
relationship matrix and on the pedigree to predict accuracy
without bias. In our case the pedigree was not available and
so we could not use their correction. However, our marker
density compared to LD was such that a risk of having an
important bias was limited.

The approaches we proposed were tested on two in-
dependent diversity panels and three traits and globally
consistent results were obtained. It would be interesting to
test these approaches on other types of populations, in
particular in the presence of strong population structure. We

have considered here two heterotic groups separately. It may
be interesting to test the approach to optimizing samples
including lines of different heterotic groups, with the
objective of obtaining accurate predictions across and within
heterotic groups. It would then be required to have an
important coverage of the genome to capture ancestral LD,
otherwise the reliability would be overestimated as dis-
cussed before. Breeders are also interested in applying
genomic selection in multifamilial populations (Albrecht
et al. 2011; Zhao et al. 2012). Albrecht et al. (2011) showed
that in such situations the prediction reliabilities are highly
dependent on the composition of the calibration set. In par-
ticular, if few families are not represented in the calibration
set, the observed reliabilities are lower than if few indi-
viduals are sampled in each family. Optimizing the calibra-
tion set therefore deserves specific attention in this case.
CDmean could be used to optimize the sampling if the
proper contrasts are considered: between each individual
and its family mean, between each individual and the mean
of the population, and between each family. These questions
deserve consideration in future studies. Our study was based
on diversity panels, and we could not evaluate how the

Figure 5 Principal coordinates analysis on the Dent and the Flint panel. Axis1 and Axis2 are the two first components of a PCoA on the distance matrix
of the corresponding panel. The individuals selected by the algorithm based on CDmean are represented by red dots, other by circles. A1 and A2: PCoA
on the Dent panel, calibration set composed of 5 individuals (A1) and 30 individuals (A2). B1 and B2: PCoA on the Flint panel, calibration set composed
of 5 individuals (B1) and 30 individuals (B2).
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reliability would evolve across the next generations derived
from these materials. This aspect also has to be studied,
because the gain of time due to selection on predicted values
instead of phenotypic observations is the main interest of
genomic selection. It would therefore be important to eval-
uate how often the prediction formula must be recalibrated.

Finally, although displaying contrasted heritabilities and
possibly different contribution of nonadditive effects (see
above), the three traits considered here are known to be
highly polygenic (see Chardon et al. 2004 and Buckler et al.
2009 for Tass_GDD6), which justified the choice of the RA–
BLUP model. For traits depending on major genes, this
model might be inappropriate or nonoptimal and it may
be preferable to use Bayesian or neural network models
(Jannink et al. 2010). Our optimization criterion is based
on the BLUP theory and so would be inappropriate if major
genes are involved. It is, however, possible that CDmean

would also be to some extent useful in increasing the re-
liability of Bayesian methods. It would be interesting to de-
rive a similar criterion from the Bayesian theory to predict
reliability before collecting phenotypes.
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Figure	  S1	  	  	  Reliability	  of	  the	  predictions	  of	  Tass_GDD6	  using	  different	  sampling	  algorithms	  on	  the	  Dent	  panel	  (A)	  and	  
the	  Flint	  panel	  (B)	  using	  a	  λ	  value	  corresponding	  to	  an	  heritability	  of	  0.5.	  The	  calibration	  sets	  were	  randomly	  sampled,	  
or	  defined	  by:	  maximizing	  CDmean	  with	  a	  relationship	  matrix	  based	  on	  the	  IBS	  or	  weighted	  by	  the	  allelic	  frequencies;	  
minimizing	  PEVmean	  with	  a	  relationship	  matrix	  weighted	  by	  the	  allelic	  frequencies;	  minimizing	  the	  mean	  (Amean)	  or	  
the	  maximum	  (Amax)	  of	  the	  relationship	  coefficient	  between	  the	  reference	  individuals.	  The	  individuals	  that	  are	  not	  in	  
the	  calibration	  set	  are	  in	  the	  validation	  set.	  As	  a	  consequence	  for	  each	  calibration	  set	  size	  the	  reliability	  is	  calculated	  
with	  a	  different	  number	  of	  individuals.	  For	  each	  point,	  the	  vertical	  line	  indicates	  an	  interval	  of	  2σR	  (σR	  being	  the	  
standard	  deviation	  of	  observed	  reliabilities	  over	  the	  50	  runs).	  	  
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Figure	  S2	  	  	  Cross-‐validation	  on	  the	  predictions	  of	  flowering	  time	  using	  different	  sampling	  algorithms	  in	  the	  Dent	  panel	  
(A)	  and	  the	  Flint	  panel	  (B).	  In	  a	  first	  step	  30	  individuals	  are	  randomly	  sampled	  to	  constitute	  the	  validation	  set.	  In	  a	  
second	  step	  calibration	  sets	  are	  sampled	  from	  the	  remaining	  individuals	  using	  different	  approaches	  to	  optimize	  the	  
prediction	  reliability	  of	  the	  validation	  set.	  These	  calibration	  sets	  were	  randomly	  sampled,	  or	  defined	  by:	  maximizing	  
CDmean	  with	  a	  relationship	  matrix	  based	  on	  the	  IBS	  or	  weighted	  by	  the	  allelic	  frequencies;	  minimizing	  PEVmean	  with	  
a	  relationship	  matrix	  weighted	  by	  the	  allelic	  frequencies;	  minimizing	  the	  mean	  (Amean)	  or	  the	  maximum	  (Amax)	  of	  
the	  relationship	  coefficient	  between	  the	  reference	  individuals.	  For	  each	  point,	  the	  vertical	  line	  indicates	  an	  interval	  of	  
2σR	  (σR	  being	  the	  standard	  deviation	  of	  observed	  reliabilities	  over	  the	  50	  runs).	  Optimization	  of	  PEVmean	  and	  CDmean	  
was	  made	  with	  h²=0.95.	  
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File	  S1	  	  	  Genotype	  and	  Phenotypes	  of	  the	  Dent	  lines	  
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File	  S2	  	  	  Genotype	  and	  Phenotypes	  of	  the	  Flint	  lines	  
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