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ABSTRACT Variability in population growth rate is
thought to have negative consequences for organism fitness.
Theory for matrix population models predicts that variance in
population growth rate should be the sum of the variance in
each matrix entry times the squared sensitivity term for that
matrix entry. I analyzed the stage-specific demography of 30
field populations from 17 published studies for pattern be-
tween the variance of a demographic term and its contribution
to population growth. There were no instances in which a
matrix entry both was highly variable and had a large effect
on population growth rate; instead, correlations between
estimates of temporal variance in a term and contribution to
population growth (sensitivity or elasticity) were overwhelm-
ingly negative. In addition, survivorship or growth sensitivi-
ties or elasticities always exceeded those of fecundity, implying
that the former two terms always contributed more to popu-
lation growth rate. These results suggest that variable life
history stages tend to contribute relatively little to population
growth rates because natural selection may alter life histories
to minimize stages with both high sensitivity and high vari-
ation.

When describing the rate of population growth, there is an
increasing emphasis on not only the mean contribution of some
trait but also on how variance in that trait contributes to
population growth (1–12). Variance in population growth rate
has important implications for extinction probabilities (see,
e.g., ref. 9) and local coexistence among species (13–14). The
important role that variance might have in affecting population
growth rate was first explored theoretically in a model that
considered the fitness of genotypes that differed in the amount
of variance in offspring number (15–17). Gillespie (16) shows
that, in the case of two genotypes with equivalent means but
differing variance, the genotype with the lower variance will
have a higher geometric mean fitness. Thus, the fitness over
time will be approximately:

m 2
1
2

s2, [1]

where m and s2 are the arithmetic mean and variance in the
number of offspring. Thus, in Gillespie’s model, adding vari-
ance to offspring number has a net negative effective on the
geometric mean although in some instances, variation may be
favored (18).

The importance of Eq. 1 to the study of the evolution of life
histories was the suggestion that selection should act on both
the mean and the variance of offspring number. A tradeoff
between the mean and variance of a trait was the basis of the
‘‘bet-hedging’’ literature (8, 17, 19), which suggested that
organisms with a higher mean trait related to fitness may not

always be favored. A related body of literature has developed
around the effects of variability on long-run population growth
rate, in which theory and modeling have highlighted the effects
of stochastic variation on population growth rate (7, 12) and on
the contribution to population growth of a given age class (12)
in age-classified population models.

Despite the importance of understanding the relationship
among variability, population growth rate, and selection, there
are relatively few empirical investigations of how the mean and
variance in population traits affect population growth rate (but
see refs. 9 and 20) and whether patterns in the relationships
support predictions of evolutionary theory. In the Lacey et al.
(20) study, the contributions of mean and variance to perfor-
mance are demonstrated, and both are found to be determi-
nants of fitness in several plant species. Fortunately, there is
increasing interest in both basic and applied demography,
resulting in a body of data useful for analyzing components of
population growth, including variance in demographic traits.
Commonly, these demographic data are reported in a matrix
model format.

The publication of several texts on matrix model construc-
tion and analysis (21, 22) have made matrix models a wide-
spread method of demographic analysis. Matrix models were
first constructed for age-structured populations (23, 24) and
later modified to include size- and stage-structured popula-
tions (25). Perhaps the most appealing characteristics of matrix
models are the equivalence between the dominant eigenvalue
of the matrix and long term population growth rate (l) and the
capability to describe how each component of the life cycle
contributes to l via elasticity analyses. An elasticity denotes
the proportional contribution of each matrix term to l. Be-
cause the elasticity of each matrix entry sums to 1, the
contribution of each stage of the life cycle to l is quantifiable
(26, 27). By using these tools, ecologists and evolutionary
biologists have explored mathematically the implications and
consequences of various alterations to an organisms life cycle.
For example, matrix models have been used to estimate the
effect of different conservation strategies on the future tra-
jectories of a species (11, 28–30), the effects of harvesting
(31–33), the contribution of different life history strategies to
population growth (34–36), and how social structure affects
population growth rate (37).

Although matrix analyses usually are based on some esti-
mated mean value for transition probabilities, some studies
have included variability estimates for those matrix entries—
often explicitly sampling temporal and spatial variation and
including it in population projections. Variability has been
incorporated by systematically or randomly drawing from
separate matrices, which include demographic estimates over
separate intervals of time or from populations distributed in
space (10, 38) or by randomly drawing a value for each matrix
element at each time step from estimated distributions for each
vital rate (11). However, there are many examples in whichThe publication costs of this article were defrayed in part by page charge
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spatial or temporal variation in matrix parameters have been
estimated but have not been explicitly included in estimates of
population growth rate (see, e.g., refs. 39 and 40).

Based on the evolutionary theory summarized above, we
might expect that, for organisms in natural populations, nat-
ural selection should minimize variance in population growth
rate (l), where population growth rate is approximately equiv-
alent to fitness (sensu 41, 42). Furthermore, in the context of
matrix population models, we can estimate the effect of
different vital rates on the variance in population growth rate.
Based on Caswell (21), a first-order approximation for vari-
ance in population growth rate [V(l)] is:

V~l! < O
i, j

~dlydaij!
2zV~aij!, [2]

where ­ly­aij is the sensitivity of l to changes in some matrix
entry (aij) in row i and column j (21, 43) and V(aij) is an estimate
of variance in a matrix entry. Thus, variability in the dominant
eigenvalue is the sum of each matrix entry multiplied by the
square of the sensitivity term. Because an elasticity (eij) is
simply a proportional change in sensitivity defined as:

eij < dlydaijzaijyl, [3]

we can express Eq. 2 in terms of elasticity as

V~l! < O
i, j

~~lyaij!zeij!
2zV~aij!. [4]

Because sensitivity or elasticity is a squared term in Eqs. 2 and
4, any changes to it will have a nonlinear effect on the variance
in population growth rate, and V(aij) will have a constant,
linear effect on V(l). Although the expected relationship
between sensitivity and V(aij) is not obvious, minimizing
variance in population growth rate requires minimizing V(aij),
sensitivity, or both. Furthermore, if overall variation in life
history traits is somehow constrained, then, because V(aij) and
dlydaij multiply to affect V(l), negative correlations between
sensitivity and V(aij) will result in decreased variance in
population growth and hence should be favored. Conversely,
variance in population growth rate could be increased greatly
by simultaneously having life history stages that both were

highly variable and contributed greatly to population growth
rate.

In this study, I searched for general patterns in life history
variation in published demographic studies that used matrix
models. Although matrix model entries do not always corre-
spond directly with a life history trait (e.g., variance in the
timing of first reproduction is difficult to explore in a matrix
model; ref. 44), published matrix models represent a logical
starting point to ask whether there are patterns between
variability in a demographic term and its contribution to
population growth. Thus, among a wide variety of taxa, I first
explored whether there was a relationship between temporal
variation in demographic terms and the sensitivity or elasticity
of those terms. Specifically, I explored whether there were
correlates among demographic terms such that variance in
population growth rate was minimized. I then used those same
studies to search for patterns in how survivorship, growth, and
fecundity sensitivity and elasticity terms were ranked among
different organisms. This final analysis provided a means of
determining whether there are consistent patterns among
certain life history groupings and their contribution to popu-
lation growth.

METHODS

The Relationship Between Life Cycle Variability and Sen-
sitivities. To examine the relationship between the temporal
variance estimate of a demographic stage and its correspond-
ing sensitivity or elasticity, I used 17 published studies in which
matrix models were used for demographic analysis, represent-
ing 20 species and 30 separate populations of organisms (see
Table 1). I searched the literature and used only studies in
which calculations of temporal variance in matrix entries (aij)
were possible given the available data. Thus, there are many
matrix population model studies that I did not use because they
either did not cover multiple time intervals or did not report
the data with enough detail for my analyses. I used the authors’
estimates of sensitivities or elasticities only when they provided
an estimate based on the mean matrix entry (29, 51). Other-
wise, I estimated sensitivities and elasticities myself based on
a mean matrix entry. For example, Nault and Gagnon (55)

Table 1. The demographic studies used in Figures 1 and 2

Species Intervals, n Length of interval Model type Dimension Reference

*†Ascophyllum nodosum (brown alga) 3 yr size 5 45
*Fumana procumbens (‘‘perennial plant’’) 6 yr stage 6 46
*†Arisaema triphyllum (Jack-in-the-Pulpit) 2 yr size 7 47
*†Panax quinquefolium (American Ginseng) 3 yr size 6 48
§Gopherus agassizii (desert tortoise) 4–11 yr stage 8 11
*Potentilla anserina (clonal herb) 3 yr stage 6 49
* Calochortus albus (mariposa lily) 2 yr size 4 50
*C. obispoensis 2 yr size 3 50
*C. pulchellus 2 yr size 4 50
*C. tiburonensis 2 yr size 3 50
‡Leptogorgia virgulata (soft coral) 23 mo size 5 51
*Calathea ovandensis (perennial herb) 4 yr stage 8 40
*Alnus incana spp. rugosa (alder) 3 yr size 5 52
*Agaricia agaricites (foliaceous stony coral) 2 yr stage 4 53
*Salvelinus fontinalis (brook trout) 11 yr age 6 54
*Pedicularis furbishiae (Furbish’s Lousewort) 3 yr stage 6 38
*Danthonia sericea (bunchgrass) 2 yr size 6 39
*Allium tricoccum (wild leek) 4 yr size 15 55
Falco pergrinus anatum (peregrine falcon) varied varied stage 4 29
*Uma inornata (fringe-toed lizard) 7 yr age 3 56

Studies are listed in alphabetical order by first author.
*I estimated mean matrix entries and elasticities for these mean matrices myself.
†Incomplete data. Not all terms had temporal variation terms.
‡Fecundity divided evenly between size classes.
§Two different fecundity levels used. yr, year; mo, month.
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studied a population of Allium tricoccum, a perennial forest
herb, and reported an elasticity estimate for each stage in each
of 4 years of the study. I used their published data to produce
a matrix of arithmetic mean, aij, and calculated sensitivities and
elasticities based on those mean values. Although it is not clear
how a mean entry should be characterized, theory suggests that
the arithmetic average of vital rates determine greatly how
sensitive a population will be to variability in those vital rates
(5); thus, I used these averages. I estimated temporal variability
in two ways: as a variance of the mean [referred to subse-
quently simply as V(aij)] and as a coefficient of variation (CV)
where CV 5 (sym)*100; s was the SD, and m was the mean.
In this way, I was able to estimate the V(aij) and sensitivity
elements of Eqs. 2 and 4. Because CV is normalized to the
mean aij and some aij (especially fecundity) could vary over
orders of magnitude, I used CV to achieve higher compara-
bility among aij terms. The only work for which I estimated
matrix entries from a life table was the McFadden et al. (54)
study on brook trout. Although Jensen (57) had expressed the
McFadden et al. (54) data in matrix form, I repeated the
procedure to obtain variance estimates for each matrix entry.
I converted the life table data to matrix form by using the
methods for a birth-pulse survivorship probability in a post-
breeding census (21).

I estimated the correlation between V(aij) and sensitivity of
aij in all 30 populations. I also estimated the correlation
between the CV of aij and the elasticity of aij for each study
separately to see whether terms with proportionality (CV is
normalized to the mean, and elasticities are a proportional
contribution to l) would show a relationship similar to that
between V(aij) and sensitivity. Because V(aij) and CV terms are
often related to the mean aij and there was preliminary
evidence that the mean was related to sensitivity and elasticity,
I estimated partial correlation coefficients between V(aij) and
sensitivity or CV and elasticity, holding the mean aij constant
(58). Each partial correlation coefficient was estimated by
using a Spearman’s correlation coefficient among each of the
three variables. I then used a test of homogeneity among two
or more correlation coefficients to compare among all studies
(58), where the quantity 22zSln(pn) over all n studies is
distributed as x2 with the degrees of freedom equivalent to two
times the number of correlations used.

A Comparison of Survivorship, Growth, and Reproduction
Elasticities. By using the same demographic studies listed in
Table 1, I ranked the sensitivities and elasticities of survivor-
ship (defined as aij terms where the organism stayed in the
same age, stage, or size class), growth (defined as any transi-
tion of growth or shrinkage), and fecundity (defined as terms
on the top row of the matrix) for each study. The number of
aij terms that can comprise each category can differ. For
example, there are always more survivorship terms (terms on
the main diagonal) than fecundity terms. Thus, I also analyzed
whether average survivorship, growth, shrinkage, or fecundity
sensitivities and elasticities differed across all studies with
ANOVA. There are two potential problems with using aggre-
gate elasticity estimates. The first is that they sum to 1 within
a given matrix analysis and thus should not be considered
independent data. Sensitivities, however, do not sum to 1; thus,
I give the results of both elasticity and sensitivity analyses for
comparison. The second problem is that the dimensionality of
the matrix can influence the aggregate elasticities of growth,
survivorship, and, to a lesser extent, fecundity (59). Matrices
of smaller dimension can result in a higher probability that
individuals remain in the same class, decreasing the elasticity
or sensitivity of growth. However, dimensionality does not
appear to change greatly the elasticity estimates for fecundity
(59). A final concern about making comparisons among the
sensitivities and elasticities of matrix elements is that fecundity
entries incorporate both fecundity and survivorship values.

Thus, fecundity and adult survivorship entries share some of
the same underlying vital rates.

RESULTS

The Relationship Between Life Cycle Variability and Elas-
ticities. V(aij) and sensitivity were correlated significantly
negatively in all but 2 of the 30 populations whereas CV and
elasticity were correlated significantly negatively in all popu-
lations when Spearman’s correlations were used (Fig. 1). These
negative correlations remained dominant when partial corre-
lation coefficients were used, with V(aij) and sensitivity having
negative partial correlation coefficients in 27 of 30 populations
(Fig. 1a) whereas CV of a matrix entry and its corresponding
elasticity showed negative partial correlation coefficients in 24
of 30 populations (Fig. 1b). An overall significance test on
partial correlation coefficients, using the probabilities from
each of the negative correlations, rejected the null hypothesis
that there was no correlation between V(aij) and sensitivity

FIG. 1. Spearman and partial correlation coefficients between (a)
the variance of each matrix entry and its corresponding sensitivity and
(b) CV and elasticity, by using all populations listed in Table 1. The
vertical hatched line represents a correlation of 0. An overall signif-
icance test on partial correlation coefficients rejected the null hypoth-
eses of no correlation between V(aij) and sensitivity (x2

60 5 145.73, P ,
0.001) and CV and elasticity (x2

60 5 194.75, P , 0.001).
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(x2
60 5 145.73, P , 0.001) or CV and elasticity (x2

60 5 194.75,
P , 0.001). For the few positive correlations that did exist, I
conservatively assigned a P value of 1.0, which meant they
contributed 0 to the x2 value. Thus, with either proportional
terms (CV, elasticity) or V(aij) and sensitivity, the data show
a strong negative correlation between variance of a term and
its contribution to population growth.

The relationship between V(aij) of each demographic esti-
mate and its corresponding sensitivity and between CV and
elasticity was generally curvilinear, both for each study sepa-
rately and for all studies combined. There were never any
instances in which V(aij) and sensitivity or CV and elasticity
were both large for an element; instead, points clustered at
high variance and low contribution to population growth rate,
low variance and high contribution to population growth rate,
or relatively low estimates of both. The data from all studies are
plotted on a log scale in Fig. 2.

A Comparison of Survivorship, Growth, and Fecundity
Elasticities. There was never any population in which the total

fecundity sensitivity or elasticity exceeded that of either sur-
vivorship or growth, and there was only one instance in which
fecundity elasticity did not rank last (desert tortoises, number
9 in Table 1). All populations but three showed sensitivities
ranked as growth . survivorship . fecundity. The exceptions
were two instances in which survivorship sensitivities were
greater than growth or fecundity (numbers 15 and 18 in Table
1) and one in which fecundity exceeded survivorship but not
growth (study number 3).

There were 12 size- or stage-classified populations in which
survivorship elasticities were greatest (studies numbered 4, 6,
9, 12–15, 17, 18, 24, 27, and 28 in Table 1), and 11 revealed
highest elasticities for growth terms (studies 3, 5, 7, 10, 11, 16,
21, 22, 23, 25, and 26). Although the studies with survivorship
ranking highest had a mean dimension of 5.3 and those with
growth ranking highest had a mean dimension of 6.1, these
differences were not significant statistically (two-sample t test,
t 5 1.435, P 5 0.166). The age-classified models (54, 56) and
a study on peregrine falcons (29) all showed higher survivor-
ship sensitivity and elasticity than their fecundity counterparts.

The overall pattern of fecundities showing the lowest sen-
sitivity or elasticity values was retained even when data were
analyzed to account for the number of matrix entries contrib-
uting to each aggregate sensitivity or elasticity. By using mean
sensitivity and elasticity estimates, I found significant differ-
ences among both sensitivity and elasticity means [ANOVA:
F(2,66) 5 22.756, P , 0.001 and F(2, 66) 5 29.869, P , 0.001,
respectively]. Tukey’s multiple comparison test indicated that
sensitivities were ranked as growth . survivorship . fecun-
dity, and elasticities were ranked as survivorship . growth 5
fecundity.

DISCUSSION

The findings from the studies analyzed here suggest that there
is an inverse relationship between variance in a life history trait
and its contribution to population growth among many organ-
isms. In other words, stages of the life cycle with the highest
variation generally have the lowest effect on population growth
rate (l) (Figs. 1 and 2). These results are robust for a wide
variety of taxa that includes marine algae, terrestrial plants,
aquatic invertebrates, an aquatic vertebrate, and terrestrial
vertebrates (Table 2). These results are also consistent over a
wide range of differences in model construction—from ma-
trices of 3–15 dimensions. Although estimates of variance for
all of the organisms used in this study must include sampling
variance as well as actual variance, one might expect that
sampling variance would be higher in survivorship than fecun-
dity because survivorship is often more difficult to estimate
than fecundity. Despite this, I found that fecundity terms
tended to have the highest variability (and lowest sensitivity
and elasticity).

Other published studies of demographic analyses also sug-
gest an inverse relationship between the effect of an entry on
population growth rate and its variance. For example, for the
spotted owl (Strix occidentalis) models presented by Lande (9)
and Thomas et al. (60), the least variable stage of the life cycle
(adult survivorship) had the highest elasticity. The only con-
tradiction to this pattern is mentioned in ref. 9. By using
Tuljapurker’s (6) methodology for estimating long-run popu-
lation growth rates, Lande (9) found only a small effect of
variation in adult survivorship. Lande suggested that this was
because of the longevity (17 years) of the spotted owl; vari-
ability would have had a greater effect on a shorter-lived
species. Additionally, the amount of variation that was used
(CV 5 10%) was relatively modest compared with the empir-
ical CV estimates reported here (Fig. 1).

Studies of marine organisms, in which dispersal often can
result in high temporal variability in recruitment, also corrob-
orate the patterns shown here. Population growth rate in the

FIG. 2. A log-log plot of (a) V(aij) vs. sensitivity and (b) temporal
CV vs. elasticity for each matrix entry in all studies cited in Table 1.
There are 660 total entries plotted.
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brown algae Sargassum siliquosum (O. Fucales) and Laminaria
longicruris (O. Laminariales) have low elasticity estimates for
fecundity (or recruitment) terms (61). Both of these species are
representative of groups that can have high variation in the
success of recruitment among years (45, 62). Similarly, in an
open population model of marine fishes, Pfister (63) also found
that demographic estimates with relatively high variance did
not cause a corresponding large amount of variation in pop-
ulation size. In the framework provided by Eq. 2, the results of
this study suggest that the effects on variation in population
growth rate [V(l)] by highly variable stages of the life cycle may
be dampened by corresponding low sensitivity or elasticity for
those entries.

In a recent summary of matrix models from 66 plant species,
Silvertown et al. (64) found several interesting patterns rele-
vant to this study. First, elasticities of different parts of the life
cycle (survivorship, growth, or fecundity) differed between
plants with dissimilar life cycles. Elasticities for fecundity were
relatively higher in herbaceous plants whereas survivorship
elasticities were relatively higher in woody plants. Similarly,
long-lived tropical tree species showed highest elasticities for
survivorship terms, and only a short-lived tropical tree species
had relatively high elasticities for fecundity terms (65). Addi-
tionally, Silvertown et al. (64) found that the intrinsic rate of
increase in woody plants was positively correlated with the
fecundity elasticity. In general, the fecundity elasticities that
they reported were similar to those reported here—fecundity
elasticities ranked low relative to growth or survivorship
elasticities. When I estimated the combined elasticity for
fecundity in their study (defined as both recruitment of seeds
and seedlings), it was smaller than growth or survivorship
elasticities in 53 of 66 studies (80.3%). These low estimates for
fecundity elasticities also have been noted previously (21, 51,
66). Although Silvertown et al.’s (64) use of aggregate elasticity
terms to analyze tradeoffs has been criticized (67), aggregate
terms have indicated strongly that low fecundity sensitivities
and elasticities are ubiquitous in published empirical studies.
As noted previously, however, fecundity entries are comprised
of both adult survivorship and reproductive vital rates. Be-
cause adult survivorship elasticities tend to be relatively high,
strictly reproductive terms may have even lower effects on
population growth than reported here and in previous studies.
Future analyses will certainly benefit from both reporting and
analyzing separately the relative contribution of survivorship
vs. reproduction to fecundity.

However, by using matrix model simulations, Benton and
Grant (12) were able to demonstrate an increasing contribu-
tion of fecundity to population growth when they increased the
variation in a fecundity term or had fecundity positively covary
with survivorship. However, these responses were only found
in matrices representing short lives (#2 years) or where adult
survivorship was low (0.20 per year). Although life spans were
not always given by the authors, most of the empirical studies
used in this study (Table 1) probably represent organisms that
live longer than 2 years and have adult survivorship often
exceeding 0.20. Indeed, in their simulations of organisms with
6- and 8-year lifespans, Benton and Grant (12) uniformly
found that fecundity elasticities were relatively low and rela-
tively resistant to change when either variability in fecundity or
covariance with survivorship was added. Although the results
reported here show a clear pattern among the variance in a
matrix term and its corresponding sensitivity and elasticity, the
pattern for how covariation among all matrix entries affect
sensitivity and elasticity is an important subject for future study
(see, e.g., refs. 7, 37, 68, and 69).

Previous theoretical studies also provide insight into the
sensitivity of population growth rate to changes in different
demographic terms. Cole (70) and Smith (71) emphasized the
importance of the age at first reproduction and the mean
generation time to population growth rate. Lewontin (72) and

Meats (2) both explored how changes in mortality and fecun-
dity might affect the exponential rate of population increase (r)
in the Euler–Lotka equation. Their results depended on the
age of maturation and r. When r was relatively high, a given
change in fecundity or mortality had equivalent effects (72);
however, when r was near zero and mortality was relatively
high, a given change in mortality had a greater effect than one
in fecundity (2). Boyce (73) considered explicitly the role that
demographic variation might have on population growth rate
(r) in a matrix model context. He found that increasing
variation in the survivorship of young-of-the-year in an age-
based 3 3 3 matrix caused the projected population size to
decline, eventually to extinction. He attributed this to the
concave relationship between r and survivorship; as variation
in a matrix entry increased, the arithmetic mean r increasingly
deviated from the r expected when there was no variability.
Thus, for any matrix entry, the effect variation has on r will be
determined by the extent of the concavity of the relationship
between r and any aij.

The picture that emerges from these theoretical studies is
that the relative contribution of changes to, or variance in, a
demographic term depends on the population growth rate, the
current estimates of mortality and fecundity, the amount of
variation that characterizes that matrix entry, and covariance
among matrix terms (see also ref. 7). Given these potentially
complex relationships between sensitivity or elasticity and
variability over a variety of life histories, it is remarkable to see
such an identifiable pattern between the two (Fig. 1). Of
interest, for the populations used in this study, 14 of 30 (46.7%)
have an estimated r (or ln l) between 0.0 and 60.1, and an
additional 9 (30.0%) are between 60.1 and 60.3. Whether
these results indicate that most organisms are characterized by
life histories in which mortality and survivorship will contrib-
ute disproportionately to population growth remains to be
seen.

The relationships among sensitivities and demographic vari-
ability are essential information if we are to identify the stages
of an organism’s life history that are primarily responsible for
population fluctuations, a goal for basic and applied science.
The results reported here imply that variability in fecundity
and early survival, often a focus of ecological research (e.g.,
refs. 63 and 74–76), may contribute relatively little to explain-
ing why population growth rates vary temporally for certain life
histories. Clearly, the relative effects that different life history
stages have on population growth need to be evaluated in the
context of the entire life cycle, not simply in isolation.

The demographic analyses presented here provide strong
support for theoretical models that suggest that variance in
population growth rate can be minimized by either (i) de-
creased sensitivity or elasticity of a demographic term or (ii)
decreased variation in that demographic term. No demo-
graphic studies showed evidence for demographic terms that
both were highly variable and had a large effect on population
growth rate (Fig. 1). For the organisms studied here, life
histories appeared to be a suite of demographic traits that
minimized variation in population growth rate.
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