Skip to main content
Journal of Assisted Reproduction and Genetics logoLink to Journal of Assisted Reproduction and Genetics
. 2003 Nov;20(11):449–454. doi: 10.1023/B:JARG.0000006706.21588.0d

Embryonic Production of Nitric Oxide and Its Role in Implantation: A Pilot Study

C Battaglia 1, P Ciotti 2, L Notarangelo 2, R Fratto 2, F Facchinetti 3, D de Aloysio 1
PMCID: PMC3455639  PMID: 14714823

Abstract

Purpose: To investigate the ability of human embryos to produce nitric oxide (NO) and correlate its production with embryo quality and pregnancy rate.

Methods: Twenty-three women participated in the study and were submitted to controlled ovarian stimulation and intracytoplasmic sperm injection. Embryos were singularly cultured in medium microdrops of 50 μL and were replaced, by transcervical transfer, at the 2- to 6-cell stage. In the culture media of each embryo the NO production was assessed by monitoring the levels of its stable oxidation products (nitrites/nitrates).

Results: All the 23 patients underwent embryo transfer. After microinjection 64 embryos were obtained. The mean number of transferred embryos was 2.61 ± 0.46 and the pregnancy rate was 26%. The mean nitrite/nitrate concentrations of culture medium of each embryo was significantly higher (5.88 ± 2.34 μmol/L) than in pure P-1 medium (0.81 ± 0.21 μmol/L; p<0.001) demonstrating an embryonic secretion of NO. Comparing pregnant (7.34 ± 2.72 μmol/L) versus nonpregnant patients (5.53 ± 1.49 μmol/L; p=0.022), the mean nitrite/nitrate concentrations were significantly higher. Furthermore, the best quality embryos of pregnant women produced significantly higher nitrite/nitrate concentrations than those of not pregnant patients.

Conclusions: It seems that NO production in nidating embryos is increased and that it may be primarily associated with a better morphology and a better growth potential of developing embryos.

Keywords: Embryo, ICSI, implantation, infertility, nitric oxide

Full Text

The Full Text of this article is available as a PDF (285.7 KB).

REFERENCES

  • 1.Anteby EY, Hurwitz A, Korach O, Revel A, Simon A, Finci-Yeheskel Z, Mayer M, Laufer N. Human follicular nitric oxide pathway: Relationship to follicular size, oestradiol concentrations and ovarian blood flow. Hum Reprod. 1996;11:1947–1951. doi: 10.1093/oxfordjournals.humrep.a019522. [DOI] [PubMed] [Google Scholar]
  • 2.Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: Physiology, pathophisiology, and pharmacology. Pharmacol Rev. 1991;43:109–142. [PubMed] [Google Scholar]
  • 3.Rosselli M. Nitric oxide and reproduction. Mol Hum Reprod. 1997;3:639–641. doi: 10.1093/molehr/3.8.639. [DOI] [PubMed] [Google Scholar]
  • 4.Ben-Shlomo I, Adashi EY, Paync DW. The morphogenic/cytotoxic and prostaglandin stimulating activities of interleukin-1b in the rat ovary are NO independent. J Clin Invest. 1994;49:1463–1469. doi: 10.1172/JCI117484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Battaglia C, Salvatori M, Maxia N, Petraglia F, Facchinetti F, Volpe A. Adjuvant L-arginine treatment for in vitro ferilization in poor responders patients. Hum Reprod. 1999;14:1690–1697. doi: 10.1093/humrep/14.7.1690. [DOI] [PubMed] [Google Scholar]
  • 6.Battaglia C, Regnani C, Marsella T, Facchinetti F, Volpe A, Venturoli S, Flamigni C. Adjuvant L-arginine treatment in controlled ovarian hyperstimulation: A double-blind, randomized study. Hum Reprod. 2002;3:659–665. doi: 10.1093/humrep/17.3.659. [DOI] [PubMed] [Google Scholar]
  • 7.Tao YP, Misko TP, Howlett AC, Klein C. Nitric oxide, an endogenous regulator of Dictyostelium discoideum differentiation. Development. 1997;124(18):3587–3595. doi: 10.1242/dev.124.18.3587. [DOI] [PubMed] [Google Scholar]
  • 8.Telfer J, Lyall F, Norman JE, Cameron IT. Identification of nitric oxide synthase in human uterus. Hum Reprod. 1995;10:19–23. doi: 10.1093/humrep/10.1.19. [DOI] [PubMed] [Google Scholar]
  • 9.Weitlauf HM. Biology of Implantation. In: Knobil E, Neill JD, editors. In The Physiology of Reproduction. New York: Raven Press; 1994. pp. 391–440. [Google Scholar]
  • 10.Beier HM, Hegele-Hartung C, Mootz U, Beier-Hellwig K. Modification of endometrial cell biology using progesterone antagonists to manipulate the implantation window. Hum Reprod. 1994;9(Suppl1):98–115. doi: 10.1093/humrep/9.suppl_1.98. [DOI] [PubMed] [Google Scholar]
  • 11.Kennedy TG, Lukash LA. Induction of decidualization in rats by the intrauterine infusion of prostaglandins. Biol Reprod. 1982;27:253–260. doi: 10.1095/biolreprod27.1.253. [DOI] [PubMed] [Google Scholar]
  • 12.Yee G, Squires P, Cejic SS, Kennedy TG. Lipid mediators of implantation and decidualization. J Lipid Mediat. 1993;6:525–534. [PubMed] [Google Scholar]
  • 13.Acker G, Hecquet F, Etienne A, Braquet P, Mencia-Huerta JM. Role of Platelet-Activating Factor (PAF) in the ovoimplantation in the rat: Effect of the specific PAF-acether antagonist, BN 52021. Prostaglandins. 1988;35:233–241. doi: 10.1016/0090-6980(88)90090-1. [DOI] [PubMed] [Google Scholar]
  • 14.Novaro V, Gonzlez E, Jawerbaum A, Rettori V, Canteros G, Gimeno F. Nitric oxide synthase regulation during embryonic implantation. Reprod Fertil Dev. 1997;9:557–564. doi: 10.1071/r97005. [DOI] [PubMed] [Google Scholar]
  • 15.Chwalisz K, Winterhager E, Thienel T, Garfield RE. Synergistic role of nitric oxide and progesterone during the establishment of pregnancy in the rat. Hum Reprod. 1999;14:542–552. doi: 10.1093/humrep/14.2.542. [DOI] [PubMed] [Google Scholar]
  • 16.Barroso R, Osuamkpe C, Nagamani M, Yallampalli C. Nitric oxide inhibits development of embryos and implantation in mice. Mol Hum Reprod. 1999;4:503–507. doi: 10.1093/molehr/4.5.503. [DOI] [PubMed] [Google Scholar]
  • 17.Laboratory Manual for the Examination of Human Semen and Semen Cervical Mucus Interaction. Cambridge: Cambridge University Press; 1992. [Google Scholar]
  • 18.Acosta AA, Jones GS, Garcia JE, Sandow B, Veeck L, Mantzavinos T. Correlation of human menopausal gonadotropin/human chorionic gonadotropin stimulation and oocyte quality in an in vitro fertilization program. Fertil Steril. 1984;41:196–201. doi: 10.1016/s0015-0282(16)47590-4. [DOI] [PubMed] [Google Scholar]
  • 19.Van Steirteghem AC, Nagy Z, Joris H, Liu J, Staessen C, Smitz J, Wisanto A, Deviroey P. High fertilization and implantation rates after intracytoplasmatic sperm injection. Hum Reprod. 1993;8:1061–1066. doi: 10.1093/oxfordjournals.humrep.a138192. [DOI] [PubMed] [Google Scholar]
  • 20.Fabbri R, Porcu E, Marsella T, Rocchetta G, Venturoli S, Flamigni C. Human oocyte cryopreservation: New perspectives regarding oocyte survival. Hum Reprod. 2001;16:411–416. doi: 10.1093/humrep/16.3.411. [DOI] [PubMed] [Google Scholar]
  • 21.Clancy RM, Abramson SB. Novel synthesis of S-nitrosoglutathione and degradation by human neutrophils. Ann Biochem. 1992;204:365–371. doi: 10.1016/0003-2697(92)90253-4. [DOI] [PubMed] [Google Scholar]
  • 22.Facchinetti F, De Martis S, Neri I, Caputo A, Volpe A. Effects of transdermal glyceryltrinitrate on 24-h blood pressure changes in patients with gestational hypertension. Prenat Neonat Med. 1997;2:22–28. [Google Scholar]
  • 23.Khorram O. Nitric oxide and its role in blastocyst implantation. Rev Endocr Metab Disord. 2002;3:145–149. doi: 10.1023/a:1015459029397. [DOI] [PubMed] [Google Scholar]
  • 24.Novaro V, Rettori V, Gonzalez ET. Interaction between uterine PGE and PGF2α production and the nitridergic system during embryonic implantation in the rat. Prostaglandins. 1996;51:363–376. doi: 10.1016/0090-6980(96)00043-3. [DOI] [PubMed] [Google Scholar]
  • 25.Biswas S, Kabir SN, Pal AK. The role of nitric oxide in the process of implantation in rats. J Reprod Fertil. 1998;114:157–161. doi: 10.1530/jrf.0.1140157. [DOI] [PubMed] [Google Scholar]
  • 26.Ota H, Igarashi S, Oyama N, Suzuki Y, Tanaka T. Optimal levels of nitric oxide are crucial for implantation in mice. Reprod Fertil Dev. 1999;11:183–188. doi: 10.1071/rd99044. [DOI] [PubMed] [Google Scholar]
  • 27.Gouge RC, Marshburn P, Gordon BE, Nunley W, Huet-Hudson YM. Nitric oxide as a regulator of embryonic development. Biol Reprod. 1998;58:875–879. doi: 10.1095/biolreprod58.4.875. [DOI] [PubMed] [Google Scholar]
  • 28.Ariel I, Hochberg A, Shochina M. Endothelial nitric oxide synthase immunoreactivity in early gestation and in trophoblastic disease. J Clin Pathol. 1998;51:427–431. doi: 10.1136/jcp.51.6.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Fabregues F, Balasch J, Manau D, Creus M, Jimenez W, Carmona FC, Vanrell JA. Circulating levels of nitric oxide in successful and unsuccessful implantation after in vitro fertilization and embryo transfer. Relationship to estradiol and progesterone. Acta Obstet Gynecol Scand. 2000;79:564–569. [PubMed] [Google Scholar]
  • 30.Khorram O, Lessey BA. Altered expression of endothelial nitric oxide synthase (eNOS) in women with endometriosis. Fertil Steril. 2000;74:521. doi: 10.1016/s0015-0282(02)03347-2. [DOI] [PubMed] [Google Scholar]
  • 31.Wilson R, McInnes I, Leung B, McKillop JH, Walker JJ. Altered interleukin 12 and nitric oxide levels in recurrent miscarriage. Eur. J. Obstet Gynecol Reprod Biol. 1997;75:211–214. doi: 10.1016/s0301-2115(97)00124-3. [DOI] [PubMed] [Google Scholar]
  • 32.Novaro V, Pustovrh C, Colman-Lerner A, Radisky D, Lo Nostro F, Paz D, Jawerbaum A, Gonzlez E. Nitric oxide induces gelatinase A (matrix metalloproteinase 2) during rat embryo implantation. Fertil Steril. 2002;78:1278–1287. doi: 10.1016/s0015-0282(02)04240-1. [DOI] [PubMed] [Google Scholar]
  • 33.Buhimschi I, Ali M, Jain V, Chwalise K, Garfield RE. Differential regulation of nitric oxide in the rat uterus and cervix during pregnancy and labour. Hum Reprod. 1996;11:1755–1766. doi: 10.1093/oxfordjournals.humrep.a019481. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Assisted Reproduction and Genetics are provided here courtesy of Springer Science+Business Media, LLC

RESOURCES