Skip to main content
Journal of Biological Physics logoLink to Journal of Biological Physics
. 1998 Mar;24(1):59–78. doi: 10.1023/A:1005017619003

A model equations of the volume transport of multicomponent and heterogeneous non-ionic solutions in double-membrane system

A Ślezak 1
PMCID: PMC3455864  PMID: 23345669

Abstract

The volume flows model equation for a double-membrane system, in which two membranes separate three compartments (l,m,r) containing the heterogeneous, non-ionic n-component solutions is elaborated. In this system the solution concentrations fulfill the condition Clk > Cmk > Crk. The inter-membrane compartment (m) consists of the infinitesimal layer of solution. The volume of compartment m and external compartments (l and r) fulfill the conditions Vm→ 0 and Vl =Vr→∞ respectively. The linear dependences of the volume flux on concentration differences in binary solutions and nonlinear – in ternary solutions, were obtained. This model for binary and ternary non-electrolyte solutions is discussed. It is shown, that the double-membrane system has rectifying and amplifying properties for osmotic transport and mechanical pressure.

Keywords: Membrane transport, Gravitation force, Kedem-Katchalsky equations, Boundary layers

Full Text

The Full Text of this article is available as a PDF (176.0 KB).

References

  • 1.Kedem O., Katchalsky A. Permeability of Composite Membranes. Part III. Series Array of Elements. Trans. Faraday Soc. 1963;59:1941–1953. [Google Scholar]
  • 2.Katchalsky A., Curran P. F. Nonequilibrium thermodynamics in biophysics. Cambridge MA: Harvard Univ. Press; 1965. [Google Scholar]
  • 3.Katchalsky A. Thermodynamic treatment of membrane transport. Pure Appl. Chem. 1968;16:229–261. [Google Scholar]
  • 4.Richardson I.W. Multiple Membrane Systems as Biological Models: Current-Voltage Behavior. J. Membrane Biol. 1972;8:219–236. doi: 10.1007/BF01868104. [DOI] [PubMed] [Google Scholar]
  • 5.Naparstek O., Caplan S. R., Katzir-Katchalsky A. Series array of ion-exchange membranes: concentration profiles and rectification of electric current. Israel J. Chem. 1973;11:255–270. [Google Scholar]
  • 6.Patlak C. S., Goldstein D. A., Hoffman J. F. The Flow of Solute and Solvent Across a Two-Membrane System. J. Theoret. Biol. 1963;5:426–442. doi: 10.1016/0022-5193(63)90088-2. [DOI] [PubMed] [Google Scholar]
  • 7.Hause C. R. Water transport in cells and tissues. London: Edward Arnold Publish. Ltd.; 1974. [Google Scholar]
  • 8.Ussing H. H. Active Sodium Transport across the Frog Skin Epithelium and its Relation to Epithelial Structure. Berichte Bunsenges. 1967;71:807–813. [Google Scholar]
  • 9.Ślęzak, A., Nawrat, Z. and Turczyński, B.: The transport of heterogeneous solutions across the system of two membranes oriented in horizontal planes, Postępy Fiz. Med. 25 (1990), 137–153.
  • 10.Ślęzak, A. and Turczyński, B.: The problem of transport of the heterogeneous solutions across double-membrane system oriented in vertical planes, Postępy Fiz. Med. 27 (1992), 55–62.
  • 11.Ślęzak, A., Turczyński, B. and Nawrat, Z.: Modification of the Kedem-Katchalsky-Zelman Model-Equations of the Transmembrane Transport, J. Nonequilib. Thermodyn.14 (1989), 205–218.
  • 12.Ślęzak, A., Dworecki, K. and Anderson, J. E.: Gravitational Effects on Transmembrane Flux: The Rayleigh-Taylor Convective Instability, J. Membrane Sci.23 (1985), 71–81.
  • 13.Ślęzak, A. and Dworecki, K.: Asymmetry and amplification of osmotic flows of nonelectrolytes in one-membrane system, Stud. Biophys.100 (1984), 41–48.
  • 14.Ślęzak, A.: Irreversible thermodynamic model equations of the transport across a horizontally mounted membrane, Biophys. Chem.34 (1989), 91–102. [DOI] [PubMed]
  • 15.Ślęzak, A.: A model equation for the gravielectric effect in electrochemical cells, Biophys. Chem.38 (1990), 189–199. [DOI] [PubMed]
  • 16.Ślęzak, A. and Grzegorczyn, S.: Equation for volume flow of non-electrolytes in double-membrane system: the general form numerical solutions for binary non-electrolytes, J. Biol. Phys., in preparation.
  • 17.Dworecki K. Interferometric Investigation of Near-Membrane Diffusion Layers. J. Biol. Phys. 1995;21:37–49. [Google Scholar]
  • 18.Kargol M., Dworecki K. Interferometric studies of diffusive unstirred layers generated in graviosmotic systems. Current Topics in Biophys. 1994;18:99–104. [Google Scholar]
  • 19.Weber W. H., Ford G. W. Double injection in semiconductors heavily doped with deep two-level traps. Solid-State Electronics. 1970;13:1333–1356. [Google Scholar]
  • 20.Anderson J. E. Model for Current-Controlled Negative Resistance in Ion/Membrane System. J. Membrane Sci. 1978;4:35–40. [Google Scholar]
  • 21.Cole K. S. Membranes, ions and impulses. Berkeley: University of California Press; 1968. [Google Scholar]

Articles from Journal of Biological Physics are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES