
Journal of Biological Physics25: 115–127, 1999.
© 1999Kluwer Academic Publishers. Printed in the Netherlands.

115

Resonant Drift of Spiral Waves in the Complex
Ginzburg-Landau Equation

IRINA V. BIKTASHEVA ∗, YURY E. ELKIN and VADIM N. BIKTASHEV∗∗
Institute for Mathematical Problems in Biology, 142292 Pushchino, Moscow region, Russia
∗ Current address: School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
∗∗ Current address: School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK

Accepted in final form 29 January 1999

Abstract. Weak periodic external perturbations of an autowave medium can cause large-distance
directed motion of the spiral wave. This happens when the period of the perturbation coincides with,
or is close to the rotation period of a spiral wave, or its multiple. Such motion is called resonant or
parametric drift. It may be used for low-voltage defibrillation of heart tissue. Theory of the resonant
drift exists, but so far was used only qualitatively. In this paper, we show good quantitative agree-
ment of the theory with direct numerical simulations. This is done for Complex Ginzburg-Landau
Equation, one of the simplest autowave models.
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1. Introduction

Spiral waves are a specific form of self-organisation observed in various biolo-
gical systems; of the most practical importance are those in the cardiac muscle,
where spiral waves underlie dangerous arrhythmias including fibrillation [1]. The
dynamics of spiral waves in a slightly perturbed two-dimensional autowave me-
dia (e.g. slightly inhomogeneous or subject to slight external forcing), modelled
by ‘reaction+diffusion’ systems of partial differential equations, can be described
asymptotically in terms of ‘Aristotelean’ dynamics, so that the velocities of the
spiral wave drift in space and time are proportional to the ‘forces’ caused by the
perturbation. These forces are defined as convolutions of the perturbation with the
sensitivity (response) functions [2, 3].

One of applications of this asymptotical theory is the study of the resonant drift
of spiral waves, observed when the medium is subject to external forcing periodic
in time, with the period close to the own period of the spiral wave [4, 5]. Resonant
drift has been suggested as a possible mechanism for low-voltage defibrillation
devices. The idea is that since this phenomenon can be observed, at least in theory,
for arbitrarily small magnitude of perturbation, it can be used to gently push the
spiral waves out of fibrillating heart tissue. Currently used defibrillation method by
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116 I.V. BIKTASHEVA ET AL.

single shock is not always effective, but can cause significant damage to cardiac
tissue, and by far exceeds the pain threshold, even for implantable defibrillators.

The practical implementation of the resonant drift for defibrillation is stipulated
by two kinds of conditions:

(i) Our ability to overcome ‘imperfections’ of the real heart as compared to the
theory (inhomogeneity, complicated structure, etc). This led us to suggesting
the feedback protocol of the resonant drift [6]. This protocol has been shown
to work even in realistic complicated three-dimensional geometry of heart
ventricles [7].

(ii) The realistic time required for elimination of spiral waves (say, shorter than
1 min) at stimulation amplitude significantly less than that used for conven-
tional single-shock defibrillation. This time is determined by the velocity of
resonant drift. This velocity can be found by experiment, or numerical sim-
ulation with biophysically realistic models [8, 9, 10]. Both these ways are,
however, rather complicated. The asymptotical theory provides, at least in
principle, an easier way to estimate the velocity of resonant drift.

The method of response functions, based on the asymptotical theory, provides
a more economical way to obtain answers to this and other analogous questions
regarding ‘soft’ evolution of spiral waves. In this paper, this method is for the first
time directly used to calculate the velocity of resonant drift. This is done for the
Complex Ginzburg-Landau Equation, the first, and so far the only autowave sys-
tem, for which response functions have been found explicitly [11]. This equation
describes a self-oscillatory rather than excitable medium. Most of the electrically
active tissues of the heart are excitable media. It was suggested that self-oscillatory
behaviour of cardiac tissue may also play a role in fibrillation [12]. However, the
purpose of the present study is development of the method, rather than immediate
application to realistic models.

2. The General Theory

2.1. REACTION-DIFFUSION SYSTEMS AND SPIRAL WAVES

Consider reaction-diffusion system in two spatial dimensions, i.e. system of partial
differential equations of the form

∂tu = f (u)+D∇2u+ εh, u, f, h ∈ R`, D ∈ R`×`, ` ≥ 2. (1)

whereu(r , t) is a column-vector of reagent concentrations,f (u) is a column-vector
of reaction rates,D is the matrix of diffusion coefficients,εh(u, r , t) is some small
perturbation andr ∈ R2 is the vector of coordinates on the plane. In cardiac tissue
models, the role of reagents’ concentrations is played by transmembrane voltage,
gating variables of the channels and ionic concentrations, and the role of the diffu-
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RESONANT DRIFT IN CGLE 117

Figure 1. Spiral waves in different autowave systems. (a) In a model of rabbit atrial tissue
[8]. Medium size 40× 40 mm. The shading represents the transmembrane voltageE, lighter
for depolarisation. The circle is the trajectory of the tip defined as intersection of isolines
E = −10 mV and [Ca++]i = 0.05 mM. (b) In CGLE (19), forα = 0.5 andβ = 0. Medium
size 100× 100 s.u. The shading represents Re(u), lighter for higher value. The circle is the
trajectory of the tip defined as intersection of isolines Re(u) = 0.9 and Im(u) = 0.

sion is played by intercellular conductivity (thus, the only diffusing ‘reagent’ is the
transmembrane voltage).

We assume that (1) has solutions in the form of steadily rotating spiral waves,

u = U(r , t) = U(ρ(r), ϑ(r)+ ωt). (2)

Such solutions are observed in various reaction-diffusion systems; Figure 1 shows
two examples. In some reaction-diffusion systems, including models of heart tis-
sue, spiral waves do not rotate steadily, but meander. The case of steadily rotating
spirals is much simpler and its theory is developed better.

Note that the unperturbed reaction-diffusion system, i.e. (1) withεh = 0, has
an obvious but important symmetry. Namely, it is invariant with respect to the
Euclidean group of motions of the plane{r}. Since solution (2) at any fixedt is not
invariant against this group, the group ‘multiplies’ this solution. That is,

Ũ = U(ρ(r − R), ϑ(r − R)+2), (3)

where2 = ωt −8, is another solution for any constant displacement vectorR =
(X, Y )† and initial rotation phase8.

Thus, if the unperturbed system has one spiral wave solution, then it has a whole
three-dimensionalmanifoldof (relatively stable) such solutions.

2.2. FINITE-DIMENSIONAL ANALOGY

The asymptotic theory of drift of spiral waves [3] was proposed based on the ana-
logy with finite-dimension problem of perturbation of an invariant manifold (see

jobp330.tex; 14/07/1999; 21:40; p.3
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Figure 2. Perturbation of an invariant manifold. Vector fieldf (u) in phase space with coordin-
atesu has an invariant manifoldU with coordinatesa, and vector fieldA on the manifold.
Perturbed vector fieldf ′(u) has a slightly different invariant manifold,U ′, and a slightly
different vector fieldA′ on it. Original objects are shown by solid lines, and perturbed objects
by dashed lines.

Figure 2). If a vector fieldf (u) in ann-dimensional phase space has an invariant
m-dimensional manifoldU(a), m < n, stable as a whole, then small perturbation
of this vector field will, under certain conditions, preserve the invariant manifold,
just slightly displacing it,U 7→ U ′. Another effect of the perturbation is that the
vector field on the shifted manifoldA′(a)will be slightly different from the original
one,A(a). In practice, the existence of the original invariant manifoldU(a) could
be due to a symmetry group. In that case, the flow on that manifold could be in
some sense degenerated, and then the perturbation will remove this degeneracy.

To compare the two vector fields, on the original manifold and on the perturbed,
we need to relate their coordinate systems{a}. A natural way is to require that
the vector connecting two corresponding pointsU(a) andU ′(a), would not have
a component along the manifold, i.e. along any of the tangent vectorsVj(a) =
∂U/∂aj . In other words, it should be orthogonal,

〈Wj(a), U
′(a)− U(a)〉 = 0, j = 1 . . . m, (4)

to the projectorsWj(a) onto the tangent vectorsVj(a),

〈Wj(a), Vk(a)〉 = δj,k. (5)
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These projectors are eigenvectors of the adjoint linearised matrix(∂f/∂u)†(a). The
two effects of the perturbation are produced by its two components, along and
across the manifold, as determined by the projectorsWj .

If this finite-dimensional scheme can be applied to spiral waves, the role of
the vector field is played by the reaction-diffusion system, so the phase space is
a functional space. The invariant manifold is the three-dimensional manifold of
spiral waves and is due to a symmetry group, the Euclidean group of the plane. The
coordinates on the manifold areR ∈ R2, the center of rotation of the spiral wave,
and2, its rotation angle. The flow on the manifold is degenerate, as it consists
of relatively stable periodic orbits, which correspond to steady rotation of spiral
waves around fixed centers:

2 = ωt −8, 8 = const; R = const. (6)

The perturbation removes this degeneracy, and we observe the drift of the spir-
als. By analogy with the finite-dimensional case, we expect that the flow on the
manifold of spiral waves will be described by

∂t2 = ω + εF0(R,2), ∂tR = εF1(R,2), (7)

whereF0 andF1 are ‘projections’ of the perturbation onto the tangent space of the
manifold. The right-hand sides of (7) depend on the phase2. On the time scaleε−1

this phase oscillates fastly; averaging over these oscillations gives motion equations
of the spiral waves,

∂t2̄ = ω + εF̄0(R), ∂t R̄ = εF̄1(R). (8)

2.3. RESPONSE FUNCTIONS

Thus, the finite-dimensional analogy suggests that the dynamics of spiral waves
(perhaps like that of many other dissipative structures) is described by ‘Aristotelean’
mechanics, when the velocity of motion is proportional to the applied perturbation.
The right-hand sides in the equations, the ‘forces’, are projections of the perturb-
ation onto the corresponding tangent space of the invariant manifold. This tangent
space is a linear space, the span of the Goldstone modes, corresponding to the
translations along the symmetry group, atR = 0 and2 = 0

V0 = −ω−1∂tU(r , t) = −∂ϑU(ρ(r), ϑ(r))|t=0,

V±1 = −1

2
e∓iωt

(
∂x ∓ i∂y

)
U(r , t)

= −1

2
e∓iϑ

(
∂ρ ∓ iρ−1∂ϑ

)
U(ρ(r), ϑ(r))|t=0, (9)

which are critical eigenfunctions

L̃Vn = iωn, n = 0,±1, (10)
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of the linearised operator

L̃ = D∇2− ω∂ϑ +
(
∂f

∂u

)∣∣∣∣
u=U(r)

. (11)

Thus, for each particular point at the manifold, the projection operators map the
functional space of the perturbations into the three-dimensional tangent space, and
are thus just three functionals. Since all points of our manifold are equivalent to
each other up to a Euclidean transformation of the plane, it is enough to know the
projection functionals at one point. This symmetry consideration shows that if the
functionals are written as integrals, they should have the form [3]:

F̄n(t) = ein8

t+π/ω∮
t−π/ω

ωdτ

2π

x
R2

d2r e−inωτ 〈Wn (ρ(r − R), ϑ(r − R)

+ωτ −8) , h〉 , (12)

where

h = h(U(r , τ ), r , τ ), R = R(t), 8 = 8(t), F̄1 = (F̄1)x + i(F̄1)y, (13)

and kernelsWn are eigenfunctions

L̃+Wn = −iωnWn, n = 0,±1 (14)

of the adjoint linearised operator

L̃+ = D∇2+ ω∂ϑ +
(
∂f

∂u

)+∣∣∣∣∣
u=U(r)

, (15)

corresponding to the Goldstone modesVn (9). We call these kernelsresponse
functions(RF).

Note that while the existence and even the explicit form of the Goldstone modes
follows from the symmetry of the problem, the existence of the RF’s does not, and
is still an open question. In particular, this implies that equations (14) are formally
overdetermined.

This is just one of quite a few delicate mathematical aspects of the applicability
of the finite-dimensional scheme to the problem of the drift of spiral waves, which
is not at all obvious. Paper [13] gives some flavour of related mathematical prob-
lems, mainly concerning relatively simple case of a Hilbert functional space on a
bounded region. Dynamics of spiral waves apparently involves a more complicated
case of a Banach space on the whole plane. If however, equations (14) have been
solved, this analogy predicts that drift will be described by equations (8), (12). And
a test of this prediction is a test of the viability of the asymptotic approach.
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2.4. RESONANT DRIFT

If the perturbationh is homogeneous in space and periodic in time,h(t) ≡ h(t +
2π/�), with the frequency close to spirals own frequency of rotation,� ≈ ω, then
the equations of the drift reduce to [3]

∂tφ = �− ω − εH0, ∂t (X + iY ) = εeiφH1, (16)

whereφ = φ(t) is the instantaneous phase difference between the vortex orienta-
tion and the stimulation phase,φ = �t − 2̄, and

Hn =
〈x
R2

Wn d2r ,
∮
e−in�τ h(τ)

�dτ

2π

〉
, n = 0,1. (17)

This describes drift along a circle,

X + iY = Xc + iYc + Rdeiδt ; δ = �− ω − εH0; Rd = εH1/δ. (18)

If frequency differenceδ is small or vanishes, the drift is along a circle of large
radius or a straight line, the resonant drift [4].

This has a very simple ‘physical’ interpretation: if external perturbations occur
at the same phase of the spiral wave, they cause its shifts in the same direction, next
shift parallel to the previous. Thus, phenomenon of resonant drift is a consequence
of the symmetry and is universal for all spiral waves.

3. Application to CGLE

3.1. SPIRAL WAVES IN CGLE

The Complex Ginzburg Landau Equation (CGLE) is a two-component reaction-
diffusion system which occurs in various applications. In biophysical context, most
interesting is that it describes the behaviour of the generic reaction-diffusion system
after the reaction part has undergone Andronov-Hopf bifurcation [14]. Similar to
the Hopf normal form, this equation is conveniently presented in the complex form:

∂tu = u− (1− Iα)u |u|2+ (1+ Iβ)∇2u+ εh, (19)

whereu ∈ C, α, β ∈ R. In this paper, we useα = 0.5 andβ = 0 (and omitβ). The
imaginary unitI in this equation must be treated as a different mathematical entity
from i of the general theory. This is because (19) is, essentially, just a convenient
form to write a symmetric system of real equations, rather than a truly complex
equation, and the theory of [8] operates with real equations anyway: see [11] for
more detail. Rigidly rotating spiral wave solutions to (19) have been studied by
Hagan [15], and have the form

U(r , t) = eI(ϑ+ωt)P (ρ) (20)
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whereP(ρ) = a(ρ)eIψ(ρ) ∈ C andω solve a nonlinear eigenvalue problem

P ′′ + 1

ρ
P ′ +

(
1− Iω − (1− Iα)|P |2− 1

ρ2

)
P = 0,

P (ρ → 0) ∝ ρ,
P (ρ →∞) ≈

√
1− k2 exp(Ikρ + o(ρ))(1+ o(1)), (21)

k is the asymptotical wavenumber andω = α(1− k2). The response function have
the form [11]:

Wn = e(I−in)ϑQn(ρ) (22)

whereQn are solutions to linear problems

Q′′n +
1

ρ
Q′n + {1+ Iω

+(I− in)
2

ρ2
− a2

[
2(1+ Iα)+ (1− Iα)e2IψC

]}
Qn = 0

|Qn(ρ → 0)| <∞, Qn(ρ →∞)→ 0. (23)

As follows from the above,W1 andQ1 are ‘bicomplex’-valued functions, each
having four components, real and imaginary with respect to the two imaginary
units i and I. Thus to point to real or imaginary part of a quantity we have to
specify which of the two imaginary units is meant.

Solutions to (23) were found numerically in [11], in the form

Q0(ρ) = (A(ρ)+ IB(ρ))eIψ(ρ),

Q1(ρ) = (C(ρ)+ ID(ρ)+ iE(ρ)+ iIF(ρ))eIψ(ρ), (24)

where functionsC,D,E,F were tabulated. Corresponding response functionsWn

are illustrated in Figure 4. They are essentially nonzero only in the vicinity of the
core of the spiral wave. This is the mathematical manifestation of the remarkable
stability of spiral waves with respect to distant events.

3.2. RESONANT DRIFT IN CGLE

Let us consider perturbation

h = cos(ωt), (25)

whereω is the rotation frequency of the free spiral wave. Substitution ofQ1 in (24)
and (25) into (22), (16) and (17), with account of the normalisation (5), gives the
following expression for the resonant drift velocity

|∂tR| = ε|H1| = ε

∣∣∣∣∣∣∣∣∣
∞∫
0

[C − F + i(E +D)] eiψρ dρ

2
∞∫
0

[aF − ρa′C + i(aD − ρa′E)] dρ

∣∣∣∣∣∣∣∣∣ . (26)
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Figure 3. Resonant drift of spiral waves in different autowave systems. (a) In a model of
guinea pig ventricular tissue [9]. Medium size 20× 20 mm. The white line: trajectory of the
tip, the black circles: positions of the tip at the same phases of the perturbation. (b) In CGLE
(19), forα = 0.5 andβ = 0. Medium size 100× 100 s.u., perturbation amplitudeε = 0.05,
time stepht = 0.025 and space stephx = 0.5. The thin ‘cycloidal’ line: trajectory of the tip
u = 0.9+ 0I, the thick line: trajectory of the centeru = 0+ 0I.

Thus, if we know Hagan’s solution,a,ψ and the components of the response func-
tions,C,D,E,F , equation (26) gives a theoretical prediction for the velocity of
the resonant drift.

Forα = 0.5 andβ = 0, functionsa,ψ,C,D,E,F were obtained numerically
in [11]. By (26), this gives the normalised velocity|∂tR|/ε = |H1| ≈ 2.8423. This
was calculated at spatial discretisation stephρ = 0.005.

To check the theoretical prediction, we simulated CGLE (19) with perturbation
(25) of amplitudeε up to 0.1. We used two finite-difference schemes, (i) first-
order explicit, and (ii) second-order alternating direction implicit, both with 5-point
approximation of the Laplacian. Computational grid was of spatial size 100× 100
to 300× 300 s.u., with discretisation stepsht from 0.005 to 0.5 t.u. andhx from
0.2 to 0.5 s.u. Initial conditions were specified using Hagan’s solution.

The trajectory of the center of the spiral was defined as the intersection of the
null-isolines ofI-real andI-imaginary parts ofu. This trajectory was used to
measure the velocity of the drift, with two different techniques. If the trajectories
were long enough to form a circle, we fit them to (18) to find the velocity. For
shorter pieces this was not possible, and then we used finite differencing with
subsequent averaging. To reduce the influence of the small oscillations of the center
with the period of the spiral wave rotation, we choose the differentiation steps as
close to this period or its multiple as possible. We ensured that these two different
techniques gave the same result within their natural precision, determined by the
aforementioned oscillations of the center and influence of the space discretisation.
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Figure 4. Response function of the spiral wave in CGLE [11]. (a) The spiral wave solution.
(b) Temporal (rotational) RF. (c) i-real part (x-direction) of spatial RF. (d) i-imaginary part
(y-direction) of spatial RF. Shown areI-real components, whereasI-imaginary components
can be obtained by rotation of these by 90◦. Higher value corresponds to lighter shade. Gray
peripheries of (b–d) correspond to zero. Size of the square is 60× 60 s.u.

Some typical trajectories are shown at Figure 3(b) and Figure 5. Interaction
with boundaries is seen only at distances less than 30 s.u. At further distances,
and for time exceeding some transient, the trajectories of the centre are approx-
imately circular. The radii of these circles decreased, and the velocity of the drift
increased with the perturbation amplitude. Both these qualitative observations are
in agreement with theory.

In the agreement with theory, the velocity of the resonant drift was approx-
imately proportional to the perturbation amplitudeε, see Figure 6. Note that this
proportionality is obeyed quite well even forε = 0.05, and that at this amplitude
the drifting spiral wave is considerably deformed, see Figure 3(b). This is because
the deformation is due to the relative motion (‘Doppler effect’ [16]), which affects
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Figure 5. Trajectories of resonant drift at differentε (shown by labels at the trajectories),
medium 100× 100 s.u.,ht = 0.025,hx = 0.5.

Figure 6. Drift velocity |∂tR|, as a function of the perturbation amplitudeε, ht = hx = 0.5.
Dotted line with points: numerical results. Solid line: theoretical dependence. Dashed line:
best linear fit of numerical results at smaller amplitudes.
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Figure 7. Normalised drift velocity,|∂tR/ε|, as a function of time stepht , at perturbation
amplitudeε = 0.01. Dotted line with open circles: explicit scheme, space stephx = 0.5.
Dotted line with filled squares: ADI scheme, space stephx = 0.2. Solid line: theoretical value
2.84. . .. Dashed line: ‘coarse-grained’ theoretical value 2.93. . ., estimated for radial step 0.2.

the periphery of the spiral, whereas the velocity of the drift is determined by the
events in the core where the response functions are nonzero.

To check the quantitative predictions, we measured the normalised drift velo-
city, |∂tR/ε| in numeric simulations, and its behaviour asε → 0, ht → 0 and
ht → 0. The results are shown on Figure 7.

The crucial parameter limiting the convergence to the theoretical value, was
the spatial discretisation step of the numerical simulation. To check how important
this parameter is, we calculated the theoretical value with a precision adequate
to the that of the numerical simulations. Namely, we repeated the calculations
of the Hagan’s solution and the response functions, i.e. solved the systems (21),
(23), with step inρ equal to the smallest discretisation step used in our simula-
tions, 0.2 s.u. And the integrals of (26) were then estimated by the trapezoidal
rule, which corresponds to the approximation order of the PDE simulation. The
resulting ‘coarse-grained’ theoretical value was|H1| ≈ 2.93 and is also shown on
Figure 7. It can be seen that at smallest steps used in simulations, the difference
from the theoretical value is comparable to the error introduced by coarse-graining
in the theoretical value itself. Thus, predictions of the asymptotical theory agree
qualitatively and quantitatively with the results of direct numerical simulations, up
to the precision achievable by these simulations.
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4. Conclusions

− Up to now, the resonant drift has been studied in excitable media. In this
paper we have shown it in CGLE, a model of an oscillatory rather than an
excitable medium. The generalqualitative properties of the resonant drift
in this model are the same as in excitable systems, and as predicted by the
general asymptotical theory.

− We used the response functions to predictquantitativelythe properties of the
resonant drift, e.g. its velocity. This predictions are in a good agreement with
direct numerical simulations.

− Thus, the asymptotical theory of spiral wave dynamics [3] has been, for the
first time, confirmed directly and quantitatively. This shows that, despite all
assumptions made by the theory, it gives correct predictions.

− The methods of response functions could be used to predict the dynamics of
spiral and scroll waves in models of practical interest, by a computationally
less expensive way than direct numerical simulation. In the case of CGLE it is
solution of 1D systems of equations; in general case it would be 2D systems,
as opposed to 2D+time or 3D+time of direct numerical simulations.
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