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Abstract. On the basis of numerical simulations of the partial McAllister-Noble-Tsien equations
quantitatively describing the dynamics of electrical processes in conductive cardiac Purkinje fibers
we reveal unusual – soliton-like – regimes of interaction of nonlinear excitation pulses governing
the heart contraction rhythm: reflection of colliding pulses instead of their annihilation. The phe-
nomenological mechanism of the reflection effects is that in a narrow (but finite) range of the system
parameters the traveling pulse presents a doublet consisting of a high-amplitude leader followed by
a low-amplitude subthreshold wave. Upon collisions of pulses the leaders are annihilated, but sub-
threshold waves summarize becoming superthreshold and initiating two novel echo-pulses traveling
in opposite directions. The phenomenon revealed presents an analogy to the effect of reflection of
colliding nerve pulses, predicted recently, and can be of use in getting insight into the mechanisms
of heart rhythm disturbances.
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Introduction

Nonlinear wave processes lying at the basis of information transmission and con-
trol in biological systems attract broad interest of investigators. One of the organs
whose normal functioning is essentially connected with processes of this kind is
the heart.

Rhythmic contractions of muscular walls of the heart chambers (atria and vent-
ricles) are initiated by nonlinear excitation waves – pulses of electrical recharge
of heart cell membranes [1]. These waves (in many respects analogous to nerve
pulses [2] and belonging to the class of autowaves [3]) are periodically emitted by
the sino-atrial node – a local claster of self-generating cells in the right atrium – and
from here propagating through the heart muscular tissue according to the following
circuit (see detail in any textbook on general physiology):
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sino-atrial node→ atria→ His’ bundle fibers→ Purkinje fibers

→ ventricle muscles. (1)

Fibers of the His’ bundle and Purkinje fibers named here are specialized cable-like
conductive structures, through which excitation pulses travel from atria to vent-
ricles. Directed propagation of pulses along the pathway presented at the circuit (1)
leads to correct alternations of the heart chambers contractions (first atria muscles
contract, then ventricle muscles); respectively, any disturbances of this propagation
disorder the consistent regime of contractions and lead to pathologies.

The well-known property of excitation pulses defining specificity of the heart
performance (as well as performance of the nervous system) is that these pulses
decay (are not reflected, but annihilated) upon collisions to each other and imper-
meable bounds of the excitable medium. Let’s briefly remind of the mechanism of
this phenomenon. The front of a traveling excitation pulse electrically recharging
the membrane of cardiac cells is always followed by a refractory zone where re-
verse recharge and recovery of the membrane subsystems to the initial resting state
occurs [1, 2]. In the refractory zone cell membranes are temporarily unexcitable,
and this prevents passage through of two counter-propagating pulses, as well as
emergence of reflected echo-waves.

The annihilation of colliding pulses plays a fundamental role in living organ-
isms. For the heart, this effect is one of the facts providing stability of the directed
propagation of electric excitation pulses along the pathway (1). If the pulses at
any stretch of the pathway were not annihilated but reflected, then the directed
flow of electric signals on this stretch would loose the stability: collision of any
pulse of the flow with a single sporadic oncoming pulse would lead to a cascade of
re-reflections disordering the flow.

Indeed, development of certain cardiac arrhythmias is associated namely with
pulse reflection, and respective phenomena are intensively investigated. However,
until recently all attempts were concerned with the mechanisms of reflection of
traveling pulses at interactions with geometrical and/or functional heterogeneities
of the excitable medium: a bit of experimental [4–5] as well as theoretical [6–8]
work was done in this direction. As for the effects of reflection of excitation pulses
after their collisions to each other and impermeable obstacles, the opinion that
such effects are not feasible has until recently been challenged by no-one – in view
of the quantitative argumentation based on the existence of the refractory zones.
Moreover, the property of autowaves to decay at collisions is so universal (namely
in this way behave combustion waves, concentration waves in chemical active me-
dia, etc.), that it has been long considered as a characteristic feature distinguishing
this type of waves from solitons – nonlinear waves propagating in conservative
media with dispersion (as is known, solitons escape interactions undestroyed) [9].

Recent results of numerical simulations refute the indicated opinion. In several
works [10–16] performed with simplified mathematical models of homogeneous
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Figure 1. Equivalent electric circuit of a Purkinje fiber. Conductive outer medium is presented
by a bus with zero resistance. The dotted frame embraces the local excitable unit described by
the local kinetics equations (5).

excitable media unusualsoliton-like regimesof propagating excitation pulse in-
teraction were revealed: upon collisions to each other and impermeable medium
bounds the pulses were not annihilated, but reflected! With that counter-samples
refuting the opinion on impossibility of reflection of colliding autowaves were ob-
tained. Afterwards stable soliton-like regimes were revealed in an adequate quantit-
ative model of nerve fiber described by the well-known Hodgkin-Huxley equations
[17, 18] that enabled pre-evaluation of conditions for observation of the reflection
effect in direct physiological experiments [18]. These results immediately raise
question on the possibility of existence of similar phenomena in cardiac tissue.
According to stated above, the answer to this question presents apparent interest.

In the present work we announce results concerning investigation of the soliton-
like regimes in the qualitative mathematical model of a Purkinje fiber presenting a
stretch of the pathway (1).

A brief description of the model is given in Section 1; results of numerical
experiments performed with this model are presented in Sections 2 and 3. In Sec-
tion 4 phenomenological mechanisms of echo-pulse generation are considered.
In conclusion we discuss the obtained results and outline the direction of further
investigations.

1. The McAllister-Noble-Tsien Model of a Purkinje Fiber

In numerical simulations we used nonlinear reaction-diffusion equations whose re-
action terms are taken from the known ordinary McAllister-Noble-Tsien equations
[19] qualitatively describing the dynamics of ionic currents at the Purkinje fiber
membrane. The resulting equations are as follows

∂E

∂t
= D∂

2E

∂x2
− 1

C
Ii; (2a)
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Ii = INa(E, h,m;ENa)+ Isi(E, d, f )+ IK1(E)+ IK2(E, s)

+IX1(E, x1)+ IX2(E, x2)+ ICl(E, q, r) + INa,b(E;ENa)+ ICl,b(E); (2b)

∂z

∂t
= αz(E) · (1− z)− βz(E) · z, z ∈ {m,h, d, f, s, x1, x2, q, r}; (2c)

here the cable equation (2a) [20] describes the balance of currents and potentials in
the electric equivalent circuit of a Purkinje fiber (see Figure 1);E = E(x, t) [mV]
is the intracellular electric potential of a Purkinje fiber (the extracellular potential
is calibrated by zero);x [cm] is the distance along the fiber counted off its left
end;t [ms] is time;C = 10µF cm−2 [19] is the capacitance of the Purkinje fiber
membrane per unit membrane area;D ≡ a/2R C = 0.01 cm2 s−1 is the diffusivity
(hereR is the specific internal resistance of a fiber,a is the fiber radius; this value of
D was adopted from the condition of coincidence of the propagating pulse velocity
obtained numerically with the experimental value of about 1 m s−1 [21]); Ii is the
density of the total membrane ionic current per unit membrane area;INa, Isi, IK1,
IK2, IX1, IX2, ICl, INa,b, ICl,b in (2b) are densities of the currents which are carried
by various ions and are given functions of their arguments (physiological sense of
these currents and their dependence on arguments are indicated in [19]);ENa is the
sodium equilibrium potential appearing in expressions for the currentsINa andINa,b

(in our numerical experimentsENa was the governing parameter, see Section 2);m,
h, d, f , s, x1, x2, q, r are kinetic variables and functions describing the dynamics of
activation and inactivation of respective currents and obeying the kinetic equations
(2c);αz(E) andβz(E) are phenomenological functions (the analytical expressions
for αz(E) andβz(E) are given in [19]).

The cable equation (2a) with the McAllister-Noble-Tsien equations (2b,c) form
a system of model reaction-diffusion equations of 10th order describing a Purkinje
fiber. Usually the case of a fiber with electrically isolated boundaries located at the
pointsx = 0,L is considered; in this case the system (2) is supplemented with the
boundary conditions

∂E

∂x

∣∣∣∣
x=0

= 0,
∂E

∂x

∣∣∣∣
x=L
= 0, (3a,b)

describing impermeability of the boundary sections of the fiber for the total electric
current

I (x, t) = −σ
R

∂E(x, t)

∂x
= −πa

2

R

∂E(x, t)

∂x
, (4)

flowing in the longitudinal direction (σ = πa2 is the area of the fiber section).
With the system of equations (2) the system oflocal kinetics equationsis closely

connected, which is obtained from (2) by neglecting the diffusion term in (2a) and
having the form
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C
dE

dt
= −Ii(E, z;ENa); dz

dt
= αz(E) · (1− z)− βz(E) · z; (5)

hereIi(E, z;ENa) is the short denomination of the left-hand part of (2b).
The system (5) describes the properties of alocal excitable unit(put in a dotted

frame in Figure 1) that is a small fiber segment ofdx length, electrically isolated
(R→∞) from other sites of the fiber. Also note, that solutionsE = E(t), z = z(t)
to the ordinary local kinetics equations (5) are also spatially uniform solutions to
the partial reaction diffusion equations (2) at boundary conditions (3).

Under our consideration both systems (2) and (5) are dependent on the free
parameterENa.

2. Search of the Soliton-Like Regimes. I. Detection of the Global
Limit-Cycle Bifurcation in the Ordinary Equations of Local Kinetics

As it was shown in the papers [17, 18] cited above, reflection of colliding nerve
pulses in the partial Hodgkin-Huxley equations is observed when the correspond-
ing ordinary system of local kinetics is close to the global limit-cycle bifurca-
tion?. The same holds for a simplified mathematical model of excitable medium
described by the well-known FitzHugh-Nagumo equations [15].

These facts inspired us to advance a hypothesis that closeness of the ordinary
local kinetics equations to the global limit bifurcation is the necessary condition for
emergence of the soliton-like solutions to the respective partial reaction-diffusion
equations [15, 17, 18].

Search of the soliton-like regimes in the McAllister-Noble-Tsien equations (2)
was based on the stated hypothesis. At the first step we searched numerically the
limit-cycle bifurcation in the ordinary local kinetics equations (5) under variations
of the sodium equilibrium potentialENa. The choice ofENa as the governing
parameter was inspired by the following reasons.

• At physiologically normal conditions (which correspond to the valueENa =
40 mV) an isolated Purkinje fiber performs as self-oscillating system period-
ically generating excitation pulses [1, 2, 19].

• Decreasing the value ofENa sufficiently in comparison with the norm (exper-
imentally it is achieved by decreasing the sodium ion concentration in outer
solution bathing the fiber) one can transfer the fiber from self-oscillations into
the excitable regime [1, 2].

? Far from the bifurcation the system has one of the following attractors: either a stable steady
state, or a stable limit cycle. In these cases the local excitable unit of a nerve fiber presents either
a monostable excitable system (capable to generate a single nerve pulse in response to supercritical
external perturbations), or a self-oscillating system. Close to the bifurcation at supercritical values
of the governing parameter both attractors coexist and, depending on initial conditions, the system
either passes to the steady state (resting regime) or generates pulse in self-oscillating regime.
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Figure 2. Qualitative properties of the system of local kinetics equations (5) at different values
of the parameterENa. Column A shows projections of the stable limit cycle (SLC) and the
stable steady point (SSP) of system (3) on the plane of variables(E, x1), while in column B the
corresponding dependencies of the potentialE on timet are presented. Line a:ENa= 40 mV;
line b:ENa = 12.93 mV; line c:ENa= 12 mV.

• The system of ordinary equations (5) at the normal valueENa = 40 mV is
also a self-oscillating one, and respective solutions are in good quantitative
agreement with experimental data [19].

Thus, relying on the facts listed above one can expect that decrease ofENa will
lead to transition of the system (5) from the self-oscillating regime to the excitable
one; besides, it is hoped that the transition will follow the pattern seen at the global
limit-cycle bifurcation (see the first footnote).

Such transition was actually revealed in our numerical experiments, and it evolved
according to the scenario of the pointed bifurcation.

In experiments the range 12 mV≤ ENa ≤ 40 mV was investigated. The
presence of self-oscillations in the system (5) at fixedENa was tested numeric-
ally; besides, the coordinatesE0(ENa), z0(ENa) of steady (≡ resting) points of the
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Figure 3. Bifurcation diagram of the system of local kinetics equations (5). Curves1 and2
present dependences of the maximal and the minimal values of the variableE on the stable
limit cycle on the valueENa, curves3–5 present dependencies of the coordinatesE0 of
steady points of system (5) onENa (curves3, 4 correspond to unstable steady points, curve5
corresponds to the stable one). LCB indicates the global limit-cycle bifurcation.

system (5) were found and stability of the points was determined?. The results of
computations are presented in Figures 2 and 3.

Figure 2 illustrates the behavior of the ordinary system (5) at three different
values ofENa. At the normal valueENa = 40 mV self-oscillations are observed
confirming the data of [19]; in this case a stable limit cycle coexists with an unstable
steady point (see Figure 2, line a). In accordance with expectations the decrease of
ENa transfers the system (5) to the excitable regime. Prior to the transition the
stable limit cycle coexists with a stable steady point (see Figure 2, line b); this is
a typical pattern preceding the global limit-cycle bifurcation. After the transition
the limit cycle disappears and only one attractor, the stable resting point, remains
in the system (5) (see Figure 2, line c). More detailed information on qualitative
properties of the system (5) is presented on the bifurcation diagram (see Figure 3).

Because the limit cycle and resting points of the ordinary system (5) determ-
ine spatially uniform time-periodic and steady solutions to the partial reaction-
diffusion equations (2) at boundary conditions (3), the diagram in Figure 3 contains

? At given ENa the coordinatesE0(ENa), z0(ENa) of each steady point were determined by
solving the equationsIi(E0, z0;ENa) = 0, z0 = z̃(E0) ≡ α(E0)[α(E0)+ β(E0)]−1 obtained from
the system (5) aṫE = ż = 0; doing so the coordinateE0(ENa) was numerically found from the
equationIi(E0, z̃(E0);ENa) = 0, then the coordinatez0(ENa) was evaluated (for each variablez)
asz0(ENa) = z̃[E0(ENa)]. Stability of steady points was investigated by numerical integration of
the system (5) at initial values ofE, z from a small vicinity of the point. In all cases the integration
was performed by the Runge-Kutta method with time stepht = 0.004 ms (ht = 0.001 ms in control
experiments).
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also information on ranges of existence and stability of these solutions. Particularly,
the figure shows that stable steady solution

E(x, t) ≡ E0(ENa); z(x, t) ≡ z0(ENa) (6)

to the reaction-diffusion equations (2), describing the resting state of a Purkinje
fiber with electrically isolated boundaries exists only atENa ≤ 35.38 mV, because
curve 5 in Figure 3 presenting the dependence of the resting potentialE0 of the fiber
onENa exists only when the inequality is satisfied. Hence, the problem of obtaining
the traveling pulse solutions to the reaction-diffusion system (2) seems reason-
able namely in this range. The solutions can be found by numerical integration of
equations (2) at initial conditions

E(x,0) ≡ E0(ENa), z(x,0) ≡ z0(ENa) (ENa ≤ 35.38 mV) (7)

following from (6) and at the boundary conditions describing initiation of excita-
tion pulses at the ends of the fiber (see below, next section).

It is important that the range ofENa values corresponding to the existence of the
stable steady state of the Purkinje fiber contains the point of the global limit-cycle
bifurcation: the latter is implemented in the ordinary system (5) atENa = 12.93 mV
(see Figure 3). According to the hypothesis stated at the beginning of this section,
one can expect that the colliding pulse reflection phenomena, if they do exist in
the partial system (2), will emerge right close to the bifurcation value ofENa.
The expected soliton-like regimes were actually revealed in numerical experiments
described in the next section.

3. Search of the Soliton-Like Regimes. II. Numerical Experiments with the
Partial McAllister-Noble-Tsien Equations near the Bifurcation Value of
ENa

The system of reaction-diffusive equations (2) was integrated according to the
three-point explicit scheme at the segment 0≤ x ≤ L simulating a Purkinje
fiber. The steps of numerical integration in time and in space werehx = 0.3 cm
andht = 0.004 ms (hx = 0.1 cm andht = 0.001 ms in control simulations).
The initial conditions were given according to (7). In the simulations the effects
following collision of a traveling pulse with impermeable obstacle and collision of
two pulses were studied.

3.1. COLLISION OF A PULSE WITH AN IMPERMEABLE OBSTACLE

The obstacle was the right end of the fiber with the boundary condition of imper-
meability (3b) supported. The pulse was initiated at the left end of the fiber by
setting the boundary condition

∂E

∂x

∣∣∣∣
x=0

=
{
p ≡ −100 mV cm−1 at t ∈ [0, T ], T = 10 ms,

0 at t > T ,
(8)
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Figure 4. Diagram of regimes in the reaction-diffusion system (2) on the plane of parameters
(L,ENa). The minimal valueL = 3 cm of the chosen range is greater then specific length of
the traveling front (about 1 cm) and, therefore, it is correct to speak about wave propagation
in all the range presented.

and then propagated rightward and collided to the right fiber boundary? . Phenom-
ena accompanying the collision were observed in consequent series of experiments.
In each series the fiber lengthL was given (is was altered from one series to
another), and the regimes of pulse interaction were studied for the givenL at
different values ofENa from the interval indicated in (7). As the result we obtained
the subdivision of the plane of parameter(L,ENa) at regions corresponding to the
following three regimes (Figure 4).

Annihilation regime.This regime is usual: a pulse colliding to the impermeable
right boundary decay (is annihilated) (see Figure 5) and the fiber passes with time
to the resting state (6).

Soliton-like regime.In this regime a pulse colliding to the impermeable right
boundary of the fiber is reflected (echo, see Figure 6), travels backward and collides
with the left boundary, where by that time the impermeability condition coinciding
with (3a) is supported (see footnote 3). A new act of reflection occurs and the
reflected echo-pulse travels rightward again. The reflection cycle reoccurs again
and again without any changes. This experimental fact shows that the soliton-like
regimes are described by stable spatially uniform time-periodic solutions to the
partial McAllister-Noble-Tsien equations (2) (with boundary conditions (3)). As

? Condition (8) means that at the momentt = 0 the fiber is connected to the external source
of constant electric current. The current is delivered to the left section of the fiber during a finite
time interval ofT duration, initiating a pulse; then the source is switched off and the impermeability
condition (3a) is settled at the pointx = 0. The current intensity is connected to the valuep in (8) by
(4). The values ofp andT in (8) were chosen so that the impermeability condition at the fiber left
boundary settle before the traveling pulse collided with the right boundary.
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Figure 5. Annihilation regime in the reaction-diffusion system (2) (L = 50 cm,
ENa = 15 mV). Here and in Figures 6 and 7 profiles of the potentialE are presented at
indicated time momentst . An excitation pulse traveling rightward decays (is annihilated)
upon collision to the right impermeable end of the fiber. To illustrate the spatial structure of
traveling waves at this figure, as well as at following ones, parameterL was set at abnormally
high value.

follows from comparison of the diagrams in Figures 3 and 4, the soliton-like regime
is implemented in system (2) when theENa values are close to the critical value,
corresponding to the global limit cycle bifurcation in the local kinetics equations
(5).

Self-oscillation regime.In this regime a finite duration impulse of the the in-
ternal current, described by the boundary condition (8), switches the fiber into
the self-oscillation regime: the left end of the fiber starts to emit pulses traveling
rightward. Patterns of pulse propagation and interaction with the right boundary
(reflection is not observed) is qualitatively analogous to that obtained in [17, 18]
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Figure 6. Soliton-like regime in the reaction-diffusion system (2) (L = 50 cm,
ENa = 12.94 mV). An excitation pulse traveling rightward does not decay after collision
to the right impermeable end of the fiber, but is reflected.

at integration of the Hodgkin-Huxley equations describing squid axon, and is not
presented here. This space-inhomogeneous regime of pulse generation is presum-
ably a transitional one: it can be expected that oscillation in different points of the
fiber will become synchronous with time, as it occurs in the case of the FitzHugh-
Nagumo equations [15], and will correspond to the limit cycle of the local kinetics
equations (5). Further investigations are necessary in this direction.
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Figure 7. Soliton-like regime in the reaction-diffusion system (2) (L = 50 cm,
ENa = 12.94 mV) at collision of pulses traveling from the fiber ends in oncoming directions.
After collision the pulses are reflected back and travel in opposite directions.

3.2. COLLISION OF ONCOMING PULSES

In this case excitation pulses were initiated simultaneously at both ends of the fiber
by setting the following boundary conditions

∂E

∂x

∣∣∣∣
x=0

= − ∂E

∂x

∣∣∣∣
x=L
=
{
p ≡ −100 mV cm−1 at t ∈ [0, T ], T = 10 ms,

0 at t > T ,

(9)

and traveled towards each other colliding at the pointx = L/2. As well as in the
previous case the effects accompanying the collision were studied at differentL and
ENa. The corresponding diagram is not presented for it differs from that in Figure 4
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Figure 8. Spatial profiles of traveling excitation pulses obtained by numerical integra-
tion of the McAllister-Noble-Tsien equations under conditions of the annihilation (a) and
the soliton-like (b) regimes (arrows indicate the direction of pulse propagation). a –
ENa = 15 mV; b –ENa = 12.94 mV. It is clear that in the soliton-like regime a travel-
ing excitation pulse presents the doublet consisting of high-amplitude leader1 followed by
low-amplitude wave2.

by the scale at the axisL only: according to the symmetry reasons the qualitative
effects accompanying collision of oncoming pulses in a fiber with the lengthL has
no difference from the effects upon collision of a single pulse with the impermeable
bound of a fiber ofL/2 length (at oncoming propagation of the pulses symmetric
in respect to the pointx = L/2, the equality(∂E/∂x)|x=L/2 = 0 is satisfied at this
point at any time moment). At the values ofL andENa corresponding to the soliton-
like regime, colliding pulses are reflected (Figure 7), travel in opposite direction,
are reflected from the impermeable bounds and travel towards each other again.
Then all the effects are repeated.

4. Why Are They Reflected?

To answer this question, let us compare instant spatial profiles of excitation pulses
traveling along the fiber under conditions of the usual annihilation regime (see
Figure 8a), with those under conditions of the soliton-like one (see Figure 8b).

It can be seen from the figure that in the soliton-like regime the traveling excit-
ation pulse is followed by a subthreshold depolarization wave, which is absent in
the case of the annihilation regime; in other words, in the soliton-like regime the
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traveling pulse presents a doublet consisting of a high-amplitude pulse-leader and a
low-amplitude wave following the pulse (note, that a nerve pulse in the soliton-like
regime is characterized by the same wave structure [18]). Namely the existence of
these subthreshold waves causes reflection of the doublets after their collisions and
annihilation of leading pulses. Qualitative reasonings confirming the aforesaid are
as follows.

Let’s first consider the case of reflection of such a doublet from the imper-
meable fiber boundary. The leading pulse traveling rightward first collides the right
boundary (Figure 6,t = 600 ms) and is annihilated (Figure 6,t = 750 ms);
with a short delay the subthreshold wave (Figure 6,t = 3000 ms) also reaches
the boundary (Figure 6,t = 3300 ms), collides with it, becomes superthreshold
(Figure 6,t = 3390 ms) and initiates a reflected excitation pulse traveling leftward
(Figure 6,t = 3420 ms). The question is why the low-amplitude wave which is
subthreshold at propagation along the fiber becomes superthreshold after collision
with the impermeable obstacle? The explanation is as follows. To each propagating
wave an axial gradient of electric potential is related; according to expression (2),
the gradient induces internal axial electric currents flowing on the wave edges along
the fiber. When the subthreshold wave approaches the boundary impermeable for
the axial current, all the current flowing forward from the front of the wave starts
now to flow through the fiber membrane. That leads to such an increase of the
total membrane ionic current density that is enough to shift the membrane poten-
tial E near the boundary to the superthreshold value causing regeneration of the
initial pulse. Hence, a low-amplitude wave colliding with an obstacle behaves as
“generator” emitting an echo-pulse.

Reflection of two colliding doublets evolves according to the same scenario (see
Figure 7) due to the symmetry reasons presented in the previous section.

The results of numerical simulations confirming the necessity of low-amplitude
waves for reflection of colliding pulses will be published elsewhere.

5. Conclusion

The results obtained in the present work have several aspects.
We confirm that the soliton-like regimes in reaction-diffusion equations de-

scribing biological excitable media are not “exotic”, but “standard” qualitative
phenomena implemented at certain conditions. The universal phenomenological
mechanism of echo-wave generation at pulse collisions to each other and imper-
meable obstacles is also revealed: it is connected to the existence of subthreshold
waves following full-amplitude traveling pulses. Note, that such low-amplitude
waves are often recorded in physiological experiments, the slow voltage altera-
tion forming the wave being calleddelayed afterdepolarization[1, 22, 23]. In
special literature this phenomenon was discussed in connection to its possible
role in some cardiac pathological regimes – so-called triggered activity [1]: the
latter are manifested as a superthreshold stimulation applied to the cardiac ex-
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citable tissue leading at certain conditions to emergence of premature electrical
pulsation [22, 23]. However, experimental cardiology has not yet clarified either
the mechanisms of triggered arrhythmias, or the reasons for the appearance of
delayed afterdepolarization waves; presumably, the role of these waves as poten-
tial echo-pulse generators has not been realized yet. The numerical simulations
performed clarify the situation to some extent: according to the computation res-
ults, traveling doublets “high-amplitude leader + low-amplitude wave of delayed
afterdepolarization” should be observed in the region of the governing parameter
values, separating excitable and self-oscillation regimes, where the system of local
kinetics equations is close to the global limit-cycle bifurcation. In the neighborhood
of this bifurcation the mentioned system has two attractors – a steady point and
a limit cycle responsible for generation of excitation pulses; herewith transition
of the system from one attractor to another can be realized by a superthreshold
perturbation. Such local dynamics remarkably resembles the dynamics of triggered
activity, and both phenomena – the waves of delayed afterdepolarization and the
triggered activity – could present different dynamic manifestations of similar con-
ditions arising in excitable media. Of course, it is of first importance to understand
the manner in which the limit-cycle bifurcation of ordinary local kinetic equations
predetermines the doublet structure and reflection of running excitation pulses.

All the results of this work were obtained in frameworks of the McAllister-
Noble-Tsien model describing electrical phenomena in cardiac Purkinje fibers.
Although these results allow planning physiological experiments to observe the
predicted effects, it should be mentioned that the model used is not as adequate
as more recent DiFrancesco-Noble equations [24] proposed for the same object;
therefore, quantitative conditions for implementation of the soliton-like regimes
in Purkinje fibers have to be elaborated using the latter equations (preliminary
numerical simulations carried out by the authors confirmed the existence of soliton-
like regimes in the DiFrancesco-Noble equations). Finally, note that Purkinje fibers
are only one of the elements on the pathway of excitation pulse propagation from
the sinoatrial node to the ventricles, presented by circuit (1). It would be interesting
to investigate the possibility of existence of soliton-like regimes in other elements
of the pathway evolving respective equations – up to date they have been described
elsewhere. Thus, the cardiac structures where echo-like arrhythmias are possible
would be revealed. The aforesaid contains the program of further investigations.

This work was supported by the grant RFBR No. 990100956.
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