Skip to main content
Journal of Biological Physics logoLink to Journal of Biological Physics
. 2004 Jan;30(4):345–364. doi: 10.1007/s10867-004-0783-y

Cell Movements and Mechanical Force Distribution During the Migration of Dictyostelium Slugs

Jean-Paul Rieu 1,, Catherine Barentin 1, Satoshi Sawai 2, Yasuo Maeda 3, Yasuji Sawada 4
PMCID: PMC3456314  PMID: 23345877

Abstract

Migration of Dictyostelium discoideum slugs results from coordinated movement of their constituent cells. It is generally assumed that each cell contributes to the total motive force of the slug. However, the basic mechanisms by which mechanical forces (traction and resistive forces) are transmitted to the substrate, their magnitude and their location, are largely unknown. In this work, we performed detailed observations of cell movements by fluorescence microscopy using two-dimensional (2D) slugs. We show that 2D slugs share most of the properties of 3D ones. In particular, waves of movement propagate in long 2D slugs, and slug speed correlates with slug length as found in 3D slugs. We also present the first measurements of the distribution of forces exerted by 2D and 3D slugs using the elastic substrate method. Traction forces are mainly exerted in the central region of the slug. The large perpendicular forces around slug boundary and the existence of parallel resistive forces in the tip and/or the tail suggest an important role of the sheath in the transmission of forces to the substrate.

Key words: Dictyostelium slug, elastic substrate, wave of movement, traction force, slime sheath

Full Text

The Full Text of this article is available as a PDF (661.1 KB).

References

  • 1.Dormann D., Siegert F., Weijer C.J. Becoming Multicellular by Aggregation; The Morphogenesis of the Social Amoebae Dicyostelium Discoideum. J. Biol. Phys. 2002;28:765–780. doi: 10.1023/A:1021259326918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Maeda Y. Role of Cyclic AMP in the Polarized Movement of the Migrating Pseudoplasmodium of Dictyostelium discoideum. Dev. Growth Differ. (1977);19:201–205. doi: 10.1111/j.1440-169X.1977.00201.x. [DOI] [PubMed] [Google Scholar]
  • 3.Siegert F., Weijer C.J. Three-Dimensional Scroll Waves Organize Dictyostelium Slugs. Proc. Natl. Acad. Sci. USA. (1992);89:6433–6437. doi: 10.1073/pnas.89.14.6433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Breen E.J., Williams K.L. Optical Flow Analysis of the Ventral Cellular Layer of the Migrating Dictyostelium discoideum Slug. Microbiology. (1994);140:1241–1252. doi: 10.1099/13500872-140-5-1241. [DOI] [PubMed] [Google Scholar]
  • 5.Dormann D., Siegert F., Weijer C.J. Analysis of Cell Movement During the Culmination Phase of Dictyostelium Development. Development. (1996);122:761–769. doi: 10.1242/dev.122.3.761. [DOI] [PubMed] [Google Scholar]
  • 6.Dormann D., Weijer C.J. Propagating Chemoattractant Waves Coordinate Cell Movement in Dictyostelium Slugs. Development. (2001);128:4535–4543. doi: 10.1242/dev.128.22.4535. [DOI] [PubMed] [Google Scholar]
  • 7.Inouye, K. and Takeuchi, I.: Motive Force of the Migrating Pseudoplasmodium of the Cellular Slime Mould Dictyostelium discoideum. J. Cell Sci.41(1980), 53–64; Inouye, K.: Measurement of the Motive Force of the Migrating Slug of Dictyostelium Discoideum by a Centrifuge Method, Protoplasma121(1984), 171–177. [DOI] [PubMed]
  • 8.Eliott S., Vardy P.H., Williams K.L. The Distribution of Myosin II in Dictyostelium Discoideum Slug Cells. J. Cell Biol. (1991);115:1267–1274. doi: 10.1083/jcb.115.5.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Early A., Abe T., Williams K.L. Evidence for Positional Differentiation of Prestalk Cells and for a Morphogenetic Gradient in Dictyostelium. Cell. (1995);83:91–99. doi: 10.1016/0092-8674(95)90237-6. [DOI] [PubMed] [Google Scholar]
  • 10.Dembo M., Wang Y.-L. Stresses at the Cell-to-Substrate Interface During Locomotion of Fibroblasts. Biophys. J. (1999);76:2307–2316. doi: 10.1016/S0006-3495(99)77386-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Schwarz U.S., Balaban N.Q., Riveline D., Bershadsky A., Geiger B., Safran S.A. Calculation of Forces at Focal Adhesions from Elastic Substrate Data: The Effect of Localized Force and the Need for Regularization. Biophys. J. (2002);205:2583–2590. doi: 10.1016/S0006-3495(02)73909-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Beningo K.A., Wang Y.–L. Flexible Substrata for the Detection of Cellular Traction Forces. Trends Cell Bio. (2002);12:72–84. doi: 10.1016/s0962-8924(01)02205-x. [DOI] [PubMed] [Google Scholar]
  • 13.Uchida K.S., Kitanishi-Yumura T., Yumura S. Myosin II Contributes to the Posterior Contraction and the Anterior Extension During the Retraction Phase in Migrating Dictyostelium Cells. J. Cell Sci. (2003);116:51–60. doi: 10.1242/jcs.00195. [DOI] [PubMed] [Google Scholar]
  • 14.Bonner J.T. A Way of Following Individual Cells in the Migrating Slugs of Dictyostelium Discoideum. Proc. Natl. Acad. Sci. USA. (1998);95:9355–9359. doi: 10.1073/pnas.95.16.9355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Rieu J.-P., Tsuchiya K., Sawai S., Maeda Y., Sawada Y. Cell Movements and Traction Forces on Elastic Substrates During the Migration of 2-Dimensional Dictyostelium Slugs. J. Biol. Phys. (2003);29:SN1–SN4. [Google Scholar]
  • 16.Umeda T., Inouye K. Theoretical Model for Morphgenesis and Cell Sorting in Dictyostelium Discoideum. Physica D. (1999);126:189–200. [Google Scholar]
  • 17.Palsson E., Othmer H.G. A Model for Individual and Collective Cell Movement in Dictyostelium Discoideum. Proc. Natl. Acad. Sci. USA. (2000);97:10448–10453. doi: 10.1073/pnas.97.19.10448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Vasiev B., Weijer C.J. Modelling of Dictyostelium Discoideum Slug migration. J. Theor. Biol. (2002);223:347–59. doi: 10.1016/s0022-5193(03)00103-6. [DOI] [PubMed] [Google Scholar]
  • 19.Marée A.F., Panfilov A.V., Hogeweg P. Migration and Thermotaxis of Dictyostelium Discoideum Slugs: A Model Study. J Theor Biol. (1999);199:297–309. doi: 10.1006/jtbi.1999.0958. [DOI] [PubMed] [Google Scholar]
  • 20.Bonner J.T. Evidence for the Formation of Cell Aggregates by Chemotaxis in the Development of the Slime Mold Dictyostelium Discoideum. J. Exp. Zool. (1947);106:1–26. doi: 10.1002/jez.1401060102. [DOI] [PubMed] [Google Scholar]
  • 21.Sawai S., Hirano T., Maeda Y., Sawada Y. Rapid Patterning and Zonal Differentiation in a Two-Dimensional Dictyostelium Cell Mass: The Role of pH and Ammonia. J. Exp. Biol. (2002);205:2583–2590. doi: 10.1242/jeb.205.17.2583. [DOI] [PubMed] [Google Scholar]
  • 22.Rieu J.-P., Upadhyaya A., Glazier J.A., Ouchi N.B., Sawada Y. Diffusion and Deformations of Single Hydra Cells in Cellular Aggregates. Biophys. J. (2000);79:1903–1914. doi: 10.1016/S0006-3495(00)76440-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Pelham R.J., Wang Y-L. High Resolution Detection of Mechanical Forces Exerted by Locomoting Fibroblasts on the Substrate. Mol. Biol. Cell. (1999);10:935–945. doi: 10.1091/mbc.10.4.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Landau, L.D. and Lifshitz, E.M.: Theory of Elasticity, (3rd edn.), J.B. Sykes and W.H. Reid (translators), Pergamon Press, Oxford, UK, 1986.
  • 25.Dembo M., Oliver T., Ishihara A., Jacobson K. Imaging the Traction Stresses Exerted by Locomoting Cells with the Elastic Substratum Method. Biophys J. (1996);4:2008–2022. doi: 10.1016/S0006-3495(96)79767-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Butler J.P., Tolic-Norrelykke I.M., Fabry B., Fredberg J.J. Traction Fields, Moments, and Strain Energy that Cells Exert on their Surroundings. Am. J. Physiol. Cell Physiol. (2002);282:C595–C605. doi: 10.1152/ajpcell.00270.2001. [DOI] [PubMed] [Google Scholar]
  • 27.Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. Numerical Recipes in FORTRAN: The Art of Scientific Computing. (2nd edn.) Cambridge: Cambridge University Press; 1992. pp. 63–78. [Google Scholar]
  • 28.Bonner J.T., Fey P., Cox E.C. Expression of Prestalk and Prespore Proteins in Minute, Two-Dimensional Dictyostelium Slugs. Mech. Dev. (1999);88:253–254. doi: 10.1016/s0925-4773(99)00188-4. [DOI] [PubMed] [Google Scholar]
  • 29.Loomis W.F. Role of the Surface Sheath in the Control of Morphogenesis in Dictyostelium Discoideum. Naure New Bio. (1972);240:6–S9. doi: 10.1038/newbio240006a0. [DOI] [PubMed] [Google Scholar]
  • 30.Inouye K., Takeuchi I. Analytical Studies on Migrating Movement of the Pseudoplsmodium Of Dictyostelium Discoideum. Protoplasma. (1979);99:289–304. [Google Scholar]
  • 31.Durston A.J., Vork F. A Cinematographical Study of the Development of Vitally Stained Dictyostelium Discoideum. J. Cell Sci. (1979);36:261–279. doi: 10.1242/jcs.36.1.261. [DOI] [PubMed] [Google Scholar]
  • 32.Shaffer B.M. Cell Movement Within Aggregates of the Slime Mould Dictyostelium Discoideum Revealed by Surface Markers. J. Embryol. Exp. Morphol. (1965);13:97–117. [PubMed] [Google Scholar]

Articles from Journal of Biological Physics are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES