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ABSTRACT The probability distribution of amphiphile
chain conformations in micelles of different geometries is de-
rived through maximization of their packing entropy. A lattice
model, first suggested by Dill and Flory, is used to represent
the possible chain conformations in the micellar core. The po-
lar heads of the chains are assumed to be anchored to the mi-
cellar surface, with the other chain segments occupying all lat-
tice sites in the interior of the micelle. This "volume-filling"
requirement, the connectivity of the chains, and the geometry
of the micelle define constraints on the possible probability dis-
tributions of chain conformations. The actual distribution is
derived by maximizing the chain's entropy subject to these
constraints; "reversals" of the chains back towards the micel-
lar surface are explicitly included. Results are presented for
amphiphiles organized in planar bilayers and in cylindrical
and spherical micelles of different sizes. It is found that, for all
three geometries, the bond order parameters decrease as a
function of the bond distance from the polar head, in accord-
ance with recent experimental data. The entropy differences
associated with geometrical changes are shown to be signifi-
cant, suggesting thereby the need to include curvature (envi-
ronmental)-dependent "tail" contributions in statistical ther-
modynamic treatments of micellization.

Micelles are aggregates of amphiphilic molecules composed
of a hydrophilic (polar, ionic, or zwitterionic) "head" and a
hydrophobic "tail" that is usually a flexible hydrocarbon
chain (1, 2). In aqueous solutions the tails form the interior of
the micelle, while the heads are at the hydrocarbon/water
interface. The aggregates exist in a variety of sizes, shapes,
and phases, depending on their constituent amphiphiles and
"external" conditions like concentration, temperature, and
ionic strength. Some amphiphiles, like NaDodSO4, form
spherical micelles at low concentrations (just above the cmc,
the critical micelle concentration) that grow into rod-shaped
micelles as the concentration increases. Further increase in
concentration results in a phase transition from an isotropic
solution to an ordered, hexagonal phase of long rods. Most
phospholipids, on the other hand, aggregate spontaneously
into large, nearly planar bilayers arranged as vesicles or la-
mellae.
Aggregation occurs because /4 - A4 < 0, where /4 is the

standard chemical potential of a single (monomeric) mole-
cule in solution, while /4 is the standard chemical potential
of a molecule in a micelle (3-5). (In NaDodSO4, for instance,
,A - =4 -lOkT.) The value of /4 for a given amphiphile
depends on its position in the aggregate (i.e., on the local
"geometry" of the micelle). A common assumption in the
existing models of amphiphile self-assembly is that the hy-
drophobic tails forming the micellar core behave like in the
corresponding liquid hydrocarbon (e.g., dodecane in the
case of NaDodSO4). According to this "liquid hydrocarbon
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droplet" assumption, the statistical-thermodynamic proper-
ties of the tails are insensitive to the micellar geometry (3-5).
Consequently, the geometry dependence of ,u is usually at-
tributed exclusively to the "opposing forces" that act at the
surface of the micelle (3). These are the repulsion between
the hydrophilic heads and the hydrophobic effect, which
tend, respectively, to maximize and minimize the average
area per head group on the micellar surface. But these sur-
face effects give rise to rather small variations in ,u for dif-
ferent micellar geometries (A/uIl c kT), and it is thus not a
priori reasonable to neglect the effects of the hydrocarbon
chains.

In this paper we present a statistical-thermodynamic the-
ory for amphiphile packing in different micellar geometries.
A large number of theoretical studies have dealt with the sta-
tistical thermodynamics of phospholipids in planar mem-
brane bilayers, particularly within the context of the gel-liq-
uid crystal phase transition (6). On the other hand, very few
studies (7-13) have addressed the question of chain packing
in nonplanar (e.g., spherical and cylindrical) micelles. Most
pertinent to our present paper is the theory of Dill and Flory
(11, 12).

In the theory of Dill and Flory, the micellar core is repre-
sented by a cubic lattice, appropriately modified for curved
surfaces (see Fig. 1). Every chain conformation is regarded
as a sequence of steps on the lattice, originating at the sur-
face. To conform to the geometry of the cubic lattice, every
chain segment is taken to represent -3.5 methylene groups
of real alkyl chains. Differences in internal energy of differ-
ent conformations are disregarded, and the only constraints
on a chain conformation are due to the presence of other
chains and the ("volume-filling") requirement that all lattice
sites are occupied. The probabilities of the various chain
conformations are generated by a stochastic matrix whose
elements describe single-step probabilities on the lattice.
The matrix elements are evaluated algebraically through
equations representing the volume-filling condition. A key
assumption that facilitates the formulation and solution of
these equations is the neglect of chain "reversals," (i.e.,
"backward" steps towards the surface; see Fig. 1). The
bond-order parameters predicted by the Dill and Flory mod-
el for planar surfaces are in rather good agreement with ex-
perimental results, but their predictions for spherical and cy-
lindrical micelles differ qualitatively from recent reported
data for these systems (7, 14, 15).
The theory presented below uses, partly for the sake of

comparison, the cubic lattice of Dill and Flory. We also im-
pose the volume-filling condition and disregard chain confor-
mation energy. The two major differences between the two
theories are: (i) our expressions for chain conformation
probabilities are different and are derived by using the maxi-
mal entropy principle (the information-theory approach) (16,
17), and (ii) we allow explicitly for chain reversals. We show
that incomplete optimization of the conformational entropy
can lead to incorrect predictions concerning the chain statis-
tics. In particular, a simultaneous maximization of the entro-
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FIG. 1. A two-dimensional representation of the Dill and Flory lattice models (11, 12) describing cylindrical and spherical micelles (Right)
and one-half of a planar bilayer (Left). The circles in the surface layer designate the polar heads (or the first chain segment). The arrows point
out chains with reversals.

py throughout all layers of the micelle provides bond order-
parameter profiles in agreement with experiment; a sequen-
tial scheme applied successively to one layer at a time, on
the other hand, gives the results of Dill and Flory, according
to which bond alignment increases from "head" to "tail" for
curved aggregates.

THEORY
Lattice Representation. The lattices representing the hy-

drophobic cores of planar bilayers, cylindrical and spherical
micelles (11, 12), and some chain conformations are shown
two-dimensionally in Fig. 1. (The theory is for three dimen-
sions.) The cores are divided into L equally thick layers
(shells), and every layer i is divided into Mi cells of equal
volume. The small circles in the outermost layer represent
the hydrophobic heads or the first chain segments connected
to the heads if the heads are large or assumed to be surround-
ed by water. In all geometries the surface layer is denoted as
i = 1 and the innermost as i = L. The length unit in all calcu-
lations will be the layer thickness, and the volume unit will
be the volume of a cell. Thus, L is the thickness or the radius
of the micelle.
Experiments show that the density inside the core is simi-

lar to the liquid hydrocarbon density (2, 3) and that water
penetration is negligible (15). Accordingly it is assumed here,
as in refs. 11 and 12, that all lattice sites are occupied by
chain segments. The volume-filling requirement implies n ¢
L, where n is the number of segments per chain (n - 1
bonds); otherwise the chains could not reach the innermost
layers. The number of chains, N, that can be accommodated
in a micelle of volume M = IMi is bounded by Nn ' M; the
equality holds for strict space filling.
The total number of sites in (one-half of) a planar bilayer is

M = JMj = M1L where Mi is the number of sites per layer.
In a cylinder of radius L and length h, M = 7rL2h, and in a
sphere, M = (4/3)irL3. (It is assumed that the linear dimen-
sions of the bilayer surface and the cylinder length are much
larger than the chain length: M1 >> n2, h >> n). In order to
deal with integral numbers of sites, we take M = 4L3 and
3L2h for spheres and cylinders, respectively. (Actually only
the ratios Mi/Ml enter the calculations.) Thus,

Mi= M1 = constant plane [la]

Mi= 3h[2(L - i)+1] cylinder [lb]

Mi = 4[3(L - i)2 + 3(L - i) + 1] sphere [lc]

A central parameter in the theories of amphiphile aggrega-
tion (3-5) is the average area per head group. In the lattice
model this quantity is m1 = Ml/N (1/m, = ol is the surface

density of head groups). Using the appropriate expressions
for M (=Nn) and M1, we find

n
Ml = -

L

(Lj)( 2L

Ml = ( - L +i-7

plane [2a]

cylinder [2b]

sphere [2c]

Eq. 2 shows that for the same L, the average head group
areas corresponding to the planar, cylindrical, and spherical
geometries relate, approximately, as 1:2:3; these ratios are
fundamental in the theories of micelle formation (3-5).
The conformations of n-segment chains can be classified

into ordered sequences of n - 1 numbers, a = i2, i3, *- i....
in, where ik denotes the layer in which the kth segment is
located (recall il 1). Thus, for instance, a = 2, 3, 4, 4, 3
describes a six-membered chain making three consecutive
("radial") steps towards the center of the core, then a lateral
step in layer 4 and finally a reversal towards the surface (see
also Fig. 1). The assignment a = i2, ..., in does not fully spec-
ify the conformation. For instance, a = 1, 1, 1 includes 36
conformations all confined to the first layer, of which four
describe straight chains while the others involve one, two, or
three kinks. In alkyl chains, of course, conformations with
different numbers of gauche bonds ("kinks") have different
energies. However, within the framework of the Dill and
Flory lattice that we adopt here, one cannot simply assign
kink energies, mainly due to the various bond angles in the
curved lattices (Fig. 1). For this reason, and in the interest of
focusing on packing considerations, all conformations will
be treated here as energetically degenerate. However, the
extension of the theory to include energetic effects is
straightforward, as outlined in the last section.

Probability Distribution. According to the maximal entro-
py principlet the probability distribution function of chain
conformations, P(a), is the one that maximizes the entropy
function

S = -klP(a)ln[P(a)/g(a)]
s

[3]

subject to the appropriate constraints on P(a) (16, 17); k is
the Boltzmann constant, and g(a) is the degeneracy of a

tThe maximal entropy procedure is the basis of the information-the-
ory approach to statistical mechanics (16, 17). This procedure
yields the microcanonical distribution P(a) = g(a)/Xg(a) in the ab-
sence of constraints (besides normalization); it leads to the Boltz-
mann distribution P(a) x g(a)exp[-Ea/kTI when the average ener-
gy, (E) = IP(a)Ea, is the only constraint, etc.
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[e.g., g(1, 1, 1) = 36 as mentioned above]. The normalization
condition

,P(a) = 1 [4]

is necessarily required. In our system the additional ("infor-
mative") constraints on P(a) are the packing constraints im-
plied by the requirement that all sites should be occupied by
chain segments.

Let Di denote the number of times chains reach layer i
through ("downward") transitions from layer i - 1. Note
that some chains do not reach layer i at all, while others ar-
rive there more than once. For the first layer we set D1 = N,
the number of chain heads. Similarly, let Ui be the number of
times chains reach layer i through ("upward") transitions
from layer i + 1; these transitions involve chain reversals.
Finally, we use Ri to denote the number of lateral steps with-
in layer i. (The notation R follows the term "redundancy"
used by Dill and Flory for these transitions.)
The Mi sites in layer i must be occupied by chain seg-

ments. These sites may be reached through any of the three
types of transitions: hence

The Lagrange multipliers are determined through the im-
plicit relations

afnQ aidQm =--, =Qi=1..,L-1, [10]

obtained by using Eqs. 7-9, or explicitly:
L-1

Jg(a) [mi - 4i(a)] FL ai('(a) = 0, i = 1 L - 1. [11]
a l

The general form, Eq. 10, is most useful when simple closed
form expressions can be derived for Q. In the present case,
this requires some rather drastic approximations. Therefore,
we will determine the ais by a numerical solution of the L -
1 nonlinear algebraic relation, Eqs. 11.
Given P(a) one can calculate all the statistical properties

of the chains. For instance, substituting Eq. 8 into Eq. 3, we
find that the entropy per chain is given by

L-1

S = k fnQ + 7i kimi]. [12]

Di + Ri + Ui = Mi, i= 1,...,L,

with D1 = N and UL = 0. The average number of late
transitions per chain in layer i is (ri) = Ri/N. We define si
larly (dj) = Dj/N and (uj) = Ut/N. If ri(a) denotes the nu
ber of lateral transitions in layer i for the chain conformat
a, then (ri) = XP(a)rj(a). Similarly, (di) = YP(a)dj(a) and
= XP(a)uj(a). [Example: for a = 2, 3, 3, 3, 2, we have d,
= d3(a) = u2(a) = 1 and r3(a) = 2. Note that dj(a) = 1 C

uL(a) = 0 for all values of a.] The quantity, Pi(a), defined

Xi(a) = di(a) + ri(a) + ui(a),

is simply the number of segments in layer i for conformat
a. We can now rewrite Eq. 5 in the form

(4i) = ZP(a)Oi(a) = mi, i= 1, ...,L,

[5]

-ral
mi-
Im-
ion
(ui)
2(a)
and
Ias

[6]

ion

[7]

where mi = Mi/N. The L conditions in Eq. 7 are the con-
straints on P(a) implied by the requirement for volume-fill-
ing. In fact only L - 1 of these conditions are linearly inde-
pendent because, by definition, Ii4i(a) = 1i (0i) = n, and
indeed EI = MIN = n.
Entropy Maximization. Finding the distribution that maxi-

mizes S subject to Eq. 4 and the L - 1 packing constraints in
Eq. 7 is a standard procedure (16, 17) that yields

~~L-1 - / ~~L-1

P(a) = g(a)exp LXiE i(a) Q = g(a) l ai i(a)/Q [8]

where ai exp(-Xi). The Xis are Lagrange multipliers con-
jugate to the mis. Q is the partition function of a chain in the
micelle,

Q = >g(a)exp[- Ef Xi~(a) Zg(a) L1 aO' (a) [9]
a ila l

The significance of Xi(a) as the number of chain segments in
layer i implies, through Eq. 8, that every such segment car-
ries a statistical weight factor a, (aL = 1). Thus, for instance,
if L = 4 and n = 6, the probabilities of a = 1, 1, 1, 2, 3 and a'
=2, 3, 4, 4, 3 are [g(a)/Q]a4a2a3 and [g(a')/Q]a1a2a2 a2,
respectively.

More detailed properties reflecting the distribution of chain
conformations can also be calculated. For instance, the aver-
age number of lateral steps, per chain, in layer i, is (ri). Or,
the ("radial") distribution of chain ends-terminations-
among the different layers is easily shown to be given by

ti= (di) + (ui) - ((di+1) + (ui-l)), [13]

where it should be noted that (dj) 1, (dL+1) = (UL) 0, and
Yt = 1.
Other quantities of interest are the bond-order parame-

ters, Sk = (3/2)(coS26k) -1/2, where ok is the angle between
the kth bond (connecting segments k and k + 1) of the chain
and the normal to the micellar surface. On the planar cubic
lattice 6k = 0, IT/2, or or, corresponding to d, r, and u-type
bonds, respectively. (The normal to the surface points into
the interior of the micelle.) When all bond directions are pos-
sible and equiprobable, S = 0, indicating an isotropic (angu-
lar) distribution. Note, however, that the first bond of a
chain cannot point "upwards," implying S, # 0, even if all
other directions were equally probable. Using PK(I|) and
Pk(I) = 1 - Pk(jI) to denote the probabilities that the kth
bond will be parallel and perpendicular to the micellar sur-
face, respectively, we obtain

Sk = 1 - (3/2)Pk(jI). [14]

This equation will be used for all geometries; its applicability
for the cylindrical and spherical geometries is discussed in
the next section.

RESULTS
In this section we present a set of results for the planar, cy-
lindrical, and spherical geometries for several values of the
micellar radius L (corresponding to different head group ar-
eas mi). All the results are for a single chain length, n = 5,
which represents an alkyl chain of about 15 carbon atoms,
according to the construction of the lattice model. First, a
few remarks should be made on the calculation of coordina-
tion numbers and conformation degeneracies.

Let Zjj denote the lateral coordination number in layer i
(i.e., the number of nearest neighbor sites in the same layer).
Similarly, Zi1 and Zjj+1 are the number of nearest neigh-
bors in layers i - 1 and i + 1, respectively. In the regular
cubic lattice Z1,i = 4, Zi +1 = Zii-1 = 1. (ZLL+1 = Z1 = 0
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for all geometries.) We assume Zj,, = 4 also for the curved
lattices representing cylindrical and spherical micelles (ex-
cept that for spheres ZL,L = 3 because ML = 4). Clearly,
however, Zij,+1 must be modified, and the obvious choice is
Zjj+1 = M,+1/Mi(o1) and Z1,,.1 = Mi-1../Mi(.1). This defini-
tion includes the planar lattice as a special case (Z values =
1). It also ensures that the angular distribution of the vectors
connecting a given site with all of its nearest neighbors is
isotropic (except for sites in the surface layer).
The degeneracy of a = i2, ..., i, can be expressed as

[15]

where g(iklik-b, ..., 1) is the number of sites available to the
kth segment in layer ik, given that the previous k - 1 seg-

ments reside in layers 1, ..., ik-1. For long chains, approxi-
mate calculations of these factors are inevitable. For the
short chains considered here, g(a) can be exactly calculated
(taking into account "self-avoided walks"). As an illustration
consider the following conformations of a four-membered
chain: a1 = 1, 1, 2; a2 = 1, 2, 3; and a3 = 2, 2, 1. For a1 we

have g(al) = g(1j1)g(ljl,1)g(2j1,1,1) = Z11(Z11 - 1)Z12 = 4 x

3 x Z12, where the second factor ensures that the third seg-

ment does not overlap the first. Similarly, g(a2) = Z11Z12Z23
and g(a3) = Z12Z22Z21 = Z22 (Z12 = 1/z21).
The probability that a given site in layer i will be occupied

via a lateral step is Pi(r) = (r,)/mi. Similarly Pi(d) = (d,)/mi
and Pi(u) = (ui)lmi are the corresponding probabilities for
site occupation via i - 1 -+ i and i + 1 -* i steps, respective-
ly. Note, P1(d) = (d1)ml = 1/mi is the surface density of
head groups. Fig. 2 shows Pi(x),x = d, r, u for the three
micellar geometries. As noted already in ref. 11, in bilayers
the probability of lateral steps is small near the surface and
increases towards the midplane due to chain terminations
(see Fig. 2). An opposite behavior is observed in the curved
geometries, primarily because of the decrease in mi near the
micelle center (Fig. 2, dashed lines). The probabilities of re-

versals increase with curvature, as expected, but their abso-
lute values are small. The effects of reversals are somewhat
more pronounced in other properties, like bond-order pa-
rameters, as discussed below.
A "layer-order parameter," 21, = ((3cos26i - 1)/2), may be

defined by associating the angles Oi = 0, ir/2, and r with di,
ri, and ui bonds. This yields qi = 1 - (3/2)Pi(r) = (3/2)[Pi(r)
+ Pi(d)] - 1/2; from Fig. 2 we see that this type of ordering
increases towards the center of spherical and cylindrical mi-
celles and decreases towards the midplane in bilayers.

Fig. 3 shows ti, the (radial) distribution of chain ends. Also

shown, for comparison, are the corresponding distributions
of free chains (i.e., chains whose conformations are not dis-
turbed by other chains). For these chains P(a) is the micro-

canonical distribution, P(a) = g(a)/Ig(a) (corresponding to

all Xi = 0 in Eq. 8). The effects of packing constraints are

Layer,

FIG. 2. Fraction of sites in layer i occupied via lateral [Pi(r) =

(r,)/mi], downward [Pi(d)], and upward [Pi(u)] transitions for bi-

layer (a), cylindrical (b), and spherical (c) geometries. The dashed

lines in b and c show the mi/n. In all cases n = 5 and mi = m1 Mi/M1.
Note the small probability of reversals.

FIG. 3. Probability distribution of chain terminations among the
layers in planar (a), cylindrical (b), and spherical (c) micelles. In all
cases, n = 5 and all sites are strictly occupied (o) (see Fig. 2) except
for the case L = 5 in a (A) where mi = ml = 1.15 for i s 4 and m5 =

0.4. The dashed line in c is obtained when chain reversals are ne-

glected. o, t, of free chains.

most pronounced in bilayers and least pronounced in
spheres.
Bond order parameters calculated with the aid of Eq. 14

are shown in Fig. 4. For the planar and cylindrical geome-

tries, this equation is consistent with the requirement that,
when all lattice directions are equiprobable, S = 0. For
spheres this is an approximation. [In a random distribution
of bond directions, P(|I) = Z1/Z = 4/(4 + Zii+1 + Zii-1). For
the planar and cylindrical lattices, Zii+1 + Zi,,-1 = 2, imply-
ing P(II) = 2/3, hence S = 0. For spheres this yields a P(II)
which is a few percent larger.] The figure shows that for the
same L, the degree of chain ordering is highest in bilayers
and lowest in spherical micelles and that it decreases with L.
Also, for all L and all geometries, the bond-order parameters
decrease from the polar head towards the end of the chain.
These findings are in accord with experimental results (7, 14,
15) and the calculations of Gruen and de Lacey (13). On the
other hand, the Dill and Flory model (11, 12) predicts that Sk
increases with k for spheres and cylinders.

Fig. 5 shows chain entropies as a function of the micellar
width. Also shown are the entropies of free chains, which
can be regarded as a special case of Eq. 12 with Xi = 0 and Q

Xg(a) fl (i.e., S = kenl). When chain reversals are

neglected, the entropies are lower by up to =10%. The main
conclusion of this calculation is that, for a given L, the entro-
pies corresponding to the different micellar geometries are

substantially different, particularly so for L c n, which is

0.8

0.6-

L=5

0.4
L=4

Cr)

0.2 L=51%

0

//////Free chains

-02 2 3 4

bond,k

FIG. 4. Bond-order parameters as a function of the bond dis-

tance from the head group: bilayers (o), cylinders (o, *), and

spheres (*). o, Chains without reversals. The cross-hatched region
bounds the values of Sk for free chains in all geometries (for L = 5).
The negative values reflect the effect of the micellar boundary that
excludes the upward direction of the first bond.

Layer,
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Radius, L

FIG. 5. Chain entropy as a function of micellar radius, for planar
(a, *), cylindrical (o, *) and spherical (0, *) micelles. Open symbols
are the entropies of free chains, S = kenig(a) (see text).

assumed to be the micellar radius in theories of amphiphile
aggregation (3-5).

DISCUSSION AND SUMMARY
The generalized canonical distribution, Eq. 8, corresponds
to the thermodynamic state of minimal free energy per chain,
subject of course to the assumptions of the model. In our
theory, as in the theory of Dill and Flory, the system is re-
garded as "athermal" because energetic effects are neglect-
ed; consequently, the Helmholtz free energy is - TS. But our
formulation can easily be extended to include conformation
energies. To this end the conformations should be classified
not only according to their layer sequence, a = i2, ..., in, but
also according to their energy E (which is simply proportion-
al to the number of gauche bonds). In this case, instead of
the probability distribution, Eq. 8, we would have

~~~~L-1
P(b) = g(b)exp -E(b)/kT - ikti(b)J Q, [16]

where g(b) is the number of conformations characterized by
b = i2, ..., in;E(b). Note that Eq. 16 becomes formally identi-
cal to Eq. 15 provided that g(a) = 'g(b)exp(-E(b)/kT),
where the sum is over all conformations b with the same
layer sequence a = i2, ..., i,. In other words, energetic ef-
fects can be incorporated into the theory without changing
the equation determining the Xis, Eq. 12, provided the degen-
eracy factors are properly modified.

Eq. 16 is very similar to the probability distribution used
by Gruen and de Lacey (13). From Eq. 12 we see that kXi =
aS/ami = -(1/T)dA/dmi. But mi, the number of sites (per
chain) in layer i is simply (ai)-the average area per chain in
layer i (in lattice units). Thus, kTXi = ri = -aA/dmi is the
lateral pressure in this layer. Indeed, in the Gruen and de
Lacey model, terms of the type 7riai/kT appear where the
Xiki terms appear in Eqs. 15 and 16. (To be precise, the anal-
ogy is between Ki and art - XTL because XL = 0.) The major
advantage of using the lattice model is the derivation of the
algebraic equation, Eq. 11, from which the set of ai =

exp(-Xi) are evaluated much more easily than by the itera-
tive Monte Carlo approach (13).
One approximation that simplifies considerably Eqs. 8-11

is the neglect of the reversals. This excludes many confor-
mations and implies ui = 0 in Eq. 6. In the previous section,
we have seen that, at least for short chains, this is a reason-
able approximation. In the theory of Dill and Flory, rever-
sals are disregarded entirely. Yet, the bond-order parame-
ters, Sk, predicted by their theory for chains in spherical and
cylindrical micelles increase with k rather than decrease as

indicated by our calculations (as well as those of Gruen and
de Lacey and experimental data). Thus, the difference be-
tween the theory of Dill and Flory and ours must be attribut-
ed to the different P(a)s. Indeed, although we used the Dill
and Flory lattice and equivalent packing constraints, the der-
ivation of P(a) is similar only if our entropy maximization is
carried out differently. Briefly, S may be expressed as a sum
of layer entropies, S = ISi. By maximizing SI (subject to
(di) + (r1) = 1 + (r1) = mi), one finds Pl(rl), the probability
of rl lateral steps in layer 1. Using this result in S2 and maxi-
mizing S2 (subject to (r2) = M2 - (d2) = m2 - 1 - tI) yields
P2(r2), etc. As noted, however, this sequential entropy maxi-
mization gives results that differ considerably from those ob-
tained by the simultaneous procedure leading to Eq. 11. We
conclude accordingly that the increasing order-parameter
profile predicted by Dill and Flory is due not to neglect of
reversals or chain energies but rather to an incomplete maxi-
mization of the packing entropy.

In the framework of the athermal model described in this
paper, free-energy changes corresponding to different micel-
lar geometries are given by AA = - TAS = NAA4. Here A4
represents the chain (tail) contribution to pu°-the standard
chemical potential per amphiphile. In the previous section,
for instance, we have seen that, for the chains packed in mi-
celles of the same thickness L but of different shapes, IASI -

k: hence A14'tl - kT. (Similar conclusions were arrived at in
ref. 13.) This is of the same order of magnitude as the empiri-
cal AW', which includes both tail and head contributions.
Thus, the assumption commonly made in amphiphile aggre-
gation theories (3-5) that A', (and L) is the same for different
micellar shapes is highly questionable. Yet, more careful
analyses are required before quantitative conclusions can be
drawn.
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