Abstract
We extended single molecule fluorescence imaging and time-resolved fluorometry from the green to the violet-excitation regime to find feasibility of detecting and identifying fluorescent analogs of nucleic-acid bases at the single-molecule level. Using violet excitation, we observed fluorescent spotsfrom single complexes composed of a nucleotide analogue and the Klenow fragmentof DNA polymerase I. Also, we implemented Raman imaging and spectroscopy of adenine molecules adsorbed on Ag colloidal nanoparticles to find feasibility of identifying nucleic-acid bases at the single-molecule level. Surface enhanced Raman scattering (SERS) of adenine molecules showed an intermittent on-and-off behavior called blinking. The observation of blinking provides substantial evidence for detecting single adenine molecules.
Keywords: adenine, fluorescence, Klenow fragment, silver particles, single molecule imaging, surface-enhanced Raman scattering, TNP-ATP
Full Text
The Full Text of this article is available as a PDF (130.1 KB).
References
- 1.Ishikawa M. DNA Sequencing Based on Single Molecule Detection. Tanpakushitsu Kakusan Koso. 1999;44:2019–2023. [PubMed] [Google Scholar]
- 2.Keller R., Ambrose W.P., Goodwin P.M., Jett J.H., Martin J.C., Wu M. Single-Molecule Fluorescence Analysis in Solution. Appl. Spectros. 1996;50:12A–32A. [Google Scholar]
- 3.Tachi-iri Y., Ishikawa M., Hirano K.-I. Investigation of Hydrolysis of Single DNA Molecules Using Fluorescence Video Microscopy. Anal. Chem. 2000;72:1649–1656. doi: 10.1021/ac9911948. [DOI] [PubMed] [Google Scholar]
- 4.Yogi O., Kawakami T., Yamauchi M., Ye J.Y., Ishikawa M. On-Demand Droplet Spotter for Preparing Pico-to Femtoliter Droplets on Surfaces. Anal. Chem. 2001;73:1896–1902. doi: 10.1021/ac0012039. [DOI] [PubMed] [Google Scholar]
- 5.Lee P.C., Meisel D. Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols. J. Phys. Chem. 1982;86:3391–3395. [Google Scholar]
- 6.Ye J.Y., Yamauchi M., Yogi O., Ishikawa M. Spectroscopic Properties of 2-(or3)-O-(2,4,6-Trinitrophenyl) Adenosine 5′-Triphosphate Revealed by Time-Resolved Fluorescence Spectroscopy. J. Phys. Chem. B. 1999;103:2812–2817. [Google Scholar]
- 7.Secrist J.A., III, Barrio J.R., Leonard N.J., Weber G. Fluorescent Modification of Adenosine-Containing Coenzymes. Biological Activities and Spectroscopic Properties. Biochemistry. 1972;11:3499–3506. doi: 10.1021/bi00769a001. [DOI] [PubMed] [Google Scholar]
- 9.Ishikawa M., Yogi O., Ye J.Y., Yasuda T., Maruyama Y. Grouping of Independent Single Molecules on Silicon Surfaces. Anal. Chem. 1998;70:5198–5208. [Google Scholar]
- 10.Biju V., Yamauchi M., Ishikawa M. Distribution of Single Molecules in Polymer Thin Films. J. Photochem. Photobiol. A. 2001;140:237–241. [Google Scholar]
- 11.Edman L., Mets U., Rigler R. Coformational Transitions Monitored for SingleMolecules in Solution. Proc. Natl. Sci. USA. 1996;93:6710–6715. doi: 10.1073/pnas.93.13.6710. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Jia Y., Sytnik A., Li L., Vladimirov S., Cooperman B.S., Hochstrasser R.M. Nonexponential Kinetics of a Single tRNAPhe Molecule under Physiological Conditions. Proc. Natl. Acad. Sci. USA. 1997;94:7932–7936. doi: 10.1073/pnas.94.15.7932. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Ambrose W.P., Goodwin P.M., Jett J.H., Johnson M.E., Martin J.C., Marrone B.L., Schecker J.A., Wilkerson C.W., Keller R.A. Application of Single Molecule Detection to DNA Sequencing and Sizing. Ber. Bunsenges. Phys. Chem. 1993;97:1535–1541. [Google Scholar]
- 14.Nie S., Emory S.R. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science. 1997;275:1102–1106. doi: 10.1126/science.275.5303.1102. [DOI] [PubMed] [Google Scholar]
- 15.Michaels A.M., Nirmal M., Brus L.E. Surface Enhanced Raman Spectroscopy of Individual Rhodamine 6G Molecules on Large Ag Nanocrystals. J. Am. Chem. Soc. 1999;121:9932–9939. [Google Scholar]
- 16.Kneipp K., Wang Y., Kneipp H., Perelman L.T., Itzkan I., Dasari R.R., Feld M.S. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) Phys. Rev. Lett. 1997;78:1667–1670. [Google Scholar]
- 17.Krug J.T., II, Wang G.D., Emony S.R., Nie S. Efficient Raman Enhancement and Intermittent Light Emission Observed in Single Gold Nanocrystals. J. Am. Chem. Soc. 1999;121:9208–9214. [Google Scholar]
- 18.Kneipp K., Kneipp H., Deinum G., Itzkan I., Dasari R.R., Feld M.S. Single-Molecule Detection of a Cyanine Dye in Silver Colloidal Solution Using Near-Infrared Surface-Enhanced Raman Scattering. Appl. Spectros. 1998;52:175–178. [Google Scholar]
- 19.Xu H., Bjerneld E.J., K. M., II, Brjesson L. Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering. Phys. Rev. Lett. 1999;83:4357–4360. [Google Scholar]
- 20.Kneipp K., Kneipp H., Kartha B., Manoharan R., Deinum G., Itzkan I., Dasari R.R., Feld M.S. Detection and Identification of a Single DNA Base Molecule Using Surface-Enhanced Raman Scattering (SERS) Phys. Rev. 1998;E57:86281–86284. [Google Scholar]
- 22.Brown R., Orrit M. Spectral Jumps of Single Molecules. In: Basche T., Moerner W.E., Orrit M., Wild U.P., editors. Single-Molecule Optical Detection, Imaging and Spectroscopy. Weinheim: VCH; 1996. pp. 109–142. [Google Scholar]
- 23.Lecomte S., Matejka P., Baron M.H. Correlation between Surface Enhanced Raman Scattering and Absorbance Changes in Silver Colloids. Evidence for the Chemical Enhancement Mechanism. Langmuir. 1998;14:4373–4377. [Google Scholar]
- 24.Beaven G.H., Holiday E.R., Johnson E.A. In: The Nucleic Acids. Chargaff E., Davidson J.N., editors. New York: Academic Press; 1955. p. 493. [Google Scholar]
- 25.Morris M.D., Wallan D.J. Resonance Raman Spectroscopy. Current Applications and Prospects. Anal. Chem. 1979;51:182A–192A. [Google Scholar]