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Abstract. In this paper we extend and reconsider a solitonic model of the action potential in biological
membranes for the case of plant cells. Aiming to give at least a qualitative description of the K+,
Cl� and Ca2+ driven process of propagation of the action potential along plant cells we put forward
the hypothesis of three scalar fields�i(x), i = 1, 2, 3 which represent K+, Cl� and Ca2+ ions,
respectively. The modulus squared of these fields carries the usual quantum-mechanical (probabilistic)
interpretation of the wave function. On the other hand, the fields are described themselves by the
Lagrangian densitiesL�i

. Moreover, the interaction and self-interaction termL(�i;�j)
between

the fields is considered. The Lagrangian densitiesL�i
include adouble-wellpotential (which is

proportional to�4
i) that leads tospontaneous symmetry breakingwhich may produce structures with

non-zero topological charge, e.g.longitudinal solitons. In order to describe the transversal motion
of the ions of concern we need to assume only non-uniform solutions of the system of equation of
motion. Hence we seek for solutions (travelling waves) which preserve the shape and which move
without dissipation and in this way we reconstruct the main dynamical features of the action potential
in plants.
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1. Introduction

It is suggested (Davies, 1987) that action potentials which occur in most, if not
all, plants play a major role in intercellular and intracellular communication. Long
distance communication is achieved through the transmitted changes in membrane
potential, whereas local signalling is accomplished by changes in the subcellular
localization of ions K+, Cl� and Ca2+, and perhaps by membrane depolarization
and current flow (Shimmen & Tazawa 1980; Shiina & Tazawa 1986; Fromm
& Bauer 1994). These local changes in ion concentration can lead to modified
activities of enzymes in the cell wall, the plasma membrane and the cytoplasm.
In particular, the elevated concentration of cytoplasmatic Ca2+ is shown to play
a major role especially in the modulation of translation. On the other hand, the
plasma membrane of higher plants contains a H+-ATPase as its major ion pump.
The plasma membrane H+-ATPase generates an electric potential and pH gradient
across the plasma membrane by extruding protons from the cell. The energy bound
in this electrochemical gradient is thought to be the driving force for solute carriers
and channels that are responsible for nutrient uptake and maintenance of cell turgor.
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The occurence of action potentials (AP) in plants is quite common (see Davies
1987). Action potentials are generated in fungi (Slayman et al. 1976), algae (Hope
& Walker 1975; Gradmann & Mummert 1980; Abe et al. 1980; Williamson &
Ashley 1982; Beilby 1984), excitable higher plants (van Sambeek & Pickard 1976;
Samejima & Sibaoka 1980; Abe 1981; Simons 1981), and ‘normal’ higher plants
(Zawadzki 1980; Zawadzki et al. 1991; Davies & Schuster 1981a, b; Roblin 1985)
in response to light (Stolarek & Pazurkiewicz-Kocot 1980), heat, cold, chemicals,
electrical stimulus and wounding (Gradmann & Mummert 1980; Stolarek et al.
1984; Filek et al. 1993). A role for action potentials is rather obvious in plant
movements such as leaf folding inMimosaand insect trapping inDionea(Pickard
1973); their role, according to Davies (1987), is less obvious in ‘normal’ plants, but
suggestions have included regulation of ion transport, turgor and phloem function-
ing, as well as intercellular and intracellular signalling (Pickard 1973; Gradmann &
Mummert 1980; Fromm & Eschrich 1993; Fromm & Spanswick 1993; Fromm &
Bauer 1994), although their role as long distance signals has also been questioned
(Goldsworthy 1983).

According to Trebacz (1989) the course of events during the ‘metabolic’ action
potential is to be as follows: “interruption of illumination causes a temporary
insufficiency of the ATP available for the power supply of Cl� pumps, this causes
their breakdown and then reversal of their action. The passage of Cl� outside the
cell causes depolarization to about –50 mV which brings about the exit of K+ as
a consequence of exceeding the equilibrium potential for these ions. As a result of
the efflux of K+ from the cell, repolarization to about –90 mV occurs. Meanwhile,
the ion pump regains its previous direction and begins to import Cl� to the cell and
after 30–90 seconds restores the equilibrium at a resting potential of –170 mV”
(Gradmann 1976).

In the plasmalemma ofCharophytesthere are Cl� channels activated by depo-
larization, which are responsible for a component of the action potential (Gaffey
& Mullins 1958; Beilby & Coster 1979). These channels may be activated by
cytoplasmic Ca2+ (Shiina & Tazawa 1987) the concentration of which increas-
es during the action potential (Williamson & Ashley 1982; Kikuyama & Tazawa
1983). By using the patch-clamp technique on the plasmalemma, Coleman (1986)
demonstrated unitary currents of Cl� channels which open more frequently with
membrane hyperpolarization. The average current through these channels measured
by conventional voltage clamping is also activated by low external pH (Tyerman et
al. 1986a) and it was proposed that their function is to regulate voltage and to keep
the proton-motive force across the plasmalemma constant at different external pH
(Tyerman et al. 1986b). It is not known whether the depolarization and hyperpo-
larization activated Cl� currents are the result of the same population of channels
or two different populations of channels (Tyerman & Findlay 1989). Experiments
in which the patch-clamp technique was used reveal the I–V curves of single Cl�

channels in the cytoplasmatic droplet membrane that we tentatively assume to be
tonoplast. The Cl� channel coexists with two K+ channels: the high conductance
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Figure 1. Schematic representation of transverse membrane ionic fluxes. An energy-dependent
ion (proton) ‘pump’ driven by the hydrolysis of ATP transports chloride (empty dots) and
potassium (crossed dots) ions against electrical gradient and establishes concentration gradients
of these ions across the membrane. The second type of channels enables the ionic flow with the
gradient in response to changes in the voltage across the membrane. The separate potassium,
chloride and calcium channels are shown in the resting state – the gates held closed by the
membrane potential. When the resting potential is reduced, the channels open and give rise
to a pulse of current that propagates down the cell. Our theoretical description concerns the
channels that allow ion movements along with the electrical gradient (based on Keyens 1979).

channeland K+ channel with a smaller conductancewhich displays marked voltage
dependence (Tyerman & Findlay 1989).

In maize (Fromm & Bauer 1994), action potentials are elicited by electrical
stimulation and the K+ and Cl� concentrations of the sieve elements decrease
sharply while Ca2+ may increase. From these ion displacements, it is assumed
that Cl� also carries the inward and K+ the outward current in the maize action
potential. Since Ca2+ is present at lower concentrations than K+ and Cl�, its
role during excitation might involve stimulation, as was already proposed for
the Characeaeaction potential (Lunevsky et al. 1983). It was shown (Fromm &
Spanswick 1993) that stimulation of the plant was followed by ion shifts which
were most striking in the phloem cells. While the concentration of potassium
and chloride was diminished after stimulation, the amount of cytoplasmic calcium
increased slightly. These displacements lead to the conclusion that Ca2+ influx as
well as K+ and Cl� efflux are involved in the propagation of action potentials (see
Figures 1 and 2).

To conclude, the ionic mechanism of excitation in plants is based on the observa-
tion that chloride carries the inward current (Gaffey & Mullins 1958) and potassium
the outward current. However, calcium also plays a significant role during the action
potential (Beilby & Coster 1979; Kikuyama & Tazawa 1983). It has been suggested
that entry of calcium stimulates the opening of chloride channels (Lunevsky et al.
1983; Tsutsui et al. 1986; Kikuyama 1987).

Linear and two dimensional (membrane) structures seem to be the most fun-
damental elements of living cells (Odell 1980; Barrett 1981; Lakshminarayanaiah
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Figure 2. Illustration of the sequence of events of the action potential (AP) (voltage) across
plasmalemma inChara corallinaand the corresponding ionic currents (conductances) (r.h.s.
scales) of of Cl� and K+. (a) The excitation and the rapid growth of GCl (electrical conductivity)
for chloride ions is accompanied by a sudden rise of inward electrical current JCl which is
brought about by the efflux of Cl� and the depolarization of the resting potential; (a–b) Slow
depolarization still enhances the GCl; (b–c) Outward potassium current GK; K+ efflux increases
during the depolarization of the resting potential; (c) The depolarization reaches its maximum
value when -GCl = GK which keeps decreasing and results in a resting potential recovering to
the initial level; JCl and JK diminish – at the moment the membrane looses excitability.

1984; Mánka & Ogrodnik 1991; Nossal & Lecar 1991). Propagation of the action
potential along such quasi one-dimensional structures due to transversal current of
potassium and sodium ions and due to the gradient of the electrochemical poten-
tial caused by its relative deficiency inside or outside of the membrane was first
described on the basis of a phenomenological model due to Hodgkin, Huxley and
Katz (Hodgkin & Huxley 1952; Hodgkin & Huxley 1952; Hodgkin et al. 1952) with
the help of a second order nonlinear differential equation. They elucidated the basic
events underlying the generation of the action potential on the squid giant axon at
the Marine Biological Association of the United Kingdom in Plymouth (a contribu-
tion for which they shared a Nobel prize in 1963). They showed (see Keynes 1979)
that the electrical excitability of the nerve membrane depends on its possession of
a voltage-sensitive ionic permeability system that enables it to utilize energy stored
in the ionic concentration gradients set up by the energy-dependent ion pump. This
description gave first insight into possible inward and outward flows of K+ and
Na+ gated currents and thus propagation of the membrane potential along such
structures. In Pietruszka (1993), we considered how such a system evolves, i.e. we
have treated similar system dynamically. The propagation of the action potential
along the axon was of our main concern. Our investigation in a series of subsequent
time instants provided an insight into mutual relations between the action potential
and the ionic transmissions across excitable membranes. It was possible to observe
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changes in both the action potential amplitude and ionic currents as a sequence of
events along such one-dimensional structures as axons.

The aim of this communication is to reconsider and generalize an alternative
description (a ‘per analogia’ model) of the action potential when applied to plants
(regarding its evolution in time) by means of field-theoretical methods. We propose
here that the transmitted action potential as a whole may act as a major intercel-
lular signal. We expand some tentative suggestions put forward earlier (Maśka &
Pietruszka 1995). We develop the idea of treating the transmission of the action
potential as a well-known physical phenomenon (which was first observed and
described by John Scott Russell who was riding along Union Canal in Scotland
once in the morning in 1834 and followed a solitary wave uniformly moving on the
water surface (Scott Russell 1844) which in mathematical description results from
non-linear time-dependent partial differential equations – the soliton propagation.1

The scope of this paper is as follows: The second section addresses providing a
physicalmodel of the action potential propagation in plant cells while the remainder
of our paper presents short conclusions and remarks.

2. The model

Let us consider the full Lagrangian density function, which includes the kinetic
and potential energies of the scalar fields�i (i = 1;2;3) as well as the�i � �j
interactions (we omit the role of a proton (ion) pump for the sake of simplicity):

L =
3X

i=1

L�i
+

3X
i;j=1

0
L(�i;�j); (1)

where
P0 denotes summation over different indices (i 6= j). Trying to give at

least a qualitative description of the biological process presented in the first section
we introduce three scalar fields2 �i (i = 1;2;3) in 1+1 dimensional space (vt; x),
representing K+, Cl� and Ca2+ ions, respectively;c is here the maximum transport
velocity in the medium (it isnot to be confused with the light velocity).v which is
unequal to c,v 6= c, in ourpseudorelativisticformalism describes the propagation
velocity. The fields are described by the Lagrangian densitiesL�i

:

L�i
= 1

2@��i@
��i � Ui(�i); (2)

where� = 0, 1, hence@� = (@0; @1) and@0 = 1
v

@
@t

, @1 = @
@x1 , with the (fields)

self-interactions given by

Ui(�i) =
�i

4

�
�2
i � u2

i

�2
; (3)

and the interaction between�i and�j described by the second term in (1)L(�i;�j)
:

L(�i;�j)
=

�ij

2
�2
i�

2
j : (4)
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The LagrangiansL�i
, (i = 1;2;3) posses reflection symmetry (�i $ ��i).

Presumably, the ground state of the system described by e.g.L�1 is either�1 = �u1

or �1 = +u1 and theZ2 symmetry present in the Lagrangian is not respected by
the vacuum state (ground state energy). When a symmetry of the Lagrangian is
not respected by the vacuum, the symmetry is said to bespontaneously broken.
However,the symmetry can be brokenby obtaining a vacuum expectation value
(VEV) �i = �ui as well as�i = +ui with equal probability. Thus one can
imagine, that in one region (e.g., forx! +1) the configuration is close to one of
the minima (e.g.,�i � +ui), whereas in the another region (e.g., forx! �1) the
configuration is close to the other one (i.e.,�i � �ui). It is obvious that there must
be also a region whereUi(�i) > 0. It is easy to find a static (@�=@t = 0) solution
of a system described by the LagrangianL�i

with the boundary value conditions
�i(�1) = �ui; �i(1) = ui. Equation of motion for the field�i (Euler-Lagrange
equation) takes the form:

@2�i

@x2 = U 0i(�i); (5)

which has thetopological solitonsolution – the kink:�i(x) = �ui tanh(x=�i)
where� is the ‘thickness’ of the wall, given by�i = (�i)

1=2u�1
i . The finite, but

non-zero thickness of the wall may be understood in the following way: The terms
contributing to the energy include a gradient term (kinetic) and a potential energy
term; the gradient term is minimized by making the wall as thick as possible, and
the potential term is minimized by making the wall as thin as possible, i.e., by
minimizing the distance over which�i is away from�ui; the balance between
these terms results in a wall of thickness�i.

The total energy of the kink configuration can easily be calculated for non-
interacting fields:

Ei =

Z 1

�1
Hidx =

Z 1

�1

"
1
2

�
@�i

@x

�2

+ Ui(�i)

#
dx

=

Z ui

�ui

q
2Ui(�i)d�i =

4
3

s
�i

2
u3
i (6)

and eventually readsETot =
P

i Ei.
We find that such a solution is topologically stable, i.e., there are no continuous

transformations which lead to a field configuration without the region of finite
density of energy. This is a consequence of conservation of topological charge
Q, which is different from zero for all topologically non-trivial configurations. In
general, topological charge takes values from a (sub)set of integer numbers. In our
exampleQ = �1 for kink-type solutions andQ = 0 for homogeneous solutions
(i.e., for �i = ui or �i = �ui). Let us remind that the topological chargeQ is
connected with a conserved currentj� (@�j� = 0; � = 0;1) given by

j
�
i =

1
2ui

���@��
�
i ; (7)
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where ��� is the fully antisymmetric tensor (�01 = 1). Integrating the zeroth
component of the above equation we get

Qi =

Z 1

�1
j0
i dx =

1
2ui

Z 1

�1

@�i

@x
dx

=
1

2ui
[�(1)� �(�1)] = �1 (8)

for non-homogeneous field configurations. Note, that the currentj
�
i is not a conse-

quence of any continuous symmetry (it is not a Noether current). The simple model
described by the LagrangianL�i

has stable non-homogeneous solutions because
of the existence of disconnected vacuum states.

Now, we look for a more realistic model with kink-type stable solutions that
involve potassium, chloride and calcium fields. The full Lagrangian (1) can be
rewritten in the following form:

L =
1
2

3X
i=1

1X
�=0

@��i@
��i �W (�i; �j); (9)

where the potentialW (�i; �j) is given by

W (�i; �j) =
3X

i=1

�i

4

�
�2
i � u2

i

�2
+
X
i6=j

�ij

2
�2
i�

2
j (10)

(i; j = 1;2;3).
For some values of the parameters�i andui – when we focus our attention

only on potassium and chloride fields – the potentialW (�i; �j) does not have
disconnected minima, and then we do not expect topologically stable solutions.
For instance, for�1 = �2 = �3 = u1 = u2 = 1 the manifold of equiv-
alent vacuum states constitutes a circuit in the�1 � �2 plane with a radius
R2 = �2

1 + �2
2 = 1 (Figure 3). However, for most values of these parameters

(for �3 > �1; �3 > �2) W (�1; �2) has four disconnected minima for(�1; �2) 2
f(u1;0); (�u1;0); (0; u2); (0;�u2)g (Figure 4).

Once we wish to reconstruct the shape of the action potential we look for
solutions which fulfill the following boundary value data conditions:�1(�1) = 0,
�1(1) = u1, �2(�1) = u2, �2(1) = 0; whereu1 andu2 are the VEVs of�1

and�2 in the potassium-rich and chloride-rich regions, respectively. The values of
the coupling constants�1; �2; �3 and the vacuum expectation valuesu1; u2 can
be determined with the help of the fit to experimentally obtained data.

Recalling at this point the Euler-Lagrange equations

@�
@L

@(@��i)
=

@L

@�i
(11)
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Figure 3. The 3-dimensional plot (top) of the potentialW (�i; �j) for the set of parameters:
�1 = �2 = �3 = u1 = u2 = 1. The bottom figure shows the corresponding contour plot of
isoenergetic curves.
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Figure 4. The 3-dimentional plot (top) of the trial potentialW (�i; �j), when the interaction
strength (�3) between the fields increases, for�1 = �2 = u1 = u2 = 1; �3 = 1:5. The bottom
figure shows the corresponding contour plot of isoenergetic curves.
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(i = 1;2;3), or, here, equivalently@�@��i = �W 0(�i), and after inserting the
total Lagrangian densityL (9) we end up with the set of three partial differential
equations for the scalar fields�1 and�2 and�3:

2�1 = ��1[�1(�
2
1� u2

1) + �12�
2
2 + �13�

2
3];

2�2 = ��2[�2(�
2
2� u2

2) + �21�
2
1 + �23�

2
3];

2�3 = ��3[�3(�
2
3� u2

3) + �31�
2
1 + �32�

2
3]; (12)

where we have utilized the following (d’Alambertian) notation

�@�@
� = 2 =

@2

@x2
1
�

1
v2

@2

@t2
: (13)

For symmetry reasons we put�ij = �ji. Moreover, if we assume interaction
constants�13 = �23

�= 0 and we change the notation suitably we are left with

@�@
��1� �1(�1�

2
1 + �3�

2
2� �1u

2
1) = 0;

@�@
��2� �2(�2�

2
2 + �3�

2
1� �2u

2
2) = 0;

@�@
��3� �3(�3�

2
3 + �3u

2
3) = 0; (14)

for �= 0, 1. The first two equations couplevia coupling constants�i. The third one
describes the dynamics of the free calcium field�3 – since calcium is present at
lower concentrations than potassium and chloride we retain relevant interactions
(we neglect Ca2+ ions) and we put (in the ‘zeroth’ approximation)�3 = 0 hereafter.
Because of the ‘Lorentz invariance’ of the Euler-Lagrange equations we seek
static solutions (by, e.g., discretizing the space variable and by use of central
difference approximation for the second order space derivative), and then apply
the Lorentz transformation to obtain the time-dependent solution. In the static case
(@�i=@t = 0, i = 1;2) the system of equations of motion (12) takes the following
form:

d2�1(x)

dx2 = �1(�1�
2
1 + �3�

2
2� �1u

2
1);

d2�2(x)

dx2 = �2(�2�
2
2 + �3�

2
1� �2u

2
2); (15)

with the boundary conditions given as above.3 For arbitrary values of the coupling
constants and the vacuum expectation values the above system of equations is too
complicated to be solved analytically. (For some specific values of these parameters,
when the system is analytically solvable, there are no topologically non-trivial
solutions.) Thus we have adopted some numerical procedures in order to find the
solutions, namely a variable order, variable step size finite-difference method with
deferred corrections used.
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Figure 5. The density of charge inside the cell for the field configuration calculated from the
example solution for the system of equations of motion for the potassium and chloride fields.

According to the standard interpretation of the wave function we can finally
calculate (taking into account the solutions for some values of parameters of the
system of equations) thecharge density(the spatial density of K+ and Cl� ions
times the single ion charge) in the cell in the following form:

%(x) =
2X

i=1

qi j�i(x) j
2; (16)

whereqi stands for thei-th single ion charge. Figure 5 shows how the density of
charge changes along the cell. The shape of the charge density function resembles
a shape of the action potential impulse.

Up to this point we have presented a static picture but we can still explore the
relativistic invariance of the Euler-Lagrange equations of motion in order to find
time-dependent solutions. Observe that if�1(x) and�2(x) are solutions to the
equations (13), then so are the boosted configurations:

�i(x; t) = �i
�
(x+ vt)

�
; (17)

 =
1q

1� v2

c2

; (18)

which describe thesolitary wavemovingalongthex axis with a constant velocity
v. Thus, also the region of depolarized cell membrane can propagate down the
length of the cellwithout attenuationor change in shape.

3. Conclusions

In this paper we have presented a simple solitonic model for the action poten-
tial travelling along the plant cell. We started our considerations with three scalar
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fields (for potassium, chloride and calcium channels, respectively) which were
described by the Lagrange function that includes both interactions between these
fields and self-interactions in the kinetic and potential terms. The interactions and
self-interactions result in non-linear terms in the equations of motions for the
potassium and chloride fields, allowing stable and non-homogeneous structures -
topological defects, e.g. longitudinal solitons. We observe that thesesolitonscan
propagate down the cell qualitatively in the same manner (without the energy loss
– dissipation – and with preserving the shape of the moving spike) as does the
action potential.
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Notes

1. We seek solutions of the form�(x; t) = f(x�vt)what is calledtravelling wave. Especially, we
are interested in travelling waves with finite energy, i.e., if we introduce the variable� = x�vt,
thenf must satisfy the boundary conditions lim�!�1 f(�) = ��1. As f is essentionally
constant sufficiently far away we say that such a wave islocalized. A solution of the form
�(x; t) = f(�) which satisfies such boundary conditions is called asolitary wave.

2. In general� = �0+��where�0 stands for the mean-field value of� and�� describes deviation
about�0. In our derivation we omit the second component.

3. By making the substitutiony1 = �1, y2 = �01, y3 = �2 andy4 = �02 (where prime denotes
derivatives overx) we obtain a set of ordinary differential equations of the first order

y
0

1 = y2;

y
0

2 = y1(�1y
2
1 + �3y

2
3 � �1u

2
1);

y
0

3 = y4;

y
0

4 = y3(�2y
2
1 + �3y

2
3 � �2u

2
2)

for unknown functionsy1(x)andy3(x)and their derivatives. The above system of equations may
be solved numerically with the help of the multiple shooting method (e.g., BVPMS/DBVPMS,
IMSLMD Fortran Library; MUSN, etc.).
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