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Abstract. Solvent-induced electrostatic potentials and field components at the solute sites of model
Na+q–Cs−q molecules were computed by summing over either solvent charges (q-summation)
or solvent molecular centers (M-summation) from molecular dynamics simulations. These were
compared with values obtained by solving Poisson equation with the dielectric boundary defined
by Reff = (Ratom + Rgmax)/2. q-summation using cut-offs that are ≤ 10 Å generally underes-
timates or overestimates (a) the potentials and field components at Na+q and Cs−q relative to the
theoretical values and (b) electrostatic solvation free energies of the dipolar solutes assuming linear
solvent response relative to the respective values from free energy simulations. Furthermore, the q-
summed electric potentials showed significant oscillations even beyond the second hydration shell. In
contrast, the corresponding M-summed potentials plateaued after the first hydration shell. Although
the different water molecular centers yielded different converged potential values, the dipole center
produced values in remarkable agreement with the theoretical values for solute charges ranging from
1 to 0.1e, indicating the existence of a convenient molecular center for computing these quantities. In
contrast to the M-summed potentials, the electrostatic field components and electrostatic solvation
free energies from linear response relationships were found not to be sensitive to the choice of the
molecular center for typical cut-off distances (8 to 12 Å) used in most simulations.

Key words: continuum dielectic theory, electrostatic potentials, linear response, M-summation,
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1. Introduction

Accurate values of solvent-induced electrostatic potentials and electric fields at
solute sites are required in molecular theories of polar solvation [1–4], in analyz-
ing redox properties of solutes [5] and in problems related to binding free energy
calculations using linear response relationships [3, 6–8]. For a molecular solvent,
these quantities can be computed either by summing over charges (q-summation),
or by treating the solvent molecule as a group with a chosen molecular (M) center
and summing over these M-centers (M-summation) [3, 9–11]. Figure 1 shows the
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Figure 1. (A) A schematic diagram showing the different water molecular centers, which
are used in summing the solvent-induced electrostatic potentials at Cs of the Na+q–Cs−q

molecule. rO , rµ, rHH , and r−µ is the distance from Cs to MO , Mµ, MHH and M−µ,
respectively (see Introduction for definitions of the M-centers). For clarity, the geometric
center (MG) is not shown since it is close (within 0.1 Å) to MO . (B) The three distinct solvent
regions around a solute if a spherical cut-off RC , based on a molecular center of water, is used
for the potential calculation. Both q- and M-summed potentials (Equations 1 and 2) are equal
inside RL = RC − h and beyond RU = RC + h. The difference between the two summation
schemes arises for the unshaded region between RL and RU .

geometry of the problem for a model Na+q–Cs−q molecule in a 3-site model of
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liquid water. In q-summation, the electrostatic potential due to solvent molecules
within a radial distance R from the solute site α, φq

α(R), is computed from [12]:

φq
α(R) = 4π

∑
X

ρX

R∫
0

qX

rαX

gα−X(r)r2dr (1)

In Equation 1, X is the water oxygen or hydrogen, gα−X is the solute α-solvent
X radial distribution function (rdf), qX is the charge on X, rαX is the distance
between site α and the X atom of the water molecule, and ρX is the density of X.
In M-summation, φM

α (R) is computed from [11, 13]:

φM
α (R) =

R∫
0

dr

〈
N∑

i=1

δ(r − ri,M)
∑

X

qX

rαX

〉
. (2)

In Equation 2, N is the number of water molecules, ri,M is the distance of the ith

water M-center to the solute site, and the angular brackets denote an ensemble
average. A spherical cut-off based on a molecular center divides the solvent into
three distinct regions, as illustrated in Figure 1B where the dipole center of water is
chosen as the M-center, h is the distance between the center and a water hydrogen,
and RC is the cut-off radius. Equations 1 and 2 yield the same potentials inside
RL = RC −h as well as outside RU = RC +h where φq

α = φM
α = 0. The difference

between the two schemes arises in the region between RL and RU (unshaded region
in Figure 1B) since q-summation splits the water charges while M-summation
considers the entire molecule so that different net charges are involved in the two
summation schemes.

There have been various arguments for and against the use of q- and M-summation.
Arguments against the use of M-summation are based on the following findings:
(1) The M-summed electrostatic potential at a given solute site depends on the
choice of the M-center even when the solute is uncharged [11, 14]. For example,
the M-summed electrostatic potential at the center of an uncharged SPC water
oxygen in SPC water is –9 to –10 kcal mol−1 e−1 if the M-center is the water
oxygen, and –3 kcal mol−1 e−1 if the M-center is the dipole center [3, 10]. (2) These
M-summed values differ from the respective potential computed using Ewald sum-
mation with conducting boundary conditions (+10 kcal mol−1 e−1), whereas q-
summation yields the same value of +10 kcal mol−1 e−1 [11]. (3) Furthermore,
q-summation produces potentials similar to those computed using Gauss’ law as-
suming spherical symmetry of water clusters [15]. (4) M-summation does not
yield the expected zero potential at an uncharged solute in an ideal gas of water
molecules but q-summation does [16].

However, there are just as many arguments against the use of q-summation,
in support of the use of M-summation: (1) M-summation avoids splitting of mo-
lecular partial charges, which can create a net charge within the cutoff sphere,
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causing the potential to oscillate with distance from a solute site [11, 13, 17].
(2) M-summation does not violate intramolecular site-site correlation, whereas
q-summation does as the water oxygen and hydrogen atoms are treated as inde-
pendent particles [13, 18]. Consequently, summation leads to an artifactual induced
surface dipole density at the cutoff boundary. (3) M-summation has been shown
to yield correct potentials with an appropriate M-center [13, 14, 18]. Åqvist and
Hansson [13] as well as Ashbaugh et al. [14] equated this unique M-center to
the position that yields zero potential on an uncharged solute in SPC water at the
surface layer around the cut-off. However Åqvist and Hansson found the optimal
M-center to be the dipolar center of the water molecule, while Ashbaugh et al.
found it to lie 0.866 Å away from the water oxygen in the dipole direction (see
Figure 1). On the other hand, Vorobjev and Hermans [18] equated the optimal M-
center to the position that yields zero potential in the rotational high temperature
limit. This position was attributed to the water oxygen for the SPC, TIP3P and
TIP4P water models.

Here the electric potentials, field components, and electrostatic solvation free
energies from simulations of polar solutes (as opposed to uncharged solutes in
previous works) are compared with those derived by solving Poisson equation with
the dielectric boundary defined by the effective atomic radius (Reff ) [19]:

Reff = (Ratom + Rgmax)/2 (3)

In Equation 3 Ratom is the atomic radius of the solute (see below), and Rgmax is the
first peak-position of the atom-oxygen or atom-hydrogen rdf in liquid water. With
the dielectric boundary defined by Reff , Poisson equation can be solved by finite
difference methods for the electric potentials, field components, and hence electro-
static solvation free energies. The Reff reflects the specific solute-solvent structure
consistent with the thermodynamic state: it depends on the charge of the solute
atoms as well as the molecular nature of the solvent. In our previous works, we
showed that Reff incorporates the thermodynamic state dependence and molecular
nature of the solvent as it could yield accurate hydration free energies, enthal-
pies and thus entropies of spherical ions [19] as well as solvation free energies
of spherical ions in non-aqueous solvents such as dimethyl sulfoxide, acetonitrile
and ethanol [20]. Moreover, Reff could reproduce the electrostatic solvation free
energies of non-spherical solutes derived from free energy simulations in the pres-
ence of explicit water molecules [21]. It could also take into account the nonlinear
solvent responses around the solute [22].

We chose to study a Lennard-Jones Na+q–Cs−q solute (q = 0.1, 0.3, 0.5, 0.7 and
1.0e) with an internuclear distance of 3 Å in TIP3P [23] water for two reasons.
First, systematic errors in the electrostatic potentials and field components due to
truncation of long-range Coulombic forces are minimized for a neutral molecule.
Second, the van der Waals (vdW) parameters for fully charged Na+ and Cs−,
which have been calibrated to reproduce the experimental hydration free energies
and ion-water distances of the isolated Na+ and Cs+ ions [19, 24] are assigned
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to the constituent atoms, Na+q and Cs−q , respectively, of the diatomic molecule.
Such a choice removes ambiguity in the atomic radius, Ratom in Equation 3 for
continuum theory calculations since the Pauling ionic radii of Na+ (0.95 Å) and
Cs− (1.65 Å) can be used for Ratom as the vdW parameters for interaction with
TIP3P water are unchanged [21]. Electric potentials and field components were
computed using Equation 1 as well as Equation 2 with five different M-centers of
TIP3P water; viz., (1) the water oxygen (MO), (2) its geometric center (MG), (3)
its dipole center (Mµ), (4) its H − H bisector (MHH ), and (5) the center (M−µ)
obtained by reflection of Mµ about H − H (see Figure 1A) [14]. The resulting
electric potentials and field components were then compared with those obtained
by solving Poisson equation with the dielectric boundary defined by Reff (referred
to as the ‘two-sphere’ continuum theory below) to assess the validity of the various
schemes for summing potentials and fields. The 〈φelec

α 〉 computed using Equation 1
and Equation 2 with various M-centers of TIP3P water were also used to compute
electrostatic solvation free energies assuming linear solvent response.

2. Methodology

2.1. SIMULATION FORCEFIELD AND BOUNDARY CONDITIONS

To estimate Rgmax of the solute atoms, constant volume molecular dynamics (MD)
simulations [17] of the model Na+q–Cs−q molecules in TIP3P water [23] were
performed using the CHARMM version 27 program [25] at a mean temperat-
ure of 300 K. The simulations employed the minimum image convention and an
atom-based force-switching function [26] which smoothly switches the nonbonded
forces at 10 Å to zero at 11.7 Å. The nonbond pair list was updated every ten steps
and the nonbond cut-off for the updates was set at 12.8 Å, i.e., half the length
of the cubic simulation box. To verify the treatment of the long-range Coulombic
forces in these ‘spherical cut-off’ simulations, simulation of Na+–Cs− was also
carried out using the rectangular image charge (RIC) method without cut-offs [27].
The RIC method incorporates the effects of infinite solvent by using rectangular
coordinates to solve for the potential in a dielectric cavity immersed in another
dielectric material (see Figure 2). The calculations of the forces and energies using
the RIC method are given in the Appendix.

2.2. SIMULATION PROTOCOL

The solute was fixed at the center of a cubic box of length 25.6 Å containing 560
previously equilibrated water molecules at a density of 1 g cc−1. A water molecule
was found to overlap with the solute atoms and was removed so the final system
contained 559 TIP3P water molecules and the diatomic solute. The simulations
employed the leapfrog Verlet algorithm with a time step of 2 fs. Each system
was equilibrated for 20 ps and subjected to 100 ps of production dynamics, from
which Na and Cs rdfs were computed. Solvation radii, Rgmax, were computed from
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Figure 2. (a) A schematic representation of the simulation system in the rectangular image
charge method. Water molecules in the simulation region cannot enter the implicit solvent
region (hatched). The distance between the edge of the box (light solid) and the implicit
solvent boundary (bold solid) is 2.8 Å, the distance to the first peak position of the water
oxygen-water oxygen rdf. The boundary force on a water oxygen in the simulation region was
calculated by summing its vdW interactions with water oxygen atoms in the implicit solvent
region. (b) A two dimensional illustration of a 23.6 Å box containing 10 water molecules and
their image charges.

the first peak position of the Na+q -oxygen and Cs−q -hydrogen rdfs, and used in
Equation 3 to compute Reff , which in turn were employed to define the dielectric
boundary in finite-difference Poisson calculations (see below). Distance-dependent
electrostatic potentials φelec

α (R) were computed using the rdfs in Equation 1 as well
as using Equation 2 with the M-center chosen as MO , MG, Mµ, MHH and M−µ

(see Introduction).
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2.3. NUMERICAL SOLUTION TO POISSON EQUATION

The electrostatic potential at a solute site due to a continuum solvent medium was
obtained by solving the Poisson equation:

∇ · [ε(r)∇φ(r)] + 4πρ(r) = 0 (4)

where ε(r) is a position-dependent dielectric constant and ρ(r) is the charge dens-
ity. Equation 4 was solved using finite difference methods with the Delphi program
[28, 29]. A 65 Å × 65 Å × 65 Å grid and a percentage grid fill of 80% was
employed. In conventional Delphi calculations a sphere of the same size as a water
molecule is rolled over the solute surface, defined by the atomic coordinates and
vdW radii of the solute atoms, to determine the low-dielectric solvent-inaccessible
region. Such a procedure is not needed here since the definition of the effective
Born radii Reff in Equation 3 incorporates the solvent accessibility [22]. Hence,
the solute cavity was defined by Reff , with Rgmax of Na+q (Cs−q ) equal to 2.38
(2.15), 2.45 (2.25), 2.58 (2.40), 2.70 (2.68) and 3.05 (2.88) Å for q = 1.0, 0.7,
0.5, 0.3 and 0.1e, respectively. (Note that the effective Born radius increases with
decreasing charge on the solute atom). The error in Reff is estimated to be less
than ±0.03 Å, but it may be larger for Na+0.1–Cs−0.1 as its first solvation shell is
less structured resulting in larger uncertainties in the Rgmax values of Na+0.1 and
Cs−0.1. The dielectric constant inside the solute cavity (εin) was set to 1, while that
outside (εout ) was set to 80, the dielectric constant of bulk water.

3. Results

3.1. COMPARISON OF RESULTS FROM RECTANGULAR IMAGE CHARGE AND

PERIODIC BOUNDARY SIMULATIONS

Figure 3 shows the distance dependence of the electrostatic potentials at Na+ and
Cs− computed using the minimum image convention with spherical cut-offs (grey
curves) and the RIC method with no cut-offs (black curves). Note that the RIC
method includes the effects of infinite solvent, and has no periodicity-induced
artifacts of periodic boundary with Ewald summation. The solid and dashed lines
correspond to potentials based on q-summation and Mµ-summation, respectively.
Figure 3 shows that the different treatments of the long-range Coulombic forces
yield similar behavior of the potential values as a function of distance from the
solute site, especially those based on Mµ-summation. This indicates that the long-
range forces are adequately treated in the minimum image convention with spher-
ical cut-offs presumably due to the dipolar nature of the solute considered here.
Simulations using the RIC method for Na+q–Cs−q solutes of lower polarity (q <

1e) were not performed since long-range effects are expected to be even smaller
compared to those for q = 1e. Consequently, the results below correspond to those
from simulations using the minimum image convention and spherical cut-offs.
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Figure 3. Comparison of q-summed (solid line) and Mµ-summed (dashed line) potentials
obtained using the minimum image convention with spherical cut-offs (grey curves) and the
rectangular image charge method with no cut-offs (black curves).

3.2. ELECTRIC POTENTIALS AND FIELD COMPONENTS AS A FUNCTION OF

DISTANCE FROM THE SOLUTE SITE

Na+ and Cs−. Figure 4 shows the distance dependence of the electrostatic poten-
tials and x-field components at Na+ and Cs− computed using various summation
schemes. The results are shown up to only 10 Å since the nonbond cut-off is set at
∼ 12 Å (see Methods). The q-summed electric potentials (solid grey curves in Fig-
ure 4a) exhibit significant oscillations that persist even beyond 10 Å, indicating that
splitting of the water charges at the cut-off sphere induces large contributions to the
potential at Na+ and Cs−. In contrast to the q-summation results the M-summed
electric potentials exhibit only slight oscillations after the second solvation shell
(≥ 7 Å), indicating that water molecules beyond the second shell are nearly ran-
domly oriented with respect to the solute atom and thus contribute relatively little
to the potential at Na+ and Cs− (Figure 4a). However, the M-summed electric
potentials converge to different values depending on the molecular center. The
magnitude of the potential at Na+ and Cs− is maximum using MO and M−µ-
summation, respectively, as water molecules orient with their oxygen pointing to
Na+ and their hydrogen pointing to Cs−. Unlike the behavior of the M-summed
potentials in Figure 4a, the M-summed electric x-field components merge after
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Figure 4. The fluctuations in the solvent-induced electrostatic potentials at Na+q and Cs−q

(a) as well as the x-component of the electrostatic fields at Na+q (b) and Cs−q (c) as a function
of the distance from the center of the solute atom for a charge state q = 1e. Note that the y-
and z-field components in the simulations are nonzero (but very close to zero) due to distinct
packing interactions of the solvent around the solute [10]. The horizontal dark dots are the
theory results (i.e., r = ∞ values) obtained by solving Poisson equation using Reff (Equa-
tion 3) to define the dielectric boundary. The solid grey curves are the q-summation results.
The dash-dot, solid black, long-dash, short-dash, and dashed curves represent M-summations
results based on MO , Mµ, MG, MHH , and M−µ centers, respectively.

7 Å and yield common values of 37 and 34 kcal mol−1 e−1 Å for Na+ and Cs−,
respectively, at 10 Å(Figures 4b and 4c). This implies that the electric field and
force components are not sensitive to the choice of the molecular center as long as
the cut-off distance is greater than 7 Å. The M-summation results for the dipolar
center (solid black curves) and geometric center (long-dash curves) of TIP3P water
are similar as the two centers are only 0.1 Å apart.
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Figure 5. As in Figure 4 for a charge state q = 0.5e.

Na+0.5 and Cs−0.5. The trends in the electrostatic potentials and x-field com-
ponents for Na+0.5–Cs−0.5 (Figures 5a-5c) are similar to those found for Na+–Cs−
(Figures 4a-4c), except that the oscillations in the q-summed quantities for Na+0.5

and Cs−0.5 are milder than those observed for Na+ and Cs− due to the weaker
fields from the solute. For typical cut-off values of 8 to 12 Å employed in most
simulations, the M-summed potentials converge faster with increasing cut-off dis-
tance than the q-summed ones, but the converged potentials depend on the choice
of the M-center, whereas the electric field and force components do not. As for
Na+–Cs−, the potential contribution from the first solvation shell is most negative
(least positive) using MO-summation and least negative (most positive) using M−µ-
summation. Furthermore, the magnitude of the electrostatic potential or x-field
component at 10 Å for the positively charged Na site is larger than the respective
value for the negatively charged Cs site due mainly to the non-random orientations
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of water molecules in the first shell. The features and trends in the electrostatic
potentials and field components as a function of distance from the solute site for
the other charge states of Na+q–Cs−q (q = 0.1, 0.3 and 0.7e) are similar to those
depicted in Figures 4 and 5.

3.3. COMPARISON BETWEEN SIMULATION AND THEORY

Electric field components: Figures 4 and 5 also show the electrostatic potentials
and x-field components at the solute sites obtained from finite difference solutions
to the Poisson equation with the dielectric boundary defined by Reff in Equation 3
(dark-dotted horizontal lines). The M-summed x-field components at the solute
sites, which converge to the same value independent of the molecular center, are
close to the corresponding values obtained from the ‘two-sphere’ continuum the-
ory. For example, the converged M-summed x-field components (16.5 ± 0.7 kcal
mol−1 e−1 Å for Na+0.5 and 14.8±0.5 kcal mol−1 e−1 Å for Cs−0.5) are in excellent
agreement with the theoretical values (16.3 kcal mol−1 e−1 Å for Na+0.5 and 15.4
kcal mol−1 e−1 Å for Cs−0.5). In contrast the magnitudes of the q-summed electric
x-field components as well as q-summed potentials at 10 Å are significantly larger
than the respective ‘two-sphere’ continuum theory results. These findings suggest
that q-summation using typical cut-off distances of 8–10 Å yields erroneous elec-
tric x-field components and potentials. As rationalized in previous works [13, 18]
this is because q-summation violates intramolecular site-site correlation and the
self-consistency of statistical sampling of solvent configurations contributing to
the average electrostatic potential.

Electrostatic potentials: Figures 4a and 5a show that at 10 Å the Mµ and MG-
summed potentials are remarkably close to the corresponding values derived from
the ‘two-sphere’ continuum theory. For example, the Mµ and MG-summed po-
tentials at 10 Å for Na+0.5 (−40.0 ± 1.5 and −38.0 ± 1.4 kcal mol−1 e−1) and
Cs−0.5 (27.7 ± 1.6 and 29.9 ± 1.2 kcal mol−1 e−1) are in accordance with the
theoretical values (−38.0 and 28.7 kcal mol−1 e−1 for Na+0.5 and Cs−0.5, respect-
ively). However, potentials summed over other molecular centers like MHH , MO

and M−µ deviate significantly from both theory and the Mµ or MG-summed results.
These trends also apply for other charged states, as illustrated in Figures 6a and 6b,
which depict the potentials at Na+q and Cs−q , respectively, for q ranging from
1.0 to 0.1e. The converged values of the electrostatic potentials computed using
Mµ-summation (solid black curves) and MG-summation (long-dash curves) match
those obtained from the ‘two-sphere’ continuum theory (filled circles), although
the agreement for Mµ-summation is overall better than that for MG-summation
especially at higher solute polarity. In contrast to the Mµ and MG-summed results,
electrostatic potentials based on alternative M-centers or q-summation deviate
from the respective theory values. In particular, the deviations of the q-summed
electric potentials (solid grey curves) at Na+q and Cs−q magnify dramatically as
the solute polarity is increased.
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Figure 6. Electrostatic potentials at Na+q (a) and Cs−q (b) as a function of solute charge q.
The symbols have the same meaning as in Figure 4.

3.4. APPLICATIONS OF THE ELECTROSTATIC POTENTIAL: THE VALIDITY OF

THE LINEAR RESPONSE APPROXIMATION

An important application of the electrostatic potential is in estimating the elec-
trostatic contribution to the solvation free energy assuming linear response of the
solvent [30, 31]; i.e.,

+GLR = 1

2

∑
α

qα〈φelec
α 〉 (5)

In Equation 5, 〈φelec
α 〉 is the ensemble average of the solvent electrostatic potential

from an all-atom molecular dynamics simulation. Previous work had tested the
linear response approximation using MO-summation of the potential [3]. Here, we
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Table I. Comparison of electrostatic solvation free energies of Na+q–Cs−q ob-
tained from the ‘two-sphere’ continuum theory and the linear response formula
with those from free energy simulations

−+Ga −+Gb −+Gc

|q|/e q MO Mµ MHH M−µ

0.1 0.4 ± 0.1 0.5 0.6 0.6 0.6 0.6 0.6

0.3 5.0 ± 0.3 5.5 12.0 5.4 5.3 5.3 5.3

0.5 15.9 ± 0.3 16.8 31.4 17.0 17.0 16.9 16.9

0.7 34.3 ± 0.4 35.6 72.6 36.8 36.3 36.2 36.2

1.0 76.7 ± 0.4 76.6 155.0 80.9 80.5 80.4 80.8

a From free energy perturbation simulation from Reference [22]. b Electro-
static solvation free energies derived by solving Poisson equation using Reff

(Equation 3) to define the dielectric boundary. c Free energies computed using
the linear response approximation (Equation 5) and q, MO , Mµ, MHH , or
M−µ-summation of the electrostatic potential (see text).

Figure 7. Free energies as a function of solute charge q. The symbols have the same meaning
as in Figure 4, but they correspond to free energies computed using the linear response formula
(Equation 5). The open circles correspond to free energy simulation results.
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test the validity of linear solvent response by computing 〈φelec
α 〉 using Equation 1

and Equation 2 with various M-centers of TIP3P water. Comparison of the elec-
trostatic solvation free energies of Na+q–Cs−q computed using Equation 5 with
those obtained from free energy perturbation simulations in our previous work [22]
(Table I and Figure 7) shows that q-summation of the potentials yields +GLR that
deviate significantly from the respective simulation free energies. In contrast, M-
summation yields +GLR in close agreement with the corresponding simulation
values (Table I and Figure 7). Furthermore, the +GLR values are not sensitive to
the choice of the molecular center unlike the electrostatic potentials.

Note that when |q| = 0.1e, both q- and M-summation of the potentials yield
the same +GLR, even though 〈φelec

α 〉 computed using q-summation differs from
that computed using M-summation. This is consistent with the finding that peri-
odic boundary and Ewald summation with vacuum (ε = 1) or tin-foil (ε = ∞)
boundary conditions as well as spherical boundary with a spherical cut-off all yield
the same polarization free energy for charging a probe water molecule (–8.4 kcal
mol−1), but different solvent-induced electrostatic potentials [18].

The +GLR values obtained using M-summation of the potentials slightly over-
estimate the respective values from free energy perturbation simulations (Table I).
Agreement between the linear response free energies and the corresponding free
energy perturbation results could be achieved if a factor slightly lower than 0.5 is
employed in Equation 5; i.e., 0.48, 0.47 and 0.45 for q = 1.0, 0.7 and 0.5e, respect-
ively. The deviation from 0.5, which indicates deviations of linear solvent response,
has also been found for similar dipolar solutes in previous work [13]. The results
in Table I suggest that accurate electrostatic free energy differences between two
similarly shaped molecules in water may be obtained from M-summed electrostatic
potentials (using Equation 5) instead of the more compute-intensive free energy
simulations once an appropriate factor is identified for such systems.

4. Discussion

The results in the previous section (Figures 4–6) indicate the existence of a mo-
lecular center of TIP3P water, viz., its dipole center (Mµ), which, when used in
Equation 2, gives electrostatic potentials at Na+q and Cs−q that consistently match
those derived from the ‘two-sphere’ continuum theory for solute charges ranging
from 1 to 0.1e (corresponding to decreasing solute-solvent electrostatic interac-
tions). Åqvist and Hansson [3] also found the dipole center of water to be the ‘best
center’ in M-summation because the potential created by the surface layer around
the cut-off is minimized with this choice of the molecular center in M-summation.

4.1. THE PHYSICAL BASIS FOR THE DIPOLAR CENTER OF TIP3P WATER

The contributors to the total electric potential and field component at a solute site
are mainly water molecules forming the first solvation shell and to a lesser extent
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those in the second shell. For q = 1e (Figure 4), the Mµ-summed potentials level
out after ∼ 7 Å, corresponding roughly to the radius of the second solvation
shell. Similar trends are observed for q = 0.5e (Figure 5). Thus, the main factor
governing the sign and the magnitude of the electric potentials and fields is the
specific orientation of water molecules in the first and second solvation shells. This
is supported by the finding that the contribution to the total solvation energy from
the first (0–4 Å) shell around a chloride ion from a MD trajectory (–87 kcal mol−1)
differs from that obtained by replacing water molecules in the simulation with point
dipoles of the same dipole moment as TIP3P or SPC water (–67 kcal mol−1) [32].
However, beyond the first shell, water molecules appear as dipoles to the solute as
the solvation energy contributions from the second (4–6 Å) shell and beyond were
similar for the all-atom and point dipole models [32]. Likewise, replacing water
molecules far from an uncharged solute by two-point dipoles has been found to
yield potentials that are in accord with those from an all-atom model [13]. This
shows that a point dipole or two-point linear dipole approximation for water mo-
lecules outside the first or second solvation shells of a charged or uncharged solute
could adequately represent water orientations, and thus quadrupole terms can be
neglected at a sufficiently large cut-off distance.

The physical origin of the dipolar center of three-site water models for comput-
ing potentials and fields can also be rationalized by considering the interaction of
a point dipole solvent of dipole moment µ with an ion of charge q in a continuum
solvent characterized by a dielectric constant ε [32]. The average solvation energy
of the ion due to the solvation shell between R1 and R2 from the ion is related to
the orientational probability of the point dipole P(cos θ; r) (θ is the orientational
angle between the dipole vector and the internuclear ion-water dipole vector) at a
distance r via the following equation:

〈U(R1;R2)〉 = −4πρ
R2∫
R1

dr
+1∫
−1

d cos(θ)µq cos(θ)g(r)P (cos θ; r)

= −4πρµq
R2∫
R1

drg(r)〈cos θ〉r

(6)

In Equation 6, ρ is the dipole density and g(r) is the ion-dipole rdf and the angular
brackets indicate an ensemble average. The probability P(cos θ, r) is given by
[32]:

P(cos θ; r) = exp[βµE(r) cos θ]
2 sinh[βµE(r)]/[βµE(r)] (7a)

or

〈cos θ〉r = coth[βµE(r)] − 1/[βµE(r)] (7b)

where E(r) = q/εr2 is the field at the dipole due to the ion. The orientational prob-
abilities from Equation 7 (which treats water as a point dipole) have been shown
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to be similar to those obtained from simulations of a chloride ion in TIP3P/SPC
water for distances greater than 7 Å [32]. This implies that the electrostatic con-
tributions to the solvation energy (Equation 6), and thus the potential, from 3-site
water molecules at a distance greater than 7 Å from the solute are from solvent
dipoles. Most simulations employ a potential cut-off between 8 and 12 Å, which is
sufficiently far away from the ion and the first or second solvation shell.

4.2. EXTENSION TO COMPLEX MOLECULAR SYSTEMS

The present findings apply to a solute in a rigid 3-site model of water. The choice
of a molecular center in a more complex classical mechanical or in a quantum
mechanical description of the solvent (including non-aqueous solvents) requires
further study. One way is to divide the solvent molecule into neutral groups and
perform calibrations as in this study for TIP3P water to identify a suitable M-
center. For polar macromolecules, an amino acid residue is generally divided into
small neutral polar groups as in the CHARMM program [25]. Since the forces
are not sensitive to the choice of the M-center (see Results), the outcome of MD
calculations would be similar for any reasonable choice of the M-center for such
groups since only the forces determine the MD trajectory.

5. Conclusions

Although the M-summed electrostatic potentials at Na+q and Cs−q (Equation 2)
depend on the choice of the solvent molecular center (Figures 4 and 5), they yield
linear response free energies, +GLR (Equation 5), of Na+q–Cs−q that are not
sensitive to the M-center (see Table I). Furthermore, the M-summed electrostatic
potentials yield +GLR of the Na+q–Cs−q solutes for q varying from 1.0 to 0.1e in
close agreement with the respective values derived from free energy perturbation
simulations, whereas the q-summed potentials yield +GLR that deviate signific-
antly from free energy simulations (see Figure 7 and Table I). The observed close
agreement between the linear response free energies based on M-summation and
the corresponding free energy perturbation results also suggests that the linear
response formula, Equation 5, is valid.

It is noteworthy that the ‘two-sphere’ continuum theory predicts electrostatic
solvation free energies in excellent agreement with respective values derived from
free energy simulations in the presence of explicit water molecules (see Table I). In
particular, it reproduces the non-quadratic charge dependence of the solvation free
energies (Table I) as well as the non-linear charge dependence of the Mµ and MG

summed potentials at Na+q and Cs−q (Figure 6).
Mµ-summation yields not only electrostatic solvation free energies of Na+q–

Cs−q , but also electrostatic potentials and field components at Na+q and Cs−q

that consistently match those derived from the ‘two-sphere’ continuum theory for
solute charges ranging from 1 to 0.1e (corresponding to decreasing solute-solvent
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electrostatic interactions, see Figure 6). Thus there appears to be a convenient mo-
lecular center for 3-site water models (like TIP3P and SPC), namely, the dipole
center of water, in computing electrostatic potentials and field components using
M-summation. In contrast, q-summation using cut-offs that are ≤ 10 Å generally
underestimates or overestimates the magnitude of the potentials and field com-
ponents at Na+q and Cs−q relative to the theoretical values as well as +GLR of
Na+q–Cs−q relative to the respective free energies from free energy perturbation
simulations (Figures 4 to 7).

Appendix

RECTANGULAR IMAGE CHARGE METHOD

Consider N point charges, Q1(R1), Q2(R2) . . . QN(RN ), in a dielectric εa, bounded
by a cubic box of length L, which separates the medium from another dielectric
εw (see Figure 2). In the image charge method, the electric potential at a distance
Ri = {xi, yi, zi} in εa can be evaluated by placing image charges,

Qj,l,m,n = Qj

(
εa − εw

εa + εw

)|l|+|m|+|n|
(8)

at:

Rj,l,m,n = {xj,l, yj,m, zj,n} = {(−1)lxj + la, (−1)myj + mb, (−1)nzj + nc}. (9)

The electric potential at a distance Ri is then given by:

φ(Ri ) =
N∑

j=1

Qj

4πεa|Ri − Rj | +
n∑

j=1

∞∑
l,m,n=−∞
l2+m2+n2 �=0

Qj,l,m,n

4πεa|Ri − Rj,l,m,n| (10)

and the total electrostatic energy U in the box can be evaluated by:

U =
N∑

i=1

N∑
j=i+1

QiQj

4πεa|Ri − Rj | + 1

2

N∑
i,j=1

∞∑
l,m,n=−∞
l2+m2+n2 �=0

QiQj,l,m,n

4πεa|Ri − Rj,l,m,n| . (11)

The first term in Equation 12 represents the direct electrostatic interactions between
the real charges in the simulation region, while the second term represents the
interactions between each charge and all image charges. The force at atom i is
given by:

Fi(R) =
N∑

j=1
j �=i

QiQj(Ri − Rj )

4πεa|Ri − Rj |3 +
n∑

j=1

∞∑
l,m,n=−∞
l2+m2+n2 �=0

QiQj,l,m,n(Ri − Rj,l,m,n)

4πεa|Ri − Rj,l,m,n|3 . (12)

In computing the image charges using Equation 9 εa and εw were set equal to 1
and 80, respectively. As water molecules approach the implicit solvent boundary,
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the second term in Equation 12 will go to infinity, hence vdW interactions between
water oxygen atoms in the simulation and implicit solvent regions were included to
prevent water molecules from approaching too close to the implicit solvent bound-
ary. Thus, a water oxygen at position r in the simulation region (Figure 2) was
subjected to a boundary force of the form:

Fw = 0.0 w ≤ L/2 − 5 (14a)

Fw = 0.05 L/2 − 5 < w ≤ L/2 (14b)

Fw = (w − L/2 − 2.8)2 − 2.82 L/2 < w < L/2 + 2.8 (14c)

In Equation 14, w denotes x, y or z and L is the length of the cubic box. The
derivation of Equations 9–14 is given in Reference [27].

Acknowledgements

We thank Professor Martin Karplus for the CHARMM program. This work was
supported by the National Science Council, Taiwan (NSC contract # 88-2113-M-
001-072) and the National Center for High-Performance Computing, Taiwan.

References

1. Levy, R.M., Belhadj, M. and Kitchen, D.B.: Gaussian fluctuation formula for electrostatic free
energy changes in solution, J. Chem. Phys. 95 (1991), 3627–3633.

2. Hummer, G., Pratt, L.R. and Garcia, A.E.: Free energy of ionic hydratrion, J. Phys. Chem. 100
(1996), 1206–1215.

3. Åqvist, J. and Hansson, T.: On the validity of electrostatic linear response in polar solvents, J.
Phys. Chem. 100 (1996), 9512–9521.

4. Ashbaugh, H.S.: Convergence of molecular and macroscopic continuum descriptions of ion
hydration, J. Phys. Chem. B 104 (2000), 7235–7238.

5. Yelle, R.B. and Ichiye, T.: Solvation free energy curves for electron transfer in aqueous solution:
Theory and simulation, J. Phys. Chem. B 101 (1997), 4127–4135.

6. Lee, F.S., Chu, Z.-T., Bolger, M.B. and Warshel, A.: Calculations of antigen-antibody in-
teractions: Microscopic and semi-microscopic evaluation of the free energies of binding of
phosphorylcholine analogs to McPC603, Prot. Engng. 5 (1992), 215—228.

7. Åqvist, J., Medina, C. and Samuelson, J.-E.: A new method for predicting binding affinity in
computer-aided drug design, Prot. Engng. 7 (1994), 385–391.

8. Carlson, H.A. and Jorgensen, W.L.: An extended linear response method for determining free
energies of hydration, J. Phys. Chem. 99 (1995), 10667–10673.

9. Wilson, M.A., Pohorille, A. and Pratt, L.R.: Comment on ‘Study on the liquid-vapor interface of
water. I. Simulation results of thermodynamic properties and orientational structure’, J. Chem.
Phys. 90 (1989), 5211–5213.

10. Rick, S.W. and Berne, B.J.: The aqueous solvation of water: A comparison of continuum
methods with molecular dynamics, J. Am. Chem. Soc. 116 (1994), 3949–3954.



SOLVENT ELECTROSTATIC POTENTIALS 113

11. Hummer, G., Pratt, L.R., Garcia, A.E., Berne, B.J. and Rick, S.W.: Electrostatic potentials
and free energies of solvation of polar and charged molecules, J. Phys. Chem. B 101 (1997),
3017–3020.

12. Hansen, J.P. and McDonald, I.R.: Theory of simple liquids, Academic Press, 1986.
13. Åqvist, J. and Hansson, T.: Analysis of electrostatic potential truncation schemes in simulations

of polar solvents, J. Phys. Chem. B 102 (1998), 3837–3840.
14. Ashbaugh, H.S., Sakane, S. and Wood, R.H.: Reply to comment on ‘Electrostatic potentials

and free energies of solvation of polar and charged molecules’, J. Phys. Chem. B 102 (1998),
3844–3845.

15. Darden, T., Pearlman, D. and Pedersen, L.G.: Ionic charging free energies: Spherical versus
periodic boundary conditions, J. Chem. Phys. 109 (1998), 10921–10935.

16. Hummer, G., Pratt, L.R., Garcia, A.E., Garde, S., Berne, B.J. and Rick, S.W.: Reply to comment
on ‘electrostatic potentials and free energies of solvation of polar and charged molecules’, J.
Phys. Chem. B 102 (1998), 3841–3843.

17. Allen, M.P. and Tildesley, D.J.: Computer Simulation of Liquids, Oxford University Press, NY,
1990.

18. Vorobjev, Y.N. and Hermans, J.: A critical analysis of methods of calculation of a potential
in simulated polar liquids: Strong arguments in favor of ‘molecule-based’ summation and of
vacuum boundary conditions in Ewald summation, J. Phys. Chem. B 103 (1999), 10234–10242.

19. Babu, C.S. and Lim, C.: Theory of ionic hydration: Insights from molecular dynamics
simulations and experiment, J. Phys. Chem. B 103 (1999), 7958–7968.

20. Madhusoodanan, M. and Lim, C.: 2002, in preparation.
21. Babu, C.S. and Lim, C.: Solvation free energies of polar molecular solutes: Application of the

two-sphere Born radius in continuum models of solvation, J. Chem. Phys. 114 (2001), 889–899.
22. Babu, C.S. and Lim, C.: Incorporating nonlinear solvent response in continuum dielectric

models using a two-sphere description of the Born radius, J. Phys. Chem. 105 (2001),
5030–5036.

23. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W. and Klein, M.L.: Comparison
of simple potentials for simulating liquid water, J. Chem. Phys. 79 (1983), 926–923.

24. Åqvist, J.: Ion-water potentials derived from free energy perturbation simulations, J. Phys.
Chem. 94 (1990), 8021–8024.

25. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S. and Karplus, M.:
CHARMM: A program for macromolecular energy, minimization, and dynamics calculations,
J. Comp. Chem. 4 (1983), 187–217.

26. Steinbach, P.J. and Brooks, B.R.: New spherical-cut-off methods for long-range forces in
macromolecular simulation, J. Comp. Chem. 15 (1994), 667–683.

27. Yang, P.-K., Liaw, S.-H. and Lim, C.: Representing an infinite solvent system by a rectangular
finite system using image charges, J. Phys. Chem. B (2002). in press.

28. Sharp, K.A. and Honig, B.: Electrostatic interactions in macromolecules: Theory and applica-
tions, Ann. Rev. Biophys. Biophys. Chem. 19 (1990), 310–332.

29. Nicholls, A. and Honig, B.: A rapid finite difference algorithm utilizing successive over-
relaxation to solve the Poisson-Boltzmann equation, J. Comp. Chem. 12 (1991), 435–445.

30. Warshel, A. and Russell, S.T.: Calculation of electrostatic interactions in biological systems
and in solution, Quart. Rev. Biophys. 17 (1984), 283–422.

31. Roux, B., Yu, H.-A. and Karplus, M.: Molecular basis for the Born model of ion solvation, J.
Phys. Chem. 94 (1990), 4683–4688.

32. Hyun, J.-K., Babu, C.S. and Ichiye, T.: Apparent local dielectric response around ions in water:
A method for its determination and its applications, J. Phys. Chem. 99 (1995), 5187–5195.




