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Abstract. A system is constructed to automatically infer a genetic network by application of graph-
ical Gaussian modeling to the expression profile data. Our system is composed of two parts: one part
is automatic determination of cluster boundaries of profiles in hierarchical clustering, and another
part is inference of a genetic network by application of graphical Gaussian modeling to the clustered
profiles. Since thousands of or tens of thousands of gene expression profiles are measured under only
one hundred conditions, the profiles naturally show some similar patterns. Therefore, a preprocessing
for systematically clustering the profiles is prerequisite to infer the relationship between the genes.
For this purpose, a method for automatic determination of cluster boundaries is newly developed
without any biological knowledge and any additional analyses. Then, the profiles for each cluster
are analyzed by graphical Gaussian modeling to infer the relationship between the clusters. Thus,
our system automatically provides a graph between clusters only by input the profile data. The
performance of the present system is validated by 2467 profiles from yeast genes. The clusters and
the genetic network obtained by our system are discussed in terms of the gene function and the known
regulatory relationship between genes.

Key words: cluster analysis, cluster boundary, gene expression profile, genetic network, graphical
Gaussian modeling, microarray

1. Introduction

Advances in microarray techniques have enabled us to measure whole-genome
mRNA abundance [1–4]. The expression levels of thousands or tens of thousands
of genes can be simultaneously monitored under multiple conditions. These gene
expression profile data are compiled at several databases, and are available at their
web sites. This provides an enormous opportunity to elucidate the underlying in-
formation in the complex data for functional genomics and proteomics.

An essential step in the analysis of gene expression profile data is the detection
of gene groups that manifest similar expression patterns. Several techniques have
been used for detecting similar expression patterns [5–10]. Hierarchical cluster-
ing is clearly valuable. One of the merits of hierarchical clustering is the visual
presentation that enables us to intuitively understand the clustering of genes in
a dendrogram, where some genes that are mutually related in terms of the cell
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function are grouped into the same cluster [5, 11]. Indeed, the cluster boundaries
for the interpretation of the profile patterns are determined by visual inspection
of the dendrogram. However, there are some dendrograms where the nodes are
connected by very short branches, due to the highly correlated gene expression
profiles. Subsequently, the cluster boundaries are determined with the help of some
exploratory methods, such as biological knowledge of the genes and sequence ana-
lyses of the upstream regions of genes [5–7, 11, 12]. An alternative to detect the
similar patterns is a K-means clustering algorithm [13, 14]. In the algorithm, the
cluster boundaries are determined by the optimization of some statistical criteria,
such as the maximum variance of clusters, without the manual intervention and
the arbitrary thresholds. However, a given number of clusters, K, is prerequisite
to analyze the samples in the algorithm, and therefore the determination of the
cluster boundaries requires repetitive clustering for many different K values [10,
12]. Thus, it remains a challenge to systematically estimate the cluster boundaries
in the clustering.

Another step in the profile analysis is the inference of the regulatory networks
among genes, which here is called the ‘genetic network’. Modelings with the Boo-
lean network [15], differential equations [16, 17], and a combination of the meth-
ods [18] have been investigated for inferences of the genetic networks. An ap-
proach, which combines cluster analysis with sequence motif detection, to determ-
ine the genetic network architecture is also proposed [10]. Recently, an approach
to infer the genetic networks with Bayesian networks was proposed [19].

Recently, we have proposed a novel approach to infer the genetic networks from
the expression profiles [20] in the combination with a newly developed method for
the automatic clustering [21]. In our approach, the genetic networks are inferred
by a combination of cluster analysis and a method called ‘Graphical Gaussian
Modeling’ (GGM) [22, 23]. Here, two methods are synthesized to a system for
automatically inferring a genetic network only by the input of the expression profile
data. The validity of the system is discussed from both biological and statistical
viewpoints.

2. Materials and Methods

2.1. EXPRESSION PROFILE DATA

The gene expression profile data analyzed here are cited from Eisen et al. [5]
(http://www.pnas.org or http://rana.stanford.edu/clustering/). The data comprise the
expression profiles of 2467 yeast (Saccharomyces cerevisiae) genes that were meas-
ured under 79 conditions.
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Figure 1. Flow of the Algorithm for the Present System. The details of each step are described
in Materials and Methods.

2.2. PROCEDURE OF THE PRESENT SYSTEM

The present procedure is composed of two parts: automatic determination of cluster
boundaries and the systematic inference of relationship between the clusters. The
procedure is depicted in Figure 1. The details of the two parts are described below.

Algorithm for determining cluster boundaries

The present algorithm is composed of five steps in two parts. Each step is described
below.

Step 1: For clustering the profile data, a metric is defined to measure the simil-
arity between the expression profiles. In the present analysis, the Euclidean
distance between the Pearson correlation coefficients is adopted as the metric,
i.e.,

dij =
√√√√

n∑
l=1

(ril − rjl)2 (1)
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where n is total number of the genes, and rij is the Pearson correlation coeffi-
cient between the i and j genes of the expression profile that are measured at
m points, pik, (k = 1, 2, . . . , m):

rij =
∑m

k=1(pik − pi)(pjk − pj)√∑m
k=1(pik − pi)

2 · ∑m
k=1(pjk − pj)

2
(2)

where pi is the arithmetic average of pik over m points. The above distance
is used to evaluate the similarity between genes in terms of the expression
pattern. The smaller the distance is between the two genes, the more similar
the corresponding genes are in the expression profile patterns. Notably, the
present distance between the two genes is designed to reflect the similarity
in the expression profile patterns between other genes as well as between the
measured points. The distances defined in the Equation (1) are analyzed by
a standard hierarchical clustering technique, the group average method [14,
24]. By the group average clustering, (n− 1) dissimilarity scores of the nodes
are obtained, i.e.,

d̂1, d̂2, . . . , d̂n−1, where d̂i < d̂j , if i < j.

Step 2: A correlation coefficient matrix is generated from the original correlation
coefficient matrix, at each node in the hierarchical clustering. For example,
when d̂c is set to be d̂2467−m+1 � d̂c > d̂2467−m, m clusters are obtained at the
(2467 − m) node. In the m clusters, the members within each cluster share
a simlilar expression pattern by the clustering procedure. When the genes
clustering procedure. When the genes are numbered from 1 to 2467 in the
original profile data, therefore, the gene with the youngest number is selected
among the members of a cluster. Thus, an m×m correlation coefficient matrix
is obtained at the (2467 − m) for m clusters. The robustness of the selection
procedure is discussed in a subsequent section.

Step 3: A statistical property of the m × m correlation coefficient matrix is eval-
uated at the (2467 − m) node in the dendrogram obtained in Step 2, with the
use of the variance inflation factor (VIF) in the multiple regression analysis.
In the multiple regression analysis, a criterion variable is generally expressed
by a linear combination of multiple explanatory variables, i.e.,

y = β0 + β1x1 + β2x2 . . . + βnxn, (3)

where y and xi are criterion and explanatory variables, respectively, and βi is
the regression coefficient of the corresponding variable. One result of using
a large number of explanatory variables is that many of the variables are
highbly correlated. The existence of high correlations among the explanatory
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valuables is known as multicollinearity, and the variables that are involved in
the multicollinearity are diagnosed by VIF, as follows,

VIFi = r−1
ii , (4)

where r−1
ii is the ith diagonal element of the inverse matrix of correlation

coefficients between explanatory variables [25]. In a correlation coefficient
matrix between m explanatory variables, therefore, m VIF’s are calculated.

Step 4: The VIF is applied to estimate the cluster boundaries in the expression
profile data. When the explanatory variables in the Equation (3) correspond to
the gene profiles, the VIF expresses the degree of linear relationship between
the profiles. In the diagnosis of the multicollinearity, the popular cutoff value
of 10.0 [25, 26] is adopted as a threshold in the present analysis: when VIFi is
larger than 10.0, the multicollinearity of the ith variable exists. Although the
criterion variable, y in Equation (3), is a hypothetical variable in the present
profile data, this is not an obstacle to the practical calculation of the VIF
that is obtained from the inverse matrix of correlation coefficients between
the profiles. Instead of the popular cutoff value of 10.0, 1/(1 − R2

i ) can also
be set as a threshold for the multicollinearity, where R2

i is the coefficient of
determination of the regression of xi , on all other explanatory variables in the
Equation (3). However, the practical profile data for the criterion variable are
needed for the calculation of R2

i . When designed profile data are obtained by
suspension of the expression of a selected gene, the profiles of the expression-
suspended gene can be set as a criterion variable. In this case, 1/(1−R2

i ) may
be adopted as a threshold for the multicollinearity.

Step 5: The m VIF’s are assessed with the following condition:

max{VIFi} < 10.0 for i = 1, 2, . . . , m.

If the condition is satisfied, then no multicollinearity exists in the m sets of
profiles. In contrast, if the condition is not satisfied, then multicollinearity
still exists in the profiles.

The above Steps from 2 to 5 proceed in an ascending order of nodes from 1
to 2466, and the first node that satisfies the above condition is searched. Thus, the
maximum number of clusters is obtained. In other words, the maximum cluster
number is searched, where each set of profiles shows no linear relationship. In
the clusters, the genes are clearly classified into each cluster so that the cluster
boundaries are determined. Notably, the cluster boundary determinations depends
on only the properties of the profile data, without any additional analyses in the
hierarchical clustering and various initializations for each K value in the K-means
algorithm.
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Conceptual framework of graphical Gaussian modeling

The correlation coefficient in the expression profile data has been widely utilized
to evaluate the distance between genes for the cluster analysis [5]. Suppose that
a pair of genes, say Genes A and B, show high correlation in their expression
profiles. There are three possible mechanisms to induce high correlation in the
expression levels between them. The first is a direct interaction between the genes,
The second is an indirect interaction between them. In other words, the regulatory
information of the Gene A product is transferred through the expressions of some
other genes to induce the expression of Gene B. The third is the correlation due
to the regulation by a common gene. That is, the expressions of Genes A and B
are regulated by a common gene product. A combination of the second and the
third type of interactions would also cause high correlation between the genes.
The first type of interaction is what we want to know in order to reconstruct the
genetic network from the expression profile data, although a correlation coefficient
cannot distinguish between the three types of interactions. GGM is a multivariate
analysis to infer or test a statistical model for the relationship among a plural of
variables [22, 23], where a partial correlation coefficient, instead of a correlation
coefficient, is used as a measure to select the first type of interaction. In GGM, the
statistical model for the relationship among the variables is represented as a graph,
called the ‘independence graph’, where the nodes correspond to the variables under
consideration, and the edges correspond to the first type of interactions between
variables. More correctly speaking, an edge in the independence graph indicates a
pair of variables that are conditionally dependent.

Algorithm for application of graphical Gaussian modeling

To infer the relationship among variables from a set of observed data of the vari-
ables, at first, the calculaflon of the inverse of the covariance matrix � is required
for GGM. However, many genes share similar expression patterns [5], and a high
similarity in expression pattern induces linear dependence among rows or columns
in the correlation coefficient matrix, in terms of numerical analysis. This causes to
make the calculation of the inverse matrix difficult. Instead of raw expression pro-
file data of genes, therefore, the averaged expression levels of clusters are hereafter
considered. Suppose that we have a data set of averaged expression levels of M

clusters measured under N different conditions, each of which is represented as an
M-dimensional vector (p(cluster 1(i)), p(cluster 2(i)), . . . , p(cluster M(i))) and
1 ≤ i ≤ N . The averaged expression level of the cluster k at the j -th condition is
calculated as follows;

p(cluster k(j)) = (�gene i(j)∈cluster k (p(gene i(j)))/nk

(1 ≤ k ≤ M, 1 ≤ j ≤ N)

where nk is the number o members of the cluster k.
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The averaged profile data was subjected to the analysis by GGM.
In actual application of GGM, we applied a stepwise and iterative algorithm

developed by Wermuth and Scheidt [27], in order to evaluate which pair of clusters
is conditionally independent.

Step 0: A complete graph of G(0) = (V,E) was used to represent the relationship
among the M clusters, where V is a finite set of nodes, each corresponding
to the M clusters, and E is a finite set of edges between the nodes. E consists
of the edges between cluster pairs whose averaged expression levels are con-
ditionally dependent, given the rest. All of the nodes are connected. G(0) is
called a full model. Based on the expression profile data, an initial correlation
coefficient matrix C(0) is constructed.

Step 1: Calculate the partial correlation coefficient matrix P(τ) from the correl-
ation coefficient matrix C(τ). τ indicates the number of the iteration. The
elements of the covariance matrix are calculated with the elements of the
inverse of the original M × M covariance matrix. Let � (ωij ) be the inverse
covariance matrix or the precision matrix �−1. Then, the diagonal elements
of the 2-dimensional conditional covariance matrix are given as ωii and ωij ,
and the off-diagonal element is given as ωij . If ωij = 0, the conditional
normal distribution is expressed as a product of the function of the aver-
aged expression level of cluster i and that of cluster j . That is, clusters i

and j is conditionally independent in expression level, given the remaining
M − 2 clusters’ averaged expression levels, when ωij = 0. In the applic-
ation of GGM, conditional independence between a pair of variables i and
j is evaluated using the partial correlation coefficient between the variables,
ρij, the rest, instead of ωij (Whittaker, 1990; Edwards, 1995). ρij, the rest is
given as −ωij/(ωii × ωjj ). That is, the variables i and j is conditionally
independent when ρij, the rest = 0.

Step 2: Find an element that has the smallest absolute value among all of the non-
zero elements of P(τ). Then, replace the element in P(τ) with zero.

Step 3: Reconstruct the correlation coefficient matrix, C(τ + 1), from P(τ). In
C(τ + 1), the element corresponding to the element set to zero in P(τ) is
revised, while all of the other elements are left as the same as those of C(τ).

Step 4: In Wermuth and Sheidt algorithm, the termination of the iteration is judged
by the values called ‘deviance’. We here used two types of deviance, dev1 and
dev2, whose definitions are as follows;

dev1 = N log(|C(τ + 1)| / |C(0)|),

dev2 = N log(|C(τ + 1)| / |C(τ)|),
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Calculate dev1 and dev2. The two deviances follow an asymptotic χ2 dis-
tribution with a degree of freedom = n, and that with a degree of freedom
= 1, respectively. n is the number of elements that are set to zero until the
(τ + 1)-th iteration. In our approach, n is equal to (τ + 1). |C(τ)| indicates
the determinant of C(τ). N is the number of different conditions under which
the expression levels of M clusters are measured.

Step 5: If the probability value corresponding to dev1 ≤ 0.05, or the probability
value corresponding to dev2 ≤ 0.05, then the model C(τ +1) is rejected, and
the iteration is stopped. Otherwise, the edge between a pair of clusters whose
partial correlation coefficient is set to zero in P(τ) is omitted from G(τ ) to
generate G(τ + 1), and τ is increased by 1. Then, go to Step 1.

The graph obtained by the procedure is an undirected graph, which is called
an independence graph. The independence graph represents which pair of clusters
is conditionally independent. That is, when the partial correlation coefficient for a
cluster pair is equal to 0, the cluster pair is conditionally independent, and the re-
lationship is expressed as no edge between the nodes corresponding to the clusters
in the independence graph. That is, the graph represents the genetic network of the
M clusters under consideration.

3. Results

3.1. DETERMINATION OF CLUSTER BOUNDARIES

Following the hierarchical clustering of 2467 profiles, the cluster boundaries are
estimated by the calculation of VIF at each node in the dendrogram. The fraction of
the number of VIF’s that are less than 10.0 to the total number of diagonal elements
in correlation coefficient matrix is plotted against the cluster number in Figure 2.
In the calculation of VIF, the inverse of the correlation coefficient matrix cannot
be calculated in more than 50 clusters (49 nodes). This is because some values in
the process of implementation are too small to proceed with the calculation of an
inverse matrix. Thus, the VIF is calculated in less than 49 clusters.

As seen in Figure 2, the fractions of the diagonal elements with VIF’s less
than 10.0 increase as the number of clusters decreases. This indicates that the
multicollinearity between the profiles monotoneously diminishes with the decrease
of clusters. Although the fractions of VIF’s were not calculated in more than 50
clusters, due to the limitation of the present numerical analysis, the monotoneous
decrease suggests that the fraction may show a small value in more than 50 clusters
in the present analysis. Finally, the fraction reaches a 1 value in 34 clusters, and
maintains a 1 value in fewer clusters. This indicates that less than 34 clusters
show no linear relationships between the profile data. Consequently, the maximum
number of clusters with all VIF’s less than 10.0 is estimated to be 34.

In the 34 clusters, the members are ranged from 14 to 275. The list of all mem-
bers, in addition to the dendrogram of 34 clusters, is available at our web sites
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Figure 2. Estimation of Cluster Boundaries by the Variance Inflation Factor. The fractions
of the diagonal elements with less than 10.0 of VIF to all diagonal elements with a number
equal to the cluster number are plotted from 49 clusters to 2 clusters. In more than 50 clusters,
the inverse of the correlation coefficient matrix cannot be numerically calculated, due to the
highly correlated profiles of the genes.

(http//www.ged.sagamed.ac.jp/horimoto/microarray/ or http:www.beri.or.jp/toh/
∼protein).

3.2. APPLICATION OF GGM

The GGM was applied to the average expression levels of 34 clusters obtained in
the preceding subsection. The iterative procedure of GGM was stopped when either
probability value for dev1 or dev2 did not satisfy the given level of significance.
In the present analysis, the probability values for dev1 were always greater than
99.999% over the iterative calculation. In contrast, those of dev2 gradually de-
creased with increasing step numbers. Finally, the iterative calculation was stopped
at the step number = 189. The probability value for dev2 at the 189-th step was
0.011. Therefore, the number of iteration steps before stopping the procedure, 188,
corresponded to the number of elements of PCCM that were replaced with 0.0.
Consequently, dev2 was effective for the judgment of stopping the iteration, while
dev1 was not a good measure for the judgment.
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Figure 3. Schematic Presentation of Partial Correlation Coefficient Matrix Obtained by GGM.
The partial correlation coefficient of every pair of 34 clusters is schematically shown, where
the elements replaced with 0.0 in the iterative procedure of GGM are closed, and the others
are open. The rows or columns correspond to the clusters, and the cluster numbers are shown
at the left and diagonal of the matrix.

The results of application of GGM to the 34 clusters are shown in Figure 3.
Since the expression levels are averaged in the same clusters, the values of partial
correlation coefficients did not always reflect the degree of regulations experiment-
ally observed. In Figure 3, therefore, the zero or non-zero features of the elements
in the obtained PCCMs were focused. In other words, we will examine the accuracy
of our approach, only based on presence or absence of edges in the independence
graph. Hereafter, the presence of an edge in the independence graph is used as the
same meaning as a non-zero partial correlation coefficient in PCCM.

Out of 561 elements, 188 (about 34%) were replaced with 0.0 by the iterative
procedure of GGM. In other words, 188 edges were removed from the independ-
ence graph. The independence graph did not include any node without edges.
Inversely, there was no node with edges to all of the other nodes in the graph.
The maximum number of edges of a node was 31, while the minimum number was
17.
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4. Discussion

4.1. EVALUATION OF CLUSTER BOUNDARIES

The cluster boundaries determined by the present analysis are evaluated by an
investgation of each member of the clusters in terms of gene function. As described
by Eisen et al. [5], nine groups of functionally related genes, defined according to
the functional annotation in the Saccharomyces Genome Database [28], have been
picked up by visual inspection of the entire clustered image, although the clustering
boundaries were not clearly shown in their work. Most of the genes belonging to
the nine groups in the previous paper are clustered together, and are allocated into
the distinctive clusters in the present study. Indeed, 124 genes among 135 genes
picked out by Eisen et al. [5] are correctly allocated. Furthermore, the present res-
ults were evaluated according to the gene classification scheme in the MIPS Yeast
Genome Database [29]. Although the classification scheme in the MIPS Database
is different from that in the Saccharomyces Genome Database, the cluster members
in the present analysis are corresponded to the genes in the categories of the MIPS
Database, which are similar to the gene groups picked up in Eisen et al. [5]. In six
groups, the most frequent genes are consistently found in the clusters picked out
by Eisen et al. [5]. Indeed, the most frequent genes are found in clusters 7, 10, 11,
12, 30 and 31, respectively. The two remaining categories are not consistent with
the previous results. This is partly because the classification schemes are different
between the two databases, partly because the genes in the two categories may
be involved in multiple biological processes, and partly because the number of
clusters may overestimate the underlying diversity of gene expression classes in
the present data. At any rate, the automatically determined clusters in the present
analysis agree well with the previous results that were obtained by visual inspection
and biological knowledge of gene function. The complete correspondence of the
cluster members with the categories in the MIPS scheme is available at our web
sites.

The estimation of cluster boundaries is based on the correlation coefficient mat-
rix whose elements are selected from the original correlation coefficient matrix
at each node. To test the robustness of the present cluster boundaries, therefore,
the correlation coefficient matrix used in the present study is compared with two
types of matrices. One is the matrix that is generated by the random selection of
correlation coefficients from the members of each cluster, except for the youngest
number of genes used in the present study, and another is the matrix whose ele-
ments are the averaged correlation coefficients over the members in the respective
clusters. The difference was very small between the correlation coefficient matrix
in the present study and the randomly generated correlation coefficient matrix. The
deviance with P < 0.05 is found in only 7 out of 100 comparisons. In contrast,
the deviance with P > 0.90 is found in 82 comparisons. As for the matrix of the
averaged correlation coefficients, there was also little difference from the matrix
in the present study. The probability of the deviance between the two matrices is
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0.985 (χ2 = 489.424). These results indicate that the correlation coefficient matrix
generated by the present selection procedure appropriately represents the statistical
properties in each cluster, and thus provides a vigorous estimation of the cluster
boundaries.

4.2. EVALUATION OF THE INFERRED GENETIC NETWORK

Here, we examined the correspondence of the edges with the regulatory relation-
ships directly or indirectly suggested by experimental studies. However, it was
difficult to collect all of the literatures of experimental studies about the regulation
of expression in S. cerevisae, because many experimental results have been accu-
mulated. Thus, we collected the literatures, focusing on the regulation of SUC2
expression, because SUC2 is one of the genes that have been extensively stud-
ied. Some literatures about the expression of different genes from SUC2 were
found during the collection process, which were also used for the examination
of our result. Then, we evaluated obtained PCCM with the results of the collected
experimental studies, under the assumption that the relationships obtained by ex-
periments reflect the direct interactions about the expressions of the genes. When
the partial correlation coefficient between two clusters, corresponding to a pair of
the genes described in a literature, was not zero, the inference of the relationship
was regarded as being correct. Otherwise, the relationship inferred by GGM was
considered to be wrong.

A subgraph of the independence graph is shown in Figure 4. Each node corres-
ponds with with a cluster, although only the genes related to SUC2 expression
are written in the nodes. Both correct and wrong relationships are included in
the subgraph. SUC2 is a gene for sucrose hydrolyzing enzyme called invertase,
which is included in cluster 23. SNF1, 2 and 3 are considered to constitute a large
complex together with SWI1 and SWI3, to form a supermolecule involved in the
expression regulation of various genes including SUC2 [30]. Cluster 9 included
SWI1, SNF2 and SWI3 (SNF2 is another name of SWI2). SNF5 is included in
cluster 26, while cluster 5 contains SNF6. As shown in Figure 3, there are edges
between cluster 23 and clusters 9, 5 and 26. In other words, the partial correlation
coefficients corresponding to the edges were not zero. GAL11 (another name is
SPT13 or RAP3) has been identified as a transcription regulator of galactose meta-
bolizing enzymes, but the gene is also involved in the regulation of SUC2. GAL11
is included in cluster 26, as well as SNF5. That is, the interaction was indicated by
the edge between clusters 23 and 26. SIN4 (another name is BEL2) and RGR1 are
considered to form a complex for transcription regulation [31]. SIN4 is included
in cluster 24, while RGRI belongs to cluster 28. Both of them are involved in
the regulation of SUC2 expression. The presence of edges between cluster 23 and
clusters 24 and 28 agreed with the observation. TUP1, CYC8, and MIG1 are also
considered to form a complex for regulation of glucose repression related genes
[32]. TUP1 belongs to cluster 26. CYC8 (another name is SSN6) is included in
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Figure 4. Correspondence between Inferred Network and Known Regulatory Relationship
between the Genes Related to SUC2. A solid line indicates the interaction between a pair of
clusters, which are also suggested by our approach. Each node indicates a cluster. A dashed
line indicates the regulatory relationship among 34 clusters. The edges of the independence
graph are basically obtained as undirected edges. However, the edges were replaced with ar-
rows, according to the causes and results suggested by the experimental results. The underlined
number in a node indicates the identification number of the cluster, and the number associated
with each edge indicates the bootstrap probability for the edge between a pair of clusters.
The gene names of the members of a cluster are written, when the genes are involved in the
regulation of SUC2 expression.

cluster 2. MIG1 is included in cluster 23, the same cluster as SUC2. The edge
between cluster 23 and 26 is present, but there is no edge between clusters 2 and
23 since the corresponding partial correlation coefficient was zero (see Figure 3).
SRB8 is involved in the SUC2 expression, which belongs to cluster 26, like TUP1.
Thus, most of the collected experimental studies about the regulation of SUC2 are
consistent with the result of GGM. Likewise, most of the remaining edges were
consistent with the collected expression regulatory relationships other than those
of SUC2.

The reliability of the edges of the obtained independence graph, or the non-zero
elements of obtained PCCM is evaluated by the bootstrap analysis [33]. Consider
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that the original sample was a data set of averaged expression levels of M clusters
measured under N different conditions. Then, a bootstrap sample was generated
by randomly sampling N times, with replacement, from the original sample. The
bootstrap sample was subjected to the analysis by GGM, and a PCCM for the
bootstrap sample was obtained. This procedure was repeated K times, and we
had K PCCMs for the bootstrap samples. Let’s consider an element (i, j) of the
original PCCM. Then, the count of the non-zero values at element (i, j) over the
K PCCMs for bootstrap samples was obtained. The ratio of the count against K is
the bootstrap probability of the edge, or the reliability for the existence of the edge,
of the element (i, j). According to the above procedure, the bootstrap probability
was obtained for each element. Here, K was set to 100. Given that 80% as the
significance level for the bootstrap probability, out of 561 elements, 173 elements
had bootstrap probabilities ≥ 80%. 163 out of the 173 elements corresponded to
the non-zero elements of PCCM. The ratio was about 94%. That is, most of the ele-
ments with the high bootstrap probability corresponded to the non-zero elements in
the original PCCM. On the other hand, the original PCCM included 373 non-zero
elements, and 163 out of the 373 elements had the bootstrap probabilities ≥ 80%.
In other words, the edges in the independence graph, which corresponded to about
44% of the non-zero elements, were regarded as being statistically significant in
this case.

4.3. CONCLUDING REMARKS

We report a combined application of the cluster analysis and GGM to infer genetic
networks from expression profile data. The final goal of the inference of the genetic
network is the complete description of the causality of the expressions of all of
the genes in a genome, that is, the inference of the full relationships between
transcription-related genes and all of the genes in a genome. Our approach with
the expression profile data available today did not attain an inference of such high
resolution. We were only able to infer the relationship among clusters of genes.
However, our study suggested that even such a low resolution inference can explain
the experimental study for the transcription regulation to some extent, although
improvement of the resolution is one of the important goals in the next step. Sev-
eral assumptions have been introduced for the application of GGM. For example,
the expression profile data are assumed to be drawn from a multivariate normal
distribution. Such assumptions should be re-examined to improve the resolution of
the inference.

Finally, a future extension of the current approach is shortly discussed. As de-
scribed above, one of the important problems in studying expression profile data
is the inference of causality in the genetic network. In order to introduce the caus-
ality into the independence graph, some information other than expression profile
is required. In this work, the edges of the subgraph were replaced with arrows,
according to the previous experimental results. When time series data are provided
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for GGM, however, we can systematically introduce the causality according to the
time order. The graph obtained by the approach is called a ‘chain independence
graph’. However, some modifications of the algorithm of the GGM are required for
the inference of the genetic network as a chained independence graph. In addition,
the subjects of GGM application are not restricted to the expression profile data.
For example, GGM could be applicable to the inference of the contact sites from a
multiple alignment. Thus, GGM has high potential for investigations of interactions
in the field of bioinformatics.
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